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An exact solution is reported for the kinetics of random sequential adsorption of mixtures of mono-

mers and k-mers on a one-dimensional lattice. The limit k ~ can then be appropriately defined,

yielding the solution for the continuum deposition of a mixture of fixed-size and pointlike particles.
The addition of the pointlike particles is found to modify in a nonuniversal way the form of the large-
time convergence law of the approach to the jamming coverage.

Recently, there has been a renewal of interest in, and
much theoretical effort devoted to, random sequential
deposition processes [1-25]. Such processes are realized
in experimental studies of kinetics of protein and colloid
particle adhesion on surfaces under the conditions of
negligibly slow surface relaxation (e.g. , diffusion) [26-
33].

Experimentally, it is also possible to study surface depo-
sition kinetics of well-defined mixtures of different types
of particles. However, there has been very little progress
made in the theoretical description of such mixture-
deposition processes. Most results available to date were
obtained numerically or within approximation schemes
[15,34-37] and no systematic theoretical picture has
emerged.

In this work we establish that exact results can be ob-
tained for a class of monolayer mixture-deposition models
in one dimension (1D). Generally, the 1D deposition pro-
cesses are not just of theoretical interest but they are ap-
propriate for the description of certain polymer reactions
[1,3,38-45]. To our knowledge, the only previous study
on the 1D deposition of mixtures [34-36,45] was math-
ematically oriented and focused on the estimation of jam-

ming coverages. We report results for the kinetics (i.e.,
the time dependence of the coverage) which, hopefully,
will provide a useful guide for studies of the 2D deposition
processes as well.

The outline of the rest of this work is as follows. First,
we define the models and develop a rate-equation ap-
proach that allows derivation of exact results in many
cases. We then present explicit results for the case of the
deposition of mixtures of fixed-length and pointlike "par-
ticles" on 1D line "surfaces. " The choice of this particu-
lar type of mixture is motivated by a recent study [37]
suggesting that interesting effects are to be expected when
particle sizes differ significantly. Our models are those of
lattice deposition, and "pointlike" particles are defined by
the appropriate continuum limit. Indeed, new interesting
properties of the deposition kinetics emerge in the contin-
uum deposition case.

For the continuum deposition of one type of particles
(segments) of length /, on a 1D line, with the attempt rate
R per unit length and time, it is convenient to introduce
the corresponding lattice model of k-mer deposition [23].
Thus, we introduce a lattice of spacing b =1/k, and allow
deposition only at sites where the incoming particle will
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coincide exactly with the underlying lattice, covering k
units. The deposition frequency per site will be Rb. Ran-
dom sequential adsorption for the lattice or continuum
models is defined by assuming that the deposition at-
tempts are successful if the incoming particles do not
overlap any particles already in the deposit. Otherwise,
the attempt is rejected. Thus, particles are assumed trans-
ported to the surface, but they adhere only if there is
unoccupied area to fit that particle in. (We consider only
monolayer deposition in this work. )

For all k ~ 2, the deposition process ends in a jammed
state of density smaller than the close packing value, 1.
The jamming coverage (density) is approached at the rate
exp( —Rlt/k), for large times, t. In the limit k
(b 0) this behavior crosses over to a slower, power-law
approach, —t '. These large time and many other prop-
erties of the 1D deposition have been obtained by exact
calculations, and analyzed extensively [1-3,5,7,8,23].
One of the several known methods to calculate the time-
dependent coverage [3,24] is particularly well suited for
the extension to the case of the deposition of mixtures. In
this approach one considers the probabilities P (t),m
=1,2, . . . , that groups of m sites are not covered by par-
ticles. These groups of m consecutive sites may or may
not be bound by occupied sites at one or both ends. For
the one-type (k-mer) deposition problem, one can write
down the exact rate equations,

(
m —

1

(k —m + 1)Pp + 2 g Pp+z, m ~ k
d j=l
d k —

1

(m —k+1)P +2 g P +~, m~ k (2)
j=1

Pm—k
T

where we introduced the dimensionless time variable
T=Rlt. The fir—st terms in (1) and (2) correspond to the
k-mer covering fully the m-group (m ~ k) or fitting
within it (m ~ k). The sums correspond to the probabili-
ties of deposition events in which the m-group is made oc-
cupied by a partial overlap by the incoming k-mer. (The
sum over j is not present for rn =1.) Such rate equations
are exact in 1D, and allow a solution in quadratures. The
coverage (density of occupied sites) is given by

e(r) = I —P, (r) .

