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Dynamics of a one-dimensional model and a three-dimensional hydrogen atom
in an intense high-frequency short-pulse laser

X. Tang
Department of Physics, University of Southern California, Los Angeles, California 90089 0484-

S. Basile
Department of Physics, University of Southern California, Los Angeles, California 90089 0484-

and Istituto di Fisiea Teorica dell'Universita, Casella Postale 50, 98166 Sant'fugata di Messina, Messina, Italy
(Received 13 March 1991)

We present nonperturbative calculations of ionizing and trapping probabilities for a one-dimensional
model and a three-dimensional hydrogen atom in an intense high-frequency Gaussian-pulsed laser
field. Investigating the dynamics of the ionization process (for one- and two-photon ionization), we
find that only for extremely short pulses, especially for hydrogen, does the system have a significant
probability of surviving at the end of the pulse, leading to the phenomenon of atomic stabilization with
respect to ionization. We also find that a one-dimensional model has a higher survival probability at
the end of a Gaussian pulse, as compared to the three-dimensional hydrogen atom.

The behavior of an atom under a superstrong, high-
frequency field has been attracting quite a bit of attention
in the community of theoretical multiphoton physics.
This pertains to the question of possible stabilization with
respect to ionization under such conditions as proposed by
Pont et al. [1,2]. A more recent paper by Pont and Gavri-
la [3] has raised considerable doubt about the possible
direct experimental observation of such an effect. Having
now evaluated the possibility for the atom to survive the
lower (in relative terms) intensities during the rising and
falling of the pulse, these authors obtain a negative
answer. As has been shown in Ref. [4], the explicit time
dependence of the laser intensity due to its pulsed nature
plays a fundamental role in understanding the processes of
interaction with strong fields and unless it is included in a
calculation, one cannot be sure about the validity of the
prediction. The calculation of Pont and Gavrila [3] on the
other hand, being inherently time independent, provides
only average lifetimes at fixed intensities and not the com-
plete time evolution of the system in a realistic pulse.

There would be no doubt about the theoretical predic-
tion of atomic stabilization with respect to ionization, if an
atom could be exposed to a constant superstrong and
high-frequency field. This has been proved by both time-
independent [1,2,5] and time-dependent [6,7] calculation.
Since high power lasers are inevitably pulsed, one of the
major questions has to do with the dynamics of an atom in
such a realistic laser pulse. The answer has been compli-
cated further by the results of one-dimensional atomic
models, which are easier to handle computationally but
lack many of the fundamental properties of a real atom.

In this paper, we present results of one- and three-
dimensional quantum-mechanical calculations for a hy-
drogen atom in an intense pulsed laser field. We use a
pulse consisting of a Gaussian shape of the field which will
obviously expose the atom to intensities lower than the
peak one not only during the rise but also during the fall
of the pulse.

The calculations reported here were performed in terms
of square-integrable basis sets, [8] and in the framework
of nonrelativistic quantum mechanics and in the dipole
approximation as has been the case with all related calcu-
lations. The time-dependent wave function of the electron
is obviously going to spread out as a function of time. In
this sense the length gauge form of the dipole interaction
(the E gauge), which is proportional to r, will increase
without bound, and, as pointed out by Kulander, Schafer,
and Krause [7] recently, it will require much more eAort
to achieve numerical convergence in the results. There-
fore we first convert the Hamiltonian to the velocity gauge
form of the dipole interaction (the A gauge). As the A
term can be adsorbed in a phase factor which does not
affect the populations, the Schrodinger equation for the
correctly transformed effective wave function is

ih +~(r, t) =[H +eA(t) p/mc]p~(r, t). (I)

Here 0 is the Hamiltonian of the unperturbed atom
and the vector potential A(t ) is related to the electric field
E(t) by E(t) = —(1/c)(8/Bt)A(t) Due to the as. sumed
Gaussian pulse shape, the asymptotic values for both the
field and the vector potential are E(+ ~) =0 and
A(+ ~) =0. The relation between the wave function 4'p
in the E gauge and the wave function +~ in the 4 gauge is
given by the well-known Goppert-Mayer transformation:

~&(r t) eier A( )/hei~ (r t) (2)

To obtain the final results in the E gauge, in principle
one should first convert the initial-state wave function of
0 to the A gauge, perform the time integration, and then
convert the solution back to the E gauge before calculat-
ing the population or probabilities [8]. The use of a
Gaussian pulse shape will make the gauge transformation
not necessary, since we will be interested only in the wave
function at the end of the pulse.
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A(r) =e

TABLE I. Comparison between length and velocity gauge re-
sults for the populations of the ground state (g) and of the con-
tinuum states (c) at the end of the pulse with r =31.4159 a.u.
(5 optical cycles) for three-dimensional hydrogen with photon
energy Ace=1 a.u. The peak intensity Io is expressed in terms
of the atomic unit I, =3.51 x 10' W/cm .

%e choose the vector potential to have the form
IP

cEo cos(cot)f— (3)
CO

where e is the unit polarization vector and f(t/r ) has the—(f/r ) 2/2form e ' ' . More details about the method of calcu-
lations can be found elsewhere [8].

