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Deflection of atoms by a guanturn field
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We consider the scattering of atoms off a standing electromagnetic wave in a given quantum state
and show that the photon statistics can directly manifest itself in the momentum distribution of
scattered atoms. Revival-like structures in the distribution function, resulting from quantization,
appear as well.

Scatter atoms ofF a standing electromagnetic wave and
ask for the probability to find a given momentum in the
scattered beam: Should we treat the principal ingre-
dients, that is, the internal degrees of freedom of the
atom, the translational motion, and the electromagnetic
field, classically or quantum mechanically? Various com-
binations of these approaches have been treated previ-
ously [1]—[5]. Motivated by the experimental progress in
producing nonclassical fields, in this Rapid Communica-
tion we consider the influence of a quantized electromag-
netic field on the momentum distribution of the scattered
atoms [6]. The model we study consists of a monokinetic
plane wave of two-level atoms propagating perpendicular
to a resonant light field. We neglect spontaneous emis-
sion and assume that the displacement of the atom in-
duced by the field is small compared to the wavelength of
the light. We show that in this case the photon statistics
governs the momentum distribution: When the trans-
lational motion of the atom is not affected by quantum-
mechanical interference and can be treated classically the
photon distribution appears directly in the momentum
distribution.

A sinusoidally phase modulating structure scatters a
plane wave into a distribution of scattered intensities de-
scribed by the square of Bessel functions [7]. This result
carried over to the problem of Bragg scattering of a two-
level quantum particle by a resonant etassicaI standing
electromagnetic wave [5] provides immediately the mo-
mentum distribution

Wp —J,.(tpr/7i)

Here we consider an atom of dipole moment p interacting
for a time r with the field of amplitude 8 and p = p/(7ik)
denotes the momentum expressed in terms of the photon
moilie ntum.

On the other hand, a field in a quantum state lg) =
ro„, lm) creates a momentum distribution of scat-

tered atoms [8]

z = poor/7i, where fo is the amplitude of vacuum electric
field. Equation (2) shows that each number state of the
quantum field contributes to the probability of finding
a given momentum independently and the contribution
from each individual number state, lm), is identical to
that of R clRssicR1 field, Eq. (1), of strength 8 = f0~m.

In the remainder of this article we investigate the in-
fluence of the photon statistics on the momentum distri-
bution. The momentum distribution as a readout of the
photon distribution is the key result of this Rapid Com-
munication. We illustrate this statement by numerically
evaluating the sum, Eq. (2), for (i) a number state, (ii) a
coherent state, and (iii) a squeezed state [9]. A semiclas-
sical approach, that is, an asymptotic expansion of the
Bessel functions[8], brings to light the striking features
revealed by the numerical work.

A field in a single number state lm) reduces the sum
over Bessel functions to

wp[lm)] = J~(r.i/m).

Figure 1(a) shows this distribution for a number state of
nine photons, I = 9 for an interaction parameter K = 10.
As a result of the property of Bessel functions, J
(—l)i'J„, the momentum distribution is symmetric with
respect to p = 0. We therefore here and in the later
figures depict the region of positive p values only. We
recognize a dominant maximum at p~ „= z(m)ri'2 =
10 x 3 = 30. For momenta smaller than pm~„we find a
rapid modulation of the smooth dependence, whereas for
momenta larger than p the momentum distribution
displays a steep decay. The rapid modulation becomes
even more pronounced when we increase the interaction
parameter z, as shown in Fig. 1(b) for ~ = 100. The
enlargement reveals in Fig. 1(c) the detailed structure of
this oscillation for small momenta, a pattern reminiscent
of the Jaynes-Cummings revivals [10].

These phenomena come to light when we put to use the
appropriate asymptotic expansion of the Bessel function
[8]

14'p[l@)] = 5 ~-[I@)]J,'(~v in). (2)

Here !V„,[l@)] = lro„, l~ = l(ml@)l' denotes the photon
statistics of the field. The interaction parameter reads

x cos[(z —p ) i —p arccos(p/z) —a/4],

(4)
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valid for (p~ ( z. For ~p( ) z the analytical continu-
ation of this expression leads to an exponential decay.
Therefore this region contributes little to the momentum
distribution, and in the remainder of this article we put
J„(z) = 0 for ~fo) ) z.

This expression for Jp(z) is our main tool to gain im-
mediate insight into the behavior of the Bessel function
sum, Eq. (2). It brings out two parts in the momentum
distribution, Eq. (3), of distinct dependence on p.

(i) The contribution

~(smooth)
[(&~)] &

—
l(&2&& @2)

—1/2

Wp

is the well-known differential cross section of classical
scattering [11]. It is a slowly varying function of p and
describes the form of the envelope of the momentum dis-
tribution.

(ii) The rapidly oscillating term

py(rapid)[~nt)] &-1(&2m @2)
—1/2

x cos (2((r m —p ) /

—p arccos[p/(z~m)] —7r/4))

results from semiclassical considerations of Bragg scat-
tering. For small momenta, ~p~ (( a~m, an expansion of
the argument of the cosine function in Eq. (6),

W(" ")[)m)] = (n~~m) (—1)"
W

X sill 2K~I7a + (—)

x10

2

10

reveals the revival-like behavior [10, 12] of the distribu-
tion close to the origin.

Motivated by these results we now return to the case of
arbitrary statistics as given by the Bessel function sum,
Eq. (2). We therefore substitute Eqs. (5) and (6) into
Eq. (2) and find [8]

[~y)]
~ py(smooth} + ~(rapid)

p — p p

The smooth part

K =100 ~(smooth) 2( )
—1

p dy W y~+(p(„)~

2

100 300

(c)

follows from replacing the discrete summation over rn by
integration over rn and introducing the new integration
variable t/ = [m —(p/e) ] / . The part Wt,

' ' origi-
nates from Eq. (6) and is more complicated [8].