An important observation is that this general setup is
not affected if the deposition of mixtures is considered.

I

where we introduce the notation

kf
Rl

The resulting rate equations are supplemented by the
initial conditions P (0) =1 (for all rn) The m ~ .k equa-
tions are then solved by the ansatz

P ~k(T) p(T)exp[ —m(1+a)T/k] .

The result for p(T) is

k —1 2 g 1 —exp[ —j(1+a)T/k]
p =exp T+

k 1+a j=1 J
(7)

Next we note that the equation for P1 only involves Pk.
Explicitly, this equation is

P1—k =kPk+aP, .
T (8)

The expression for the coverage can therefore be obtained
in closed form, by using (3),

Indeed, for mixtures, i.e., for the deposition of particles of
different size and rate values, the rate equations for the
probabilities P will still be linear in P, and of the form
(1) and (2). The only changes will be: (i) more terms on
the right-hand sides, with coefficients involving various
rate ratios; (ii) there may be more types of equations, be-
cause there will be more particle sizes to compare (to m).

In this work we consider in detail the deposition of the
mixtures of k-mers and monomers (of length b) We. first
present the exact solution for 6(T) and then analyze it in
the limit k ~, when monomers become pointlike. For
fixed k ~ 2, let f(k) denote the deposition attempt fre-
quency (per site) of monomers. We will keep the k-mer
notation as before: rate R, size I, lattice spacing b =l/k,
and dimensionless time defined by T=RIt. The rate
equations appropriate for this problem are then obtained
by adding the term (kf/Rl)mP to the right-hand sides
of both (1) and (2). For instance, the equations for
m & k then read

dP k —
1—k =(m —k+1)P +2 g P +~+amPj=l

m~ k (4)

e
—a T/k 1

1+a 4o
r k(1 —e +~ ) u

u 1 ——
k

' {k—2)a/(1+a)
2 " 1 —(1 —v/k)"

exp — dv1+a 4o v
(9)

Note that the derivation of this result involved several
rather cumbersome algebraic manipulations which are not
detailed here. The form given is convenient for the large-
k analysis. For small-k values, simpler expressions can be
obtained by evaluating the v integral in (9).

Let us point out that the rate ratio a, defined in (5), is
generally a function of k, via the k dependence of f. Some
of the implications of the result (9) can be seen without
the precise specification of this k dependence. For in-
stance, one can easily see that the value B(r =~) changes

discontinuously from 1 for all positive f, to the jammed-
state value B(t =~;f=0;k) (1 for f=0. The latter—
values were studied, e.g. , in Ref. 5. (We always assume
that R &0.) Indeed, when the monomer deposition fre-
quency f is nonzero, they will eventually cover all the lat-
tice sites. A more detailed analysis of the result (9) re-
quires the consideration of the proper k dependence of
f(k). We restrict our attention to the limit k ~ in
which the lattice monomers become pointlike whereas the
k-mer deposition becomes continuous, with the fixed



KINETICS OF IRREVERSIBLE ADSORPTION OF MIXTURES. . . R2229

value, l, of particle length.
If the monomer deposition rate f were allowed to staay

constant as k ~, then the monomers would corn letelpeey
preclude the deposition of extended particles. Indeed, one
can easily see that (9) reduces to

e(r) =1 —e '
1 — +g

fk (10)

in this limit. Here we restored the original time, t, and
other variables to emphasize that the leading order result
is just that of monomer deposition (uncorrelated growth
of the coverage). This at first sight surprising conclusion
has, in fact, a simple explanation. The space ftlling -capa-
city of the monomers decreases as b =l/k (in the limit
k ~ ~). However, their jamming capacity (effective
only in blocking k-mer deposition) grows -kb. Indeed, a
monomer excludes length l for the centers of extended
particles to land (while each extended particle excludes

