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Multipolaron solutions of the Gross-Neveu field theory: Toda potential and doped polymers
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Exact, periodic multipolaron solutions are constructed for the Gross-Neveu (GN) field theory in one
dimension for particles with X Aavors. First we connect the appropriate GN equations with continuum
models of Peierls distorted polymer chains. Then we utilize a relationship between the cnoidal wave
solutions of the Toda lattice and the potential of a polaron lattice in polymers.

The existence and role of nonlinear excitations in an in-
teracting one-dimensional (1D) electron-phonon system
have been extensively studied in a variety of physical sys-
tems over the past decade. Qf particular interest are soli-
tons and polarons that are known to exist in polyenes
[1—3], polyynes [4] and other related polymers. The
single-soliton and single-polaron solutions in the continu-
um models (the Takayama —Lin-Liu —Maki [5] (TLM)
model for trans-(CH) and the Rice-Bishop-Campbell [4]
(RBC) model for polyynes) can be obtained directly from
the well-known results for the particle spectrum of the
Gross-Neveu (GN) model [6]. This is possible, since a
simple transformation [7] connecting the fermion fields in
the polymer models with the GN model and the displace-
ment field in the polymer with the scalar boson field in
the GN model shows exact equivalence at an adiabatic
level. If the two models are equivalent then their self-
consistency conditions must also match. The GN model
is known to be divergent in the ultraviolet -region and re-
quires a cutoff frequency A for renormalization. In the
continuum models of the polymers, however, a precisely
equivalent cutoff is introduced in a natural way by the
finite width of the electron band. Thus the two self-
consistency conditions can be shown to be equivalent.
Furthermore, the number of different particle Aavors N in
the GN model corresponds to the total number of inter-
nal degrees of freedom in the polymer case.

In this way, any static solution obtained for the GN
model can be carried over to the appropriate polymer
continuum model and vice versa. Exact, periodic mul-
tisoliton solutions, or soliton lattices [8], are known for—( A ),—and —( AB) —systems for N = 1 (spinless fer-
mions describing a spin-Peierls model [9]), N =2 (elec-
trons with two spin states, such as in polyenes), and N =4
(including orbital degeneracy such as in polyynes). Bipo-
laron lattice solutions are known for N =2 in nondegen-
erate polyenes in the Brazovskii-Kirova [10] and other re-
lated models [11]. The polaron lattice has been studied
analytically [12] within the TLM model (N =2) but there
are no exact analytic solutions available for general N.
Moreover, N &2 offers the possibility of multipolaron
solutions with polaron charge varying from

Q =+e, +2e, . . . , +(N —l)e. Specifically, a tripolaron
lattice may exist in polyynes (N =4).

Our objective in this Rapid Communication is to con-
struct analytic expressions for multipolaron lattice solu-
tions for general N. Naturally, these nonlinear lattice
solutions in polymer systems also constitute periodic

solutions of the GN field-theory model in 1D. To attain
our goal, we first establish an exact relationship between
the cnoidal wave solution of the Toda lattice [13]and the
order parameter associated with the polaron lattice. We
emphasize here that this technique is not only straight-
forward but also applies to a wide class of potentials in
order to obtain periodic (or "lattice" ) solutions. In addi-
tion, by way of this connection we have succeeded in
bridging the gap between three seemingly disparate set of
problems in physics, namely: (1) the classical-mechanics
problem of a mass-spring chain with a nearest-neighbor
nonlinear (exponential) interaction (the Toda lattice), (2)
the quantum-mechanical problem of an interacting
electron-phonon system in solid state (Peierls distorted
polymers), and (3) the relativistic field theory problem of
self-interacting fermions with an auxiliary scalar boson
field (GN model).

The Lagrangian for the Gross-Neveu field theory in
1+1 dimensions [14] is given by

N
L (x)= g g (x) iy„—goNo. (x) f'(x) —

—,'o (x),
v=1 P

where g (x) is a fermion field, g (x) =(fi(x),$2(x)),
tr(x) is a scalar boson field, and goN is the Gross-Neveu
coupling constant. The summation index v labels the
particle type (or fiavor). y„(p=0, 1) are the Dirac ma-
trices (yp=cr3, y, =io. , ). If we consider the static solu-—ic,„ttions of the type g (x, t)=e "1b (n;x) then the varia-
tion of g (x) gives (xp =t, x, =x)

a
E„yp+tyi goNo(x) g (n;x)=0,

where E„ is the nth eigenvalue. Equation (1) has exactly
the structure of Bogoliubov —de Gennes equations [4,5]
for the fermion fields u (x) and v (x) in the TLM (v = 1,2)
and RBC ( v = 1,2, 3,4) continuum models.