We now discuss the general features of Wp' . This
contribution possesses properties of a probability distri-
bution, that is, it is normalized to unity and accounts
for the lower moments of the momentum distribution.
For instance, the separation of the dominant maximum
from the origin, as expressed by the second moment

(p ), reads (p ) = za (m). This is in full accord with
the exact expression following [8] from Eq. (2). More-
over, the normalized width of the photon distribution,
o = (m )/(m) —(m) rules the value of the smooth part
at p=O, that is,

py(smooth)
( )

1
( )

—1/2

FIG. 1. Momentum distribution W„[~m)j = J„(r~m) of
atoms scattered oH' an electromagnetic field in a number state
of nine photons, m = 9 for interaction parameters a = 10 (a)
and a = 100 (b). Both distributions show a dominant peak at
p „=K~m and a strong decay for momenta larger than this
critical value. For p smaller than p „ the distribution is os-
cillatory. These oscillations resultfrom quantu, m interference
of translational motion. The envelope follows the classical
cross section. A tenfold increase of the interaction parameter
rescales the envelope but does not aftect its shape. The os-
cillatory part creates a complex pattern magnified in (c) for
small momenta.

The scaling law

gr(smoothl() ) ) —1~(smoothl( )p p/A

is an immediate consequence of Eq. (8) and is apparant in
Figs. 2 and 3. It follows from classical mechanics: The
particle acquires a momentum identical to the product
of the force and the interaction time, that is, a quantity
proportional to the interaction parameter z.

The photon distribution R' determines the momen-
tum distribution Wp, Eq. (2). But is the converse truest
Is it possible to recognize W in W'p7 The two examples
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shown in Figs. 2 and 3 of a coherent state and of a highly
squeezed state seem to suggest that. The photon distri-
bution explicitly manifests itselfs in the smooth part of
the momentum distribution. The strong correlation be-
tween W~ and Wz stands out most clearly for moderate
values of the interaction parameter v, that is, when ~
is large enough to sharpen the smooth part of J2(a~m)
allowing it to trace the variation of W, and still small

enough as to keep Wp' ' small. For a rather small or
a rather large value of I", however, this inverse problem,

I

that is, the determination of R'~ from W@ does not have
such an explicit graphical solution.

Now we turn to the rapid part of the distribution func-
tion that results from quantum interference and makes its
appearance for large values of z. The mathematical anal-
ysis of this contribution is much more diFicult compared
to the smooth one and a detailed treatment will be pre-
sented elsewhere [8]. In this Rapid Communication we
confine ourselves to the case of (p/z)2 (( 1. When we

substitute Eq. (7) into Eq. (2) we arrive at

1 (-. „„) . IP
~

&vi' ~' & = (—ij"iwpc/&rnjj — ) &v e' "~ exp i — +t:.c.I,2i (; ) g(m)

where we have replaced the summation index m by
the average number of photons (m) in the slowly varying
parts of Eq. (7). The sum in large parentheses is the well-

known sum giving birth to the quantum revivals in the
Jaynes-Cummings model 10, 12]. This sum, represented
in the form [13]A(a)e'~&, yields

~{"&") = (—1)~(~~/(m)) '

x A(z) sin (p(z) +.
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FIG. 2. Inhuence of the photon distribution W of a

coherent state of average number of photons (m) = 9 on
the momentum distribution W~. The Poissonian photon
distribution —dashed curve in (a)—creates for z = 10 a
smooth momentum distribution W„—solid line in (a). The
maximum of W governs the maximum of W~, that is,
p „=K(ni) . The right edge of W controls the right
edge of W„. The smooth part of W„obeys a scaling law while
the rapidly oscillating part which is only minutely present for
small p when r = 10 (a) is significantly enhanced for K = 100
(b).
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FIG. 3. InAuence of the photon distribution W of a

highly squeezed state of displacement n = 9 and squeezing
s = 50 for three interaction parameters r. = 15 (a), a = 30 (b),
and a = 150 (c). The oscillatory photon distribution —dashed
curve in (b)—provokes modulations in the smooth part of the
momentum distribution. Maxima of W correspond to max-
ima in W„. This correspondence comes out most clearly for
intermediate values of r such as those shown in (b).
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valid for (p/a) « 1. The quantum state of the field en-
ters into Eq. (9) only via the amplitude A and the phase
p. Indeed, the revival-like patterns along the momen-
tum axis created by the three different field states and
presented in the three figures are all alike in the vicinity
of origin. They only differ in the amplitude and the shift
of these structures.

We conclude this article by summarizing our main
results. The interplay between the internal degrees of
freedom of the atom, its translational motion and the
electromagnetic field is the central point of this prob-
lem. Throughout this article we consider two-level atoms,
that is, particles with quantized internal degrees of free-
dom. When the fietd is classical or in a photon number
s/a/e, and the translational motion of the two-level atom
is treated quantum mechanically the momentum distri-

bution is the well-known square of the Bessel function,
Eqs. (1) and (3). This distribution consists of a smooth
part representing classical motion and a rapidly oscillat-
ing contribution resulting from quantum interference of
trajectories. The latter resembles the familiar quantum
revivals of the Jaynes-Cummings model. In the case of
quantum motion in a quantum field we find an explicit
manifestation of the photon statistics in the smooth part
of the momentum distribution. Interfering atomic tra-
jectories again create revival-like structures in the prob-
ability curve for the momentum.
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