I

twice that length in I D). Keeping f fixed corresponds to
increasing the monomer deposition attempt rate, f/b

th
kf l, to keep their space-filling effect fixed. It turn t
at the fixed-size (l) particles then do not play any role in

the deposition process (for large k).
The above considerations suggest that a more interest-

ing eposition process is obtained if the "pointlike parti-
cle" limit is defined with the monomer deposition frequen-
cy per site decreasing —1/k as k ~. Effectivel
th en keep a fixed, of order 1, in (5), and we define f(k)

ec ivey, we

=Rla/k. The jamming ability of monomers is thus finite.
Therefore, for times T«k, a nontrivial configuration will

ui up, by the mixture of extended and pointlike parti-
cles, with only the former contributing to the coverage
density, but with both types of particles playing a role in
the jamming-associated correlations affecting the kinetics
of the process. The precise behavior of the coverage will
depend on the rate ratio a. In fact, in this regime the cov-
erage follows a definite limiting law,

f (i+a&T
du expe(T«k) =e(T) —=

1+a ~o
ua

1+a
2 " 1 —e

1+a «
This expression follows from (9), up to corrections of or-
der 1/k.

t is interesting to note that this "intermediate" cover-
age reaches jamming for T»1. The function e(T) is
shown in Fig. 1 for several a values. The jamming values
e(~) are given in Fig. 2. Naturally, both the time-de-
pendent coverage and the jamming values decrease as a
increases because the monomer contribution to the cover-
age is negligibly small. Note that for a =0, (9) and (11)
give, respectively, the previously known exact results [5]
for the discrete (lattice) and continuum deposition kinet-
1cs.

Thus, the deposition process proceeds on two distinct
time scales. For T«k, the coverage builds up at times T

I

of order 1 and reaches saturation at H=e(~) for
1«T«k. The deposition then continues, by monomers
on y, with further buildup of the coverage on the time
scales of order k. Indeed, relation (9) gives, for T» 1 but
no longer bounded by k from above,

e(r) =I e""'"—[1 —8( )], (12)

where we restored the original time, t. Indeed, on the time
scales of order k, the monomers fill up the remaining void
length, fraction [1 —e(~)], while the k-mer deposition is
fully jammed.

Many authors [2,6-9,15,17,22,23,26] devoted signifi-
cant effort to the studies of the large-time asymptotic be-
havior of the difference e(~) —e(t). Indeed, the asymp-
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FIG. 1. The time dependence of the coverage for a =0.0, 0.5,
1.0, 1.5, 2.0. The" intermediate" coverage e, defined in (11), is

plotted vs the reduced time variable T=Rlt.
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FIG. 2. Jamming coverages for 1 « T«k, e(~), for several
a values in the range [0,5l.
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[ E(1 +a )7 ]
—2/(1+a)e —aT

T
(13)

totic convergence to the jamming value in continuum
deposition models is power law, with possible logarithmic
factors. The form of the convergence law is rather univer-
sal and depends on the dimensionality, orientational free-
dom, and shape of the depositing objects. In the 1D depo-
sition, the result is the t ' convergence. Generally, in the
continuum deposition case the power-law behavior results
from the distribution of voids which fit nearly precisely
the particle shape thus making the probability of the ap-
propriate deposition attempt vanishingly small, see Refs.
[7,8,23] for details.

For the mixture considered in this work, the contribu-
tion of pointlike particles makes the standard argument
inapplicable in the regime in which the k-mer deposition
reaches jamming. Indeed, this regime is described by
(11),a direct analysis of which yields, for T» 1,

e aT

a [e E(1 ~ & )7 ] 2/(1+ a) (14)

This nonuniversal asymptotic behavior is due to the fact
that the pointlike particles can "jam" with rate of order 1

those narrow gaps of size I+N which are reached only
with probability of order bl/I by the fixed-size particles.

In summary, we obtained an exact solution for the cov-
erage of the deposition processes of k-mers and monomers
on a ID lattice. The large-k limit reveals interesting prop-
erties in the deposition of mixtures of pointlike and fixed-
length particles, such as the existence of the jammed state,
and the nonuniversal convergence law to the jamming cov-
erage.

where E is the Euler's constant. This relation integrates
to the asymptotic convergence rate —T ' for a=0.
However, for fixed a & 0 one gets the leading contribution
of a different form,
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