The transformation gi(n;x)~ ,' [u&(n;x—)+v~(n;x)],
gz~ —(i/2) [u &(n;x) —v&(n;x) ], gGN o ~b„, and

x —+vFx establishes an exact equivalence [7] of Gross-
Neveu and polymer continuum models (TLM or RBC).
Defining f&

(x)=u&(x)+iv&(x) the analog of Eq. (1) in

decoupled form for the polymers can be expressed as

a2
vF 2 +E„&—b (x)+vF b,(x) f„&(x)=0, (2)—

Bx Bx

with an associated self-consistency equation
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X Xg—tanh sin(8)
0

(3)

where 8=m /2N (n + h), sin(8) =tanh(2K&x e)=%ego,
vF =b,ohio, and n and h denote the number of electrons in
the upper localized polaron level and the number of holes
in the lower localized polaron level, respectively. The po-
tential for a single polaron (bipolaron, tripolaron, etc.) in
Eq. (2) thus becomes

vF g, If.+, ~(x)l'
b, (x)= —2A, mvF b, (x)+

2 Bx
~

2E,~ g

where A, denotes the dimensionless electron-phonon cou-
pling constant and the sum is over occupied states ex-
cluding an c„&=0state.

The order parameter for a single polaron [4] is given by

X +Xe
b, e(x) =ho —b,osin(8) tanh sin(8)

V*(x)=b, (x)+ vF b,(x)a
Bx

=b,o
—2b, osin (8)sech sin(8)

0

If we consider a lattice of polarons with a periodicity d
then the lattice potential is given by the lattice sum

U+—(x)= g V—(x —nd)
n = —oo

=ho —2b, osin (8)

X g sech sin(8)
x+x& —nd

(5)

To evaluate the infinite sum in Eq. (5) we first deduce a
relationship between the Toda lattice potential VTL(r„)
associated with a cnoidal wave [13] and the polaron lat-
tice potential U(x). The cnoidal wave is given by

b/m, 2 E
, , VTL(r„)= dn (2xK) ——

(2' v') K 2K'

'2
vrE vrK
IC'sech, x—

2K%' (6)

b/m ,
( )

(2Kv')

where the Toda lattice potential [13]is given by
g —~r„

VTL(r„)=—e "+ar„, ab )0, r„=x„+i—x„.
In Eq. (6) K, E, (and II below) denote the complete ellip-
tic integrals of the first, second, and third kind, respec-
tively. x =n /I'+v't, , A,

' and v' being the wavelength and
frequency, respectively, of a Toda chain with each parti-
cle having mass m. dn and sn and cn below are Jacobian
elliptic functions with modulus k [and k ' = ( 1 —k )

'

below].
A direct comparison of Eqs. (5) and (6) leads to the fol-

lowing important relation between VTL(r„) and U(x):

b, o
—U —(x) 2K'

2b, osin (8)

I

mentioned before Eq. (2). Equation (7) should not be
misconstrued as connecting a discrete problem (Toda lat-
tice) with a continuum problem (polymer chains or the
GN model). Instead, it only exploits the mathematical
structure of Eq. (6), treating x as a continuous variable.
Note that the cnoidal wave [dn2(2xk) —E/&] js also a
solution of the Korteweg —de Vries (KdV) equation [15].
The KdV equation is a continuum equation. We also
note that a discrete Su-Schrieffer-Heeger-like model was
exactly solved [16] to obtain periodic solutions assuming
an exponential (Toda-like) electron-phonon interaction.

Equations (6) and (7) lead to the following expression
for the lattice potential:

U —(x)=bL(x)+v~ b, „(x)

(7)

where —VTL(r„) is the force of the spring in the Toda
chain when it is stretched by an amount r„. Equation (7)
not only connects the Toda lattice with doped polymers
(polaron lattice) but also with the Gross-Neveu model
(periodic multipolaron solutions) via the transformations

I

=b,o 2sin (8L)sn sin(8L), k
X +XL

kgo

+ 1 —
z

sin (8L)
2E'
k'z'

where the lattice order parameter is given by

(8)

sn(x )cn(x )dn(x )+sn(x+)cn(x+)dn(x+)a, x =aok sin 8,
dn (x ) —dn (x )

2k@
(8) 4L& kL= 2k+' ko (9)

and

2XL
sn sin(8L)

0

sin(8L)

[k +k' (8 )]'
(10)

sin(8„) = 2kK'
sin(8), x —= X +XL

sin(8„) .
0

Note that the expression for the characteristic length g'„

in the lattice problem will also emerge from the self-
consistency condition as shown below. Equation (10) is
an expression for the characteristic width xL of a single
polaron in the lattice problem as a function of k (doping).
In the single-polaron limit (k —+ I, K~ ~, d ~ ~ ), Eqs.
(8)—(10) reduce to Eqs. (3) and (4). Also, in the
deconfinement limit [sin(8) —+1, x&~ oo ], known soliton
lattice solutions (for N =2, 4) are recovered. Within the
context of the GN model Eq. (9) represents (N fiavors ofl
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self-interacting fermions in an inhomogeneous, periodic
boson field. It is worth pointing out that Eq. (9) can be
interpreted as a bound state of two soliton lattices shifted
from each other by 2xL. Specifically,

dn (x )
b,L(x}=bs„(x )

dn (x ) —dn x

+ dn (x+)
dn (x )

—dn (x+)
where the factors in braces can be thought of as "binding
weights. " Similarly, Eq. (3) can be recast in the following
form:

sech (x )
b, s(x)= b,otanh(x )

sech (x ) —sech x+

sech (x+)+b.otanh(x ) .
sech (x ) —sech x

which shows a polaron to be a bound state of two solitons
shifted from each other by 2x with the corresponding
binding weights in the braces. Thus, it is evident that the
lattice order parameter b,L(x) preserves the mathematical
structure of b,s(x). This is (likely to be) a consequence of
the refiectionless property of the potential V(x), or in
other words we are dealing with an integrable system.

Equation (2) with potential U(x) given by Eq. (8) is a
Lame equation [8,11]of genus 1. The wave functions and
eigenvalues (f„&,e„&) can be obtained (with minor
modifications) from Ref. [11]. In particular, the spec-
trum consists of four bands, namely, conduction, upper
and lower polaron, and valence band. If Ez, EU, and EL
denote the conduction-band edge, the upper edge and the
lower edge of the upper polaron band, respectively, then
the moduli k and k' of the elliptic integrals (or functions)
can be expressed in terms of the band edges

E2 E2 1/2 E2 E2 1/2
C U U L

Ec EL Ec

Explicit expressions for Ez, EU, and EI are given in Ref.
[11]. Since the standard Gross-Neveu model has
particle-hole (charge-conjugation) symmetry, E—c,—EU, and —EL correspond to the valence and lower po-
laron band, respectively.

Next, we explicitly check the self-consistency equation
by using Lame functions and the associated eigenvalues
[11]. The solution given by Eq. (9) is found to be locally
stable only if

U Ecsn 1 ——0 k k=
U

Equation (11) is equivalent to the relation between gL and

go and in the limit k ~1 reduces to E =b,ocosO, i.e., the
localized single-polaron level, provided (L=(m/2kK')$0.
In addition, when Eq. (11) holds, we obtain from the self-
consistency condition a prescription for systematically
taking the weak-coupling limit:

1

NA, BLEU U

1 2g+—1—
k

K(k) 1—k'

k

k'
+ E(k)

k
where g=(EU/Ec)sin 'sn(K' —5, k'). In the weak-
coupling limit the arbitrary parameter 5~0 correspond-
ing to A ~0. E ( 21, k ),E ( 21, k ) below and II( rl, Ec /E U, k )
are the incomplete elliptic integrals of the first, second,
and third kind, respectively. Furthermore, 5 (and thus A.

implicitly) is related to the upper momentum cutoff A (or
the total bandwidth 2U~A) according to

sn(K' —5, k ')dn(K' —5, k')
kgLcn(K' —5, k')

The total energy of the polaron lattice relative to the
polaron free ground state is given by

EL
L

Q2

27TA, VF

4sin (8)K'
m'K

+A (g2+ 2p2)1/2

1VEU
1 ——8 E(k)—

kgL m K

XEU Ek2 —(1—k ) 1—kg'„k' K

E
K(k)

F(2), k )+ 1—

E
E

—1 II(k', k )

kVF
E(q, k)+

1. L

2 E2rtq, k

Expansion of the above equation in the dilute limit to or-
der k' leads to a repulsive interaction between two pola-
rons and can be calculated as in Ref. [11]. Moreover, the
chemical potential p can be shown to satisfy EU (p (E&,
indicating that the polaron lattice is energetically the
most favorable charged configuration.

Equation (7) and the solution given by Eqs. (9) and (10)
provide a way to interpret phenomena encountered
within the context of Gross-Neveu field theory, such as
spontaneous dynamical symmetry breaking, mass genera-
tion, and negative-energy sea anomalies, in terms of phe-

nomena in the solid state (Peierls distortion, fractional
charge, consequences of valence-band phase shift) as well
as in terms of Toda lattice (dual system, conserved quan-
tities, discrete Hill s equation). In addition, the pro-
cedure described here can easily be extended to chiral
GN field theory [17]. The Lagrangian for the latter is
given by X =X&N —

—,'g&N g~=, (g+ 'yoy, g' '), which
&dror )has continuous chiral invariance P~e ' 'g and no gen-

eral charge conjugation symmetry. For X =2 this model
has no stable polaron solution. However, stable soliton
solutions exist; for %)2 the localized soliton levels are
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oF-center in the energy gap. Therefore a soliton-lattice
solution can readily be obtained in this case. Moreover,
for N) 2, stable polaron (and polaron lattice) solutions
may well exist. Note that the N=2 chiral GN model
also has an analog in solid state, namely, the incommens-
urate Peierls distorted system. Furthermore, it can be
compared with the classical Heisenberg XY ferromagnet.

Another application of our procedure is obtaining mul-
tisoliton or multipolaron solutions of (AB)-type GN field
theory with fermion fractionalization [18]. For N =2,
single-soliton or -polaron solutions are known both field
theoretically and in the solid state. The latter corre-
sponds to a linearly conjugated diatomic polymer (Rice-
Mele model [19]) which exhibits solitons with charge
fractionalization into irrational numbers. Generalization
of —( AB) -type—GN field theory for general N() 2) is
conceptually straightforward. The GN model corre-
sponds to commensurability M =2 in the polymer case.
Extension to general M requires nontrivial modification
of the GN model. We also note that the known lattice
solutions for the order parameter for liquid crystals [20],
superconductors [21],Josephson junctions [22], and relat-
ed solid-state systems can be obtained directly by our
procedure.

Although we have obtained static multipolaron solu-
tions, the present technique applies equally well to time-
dependent solutions for polymers (but not in the GN
model) and can possibly be linked to the Lamb ansatz
[15]. Furthermore, this technique is implicitly related to
the technique of inverse scattering and the potential V(x)
is related to the Bargmann potentials [15].

For X =2 our results can be compared with the analyt-
ical solution of Takahashi [12]. Since it is difficult to syn-
thesize long chains of polyynes in the laboratory (small
chains are believed to exist in the interstellar dust) as well
as the —( AB) -type polyynes, —a comparison for N =4

results with experimentally doped systems is not possible
at present. Solid-state realizations of N & 4 field theories
are yet to be found.

It is known that the nonlinear evolution equations that
admit solitary-wave solutions also have spatially periodic
exact solutions (or polycnoidal waves [23)). Equation (6)
is a special case for a Schrodinger equation with a poten-
tial V(x)=a+b sech x. We assert that exact periodic
solutions also exist if the potential V(x)=a +b sechx or
V(x) =a +b tanhx. Specifically, using the method of
Poisson summation [23] for elliptic functions, we have

sech[mrs (x —n)] = dn(x),2K (s)
%$

( —I )"sech[ms (x —n ) ]= 2k (s)E (s) cn(x),
77$

(
—I )"tanh[trs (x —n)] = 2k (s)E(s)'

sn(x),
%$

where s =K(k)/E(k') and periodicity d =ms. In addi-
tion, various powers and combinations of tanhx and
sechx can be summed in this manner in a Poisson sum.
Whether the Schrodinger equation with such potentials
[V(x) or corresponding periodic potential U(x)] is ex-
actly solvable remains to be seen. This procedure applies
equally well to the solitonlike solutions of sine-Gordon,

and related models as well as to the nonlinear
Schrodinger equation [15].

In conclusion, we have obtained a simple technique
with wide applicability for obtaining multipolaron solu-
tions of (integrable) systems by connecting three prob-
lems belonging to very diFerent physics disci-
plines.
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