As a test for the method and the invariance under the
gauge transformation, we first calculate single-photon ion-
ization of hydrogen at diA'erent peak intensities (which
defined as Io=cEO/8rr, is considered more as a parameter
of the numerical calculation than a quantity with a physi-
cal counterpart, since a rigorous definition of intensity for
very short pulses is impossible), by using both the length
and the velocity gauges. Because of the short pulse dura-
tion, the time derivative of the pulse envelope function f
cannot be neglected in the definition of electric field in
terms of the vector potential. %'ith the above definition of
the vector potential, the electric field is then

E(t) =e'Eo sin(cut)+ cos(cur) f — . (4)
t t

NZ

The results listed in Table I show a perfect agreement
(when attention is paid to the correct definition of the
electric field) between the length and the velocity forms of
the interaction for the populations of the ground state and
the total population in the continuum (positive energy)
states, at the end of the pulse with r =5 optical cycles.
Through this test, we also found that increasing the peak
intensity to higher and higher values, we have increasingly
greater difficulty in obtaining numerically converged re-
sults when using the length gauge. This is because not
only in the length gauge more CPU time is needed to per-
form the time integration (even with the same number of
basis functions in both gauges), but also the length gauge
requires more angular momentum functions to get the
same degree of accuracy with respect to the velocity
gauge. This result is consistent with the conclusion drawn
in Ref. [7].

We have also numerically tested (for the sake of brevity
the results are not presented here) that the relative impor-
tance of the second term in the definition of the electric
field in Eq. (4) actually decreases with increasing the
value of z. Obviously, for r »2n/co, a correct definition
of the intensity in terms of the time average of the square
of the electric field over one optical cycle becomes possi-
ble.

After having gained some confidence in the gauge in-

TABLE II. The populations of ground and continuum states
at the end of the pulse for the one-dimensional soft-core model
of hydrogen with Am =1 a.u. The velocity gauge has been used.
Symbol definition as in Table I.

Intensity Io
(a.u. )

r =50 a.u.

g C

100 a.u.

g C

r =150 a.u.

g C

1

5
10
25
50

100

0.0574
0.0293
0.0686
0.1039
0.1283
0.1356

0.9426
0.9707
0.9314
0.8960
0.8712
0.8365

0.0033
0.0008
0.0046
0.0103
0.0164
0.0245

0.9967
0.9992
0.9954
0.9897
0.9836
0.9755

0.0002
0.0000
0.0008
0.0006
0.0028
0.0039

0.9981
0.9999
0.9992
0.9994
0.9972
0.9960

variance of our results, we have performed numerical cal-
culations for both the very popular one-dimensional model
(the so-called soft-core model) and the real hydrogen
atom. We have investigated the surviving probability at
the end of the pulse in a range of intensities for which the
ionization rate is believed to be strongly suppressed. The
binding potential [6] for this one-diinensional model is

TABLE III. The populations of ground and continuum states
at the end of the pulse for the one-dimensional model of hydro-

gen with hco =0.445 22 a.u. (two-photon ionization at low

field). The velocity gauge has been used. Symbol definition as
in Table I.

Intensity Io
(W/cm )

r =50 a.u.

g C

r =100 a.u.

g C

i =150 a.u.

g C

The ionizing threshold for this model potential is 0.6698
a.u. The behavior of this one-dimensional model under a
strong radiation field has been extensively investigated
[6,9,10]. The stabilization of this model against ioniza-
tion in intense, high-frequency radiation fields has been
recently related to the properties of the x-p phase space

While there is no doubt about the usefulness of one-
dimensional calculations in very specific systems (e.g. ,
solid-state systems), their reliability in obtaining useful
physical information for intrinsically three-dimensional
problems (like the general field of laser-atom interactions)
is highly questionable. The conclusions, derived from the
analysis of such a simplified one-dimensional model, con-
cerning the requirements upon intensity and frequency for
the stabilization of real atoms in superintense laser fields,
have been recently questioned on the basis of a purely
classical analysis [12].

Using a general nonperturbative method which was
developed and presented most recently [8], we are in the
position to obtain answers to this question for a one-
dimensional model as well the real three-dimensional

Intensity Io
(a.u. )

0.005
0.025

0.9507
0.7773

0.0493
0.2227

Length gauge
C

0.9507
0.7772

0.0493
0.2228

Velocity gauge
C

2 x 1p 16

x1P
1P17

2x 10"

0.0856 0.8482 0.0048 0.9860 0.0002 0.9992
0.0428 0.8461 0..0086 0.9761 0.0006 0.9994
0.0672 0.7373 0.0155 0.9647 0.0017 0.9942
0.1072 0.7440 0.0244 0.9395 0.0025 0.9933
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TABLE IV. The populations of ground and continuum states at the end of the pulse for three-
dimensional hydrogen with Aco =1 a.u. The velocity gauge has been used. Symbol definition as in Table

Intensity Io
(a.u. )

v =12.56637 a.u. i =31.4159 a.u. i =62.8318 a.u.
e

0.2
1

5
25
50
100

0.453
0.037
0.034
0.054
0.043
0.028

0.547
0.963
0.962
0.872
0.823
0.755

0.140
0.001
0.001
0.001
0.004
0.006

0.861
0.999
0.999
0.998
0.992
0.976

0.000
0.000
0.000

1.000
1.000
1.000

atom, even if more than one electron is involved. Our pur-
pose in this paper is to focus upon a precise evaluation of
the difference between the one-dimensional model and the
real three-dimensional atom, and to demonstrate the im-
portance of the pulsed nature of the field.

In Table II we show numerical results for the ground
and continuum state populations at the end of the pulse
for the one-dimensional model described above. The pho-
ton energy is such that the parameter ao=IO~ /co a.u.
ranges from 1 to 10. The intensity dependence of the con-
tinuum states' population shows a maximum which is par-
ticularly evident for the smallest value (50 a.u. = 8 opti-
cal cycles) of the pulse-shape parameter z. The presence
of this maximum is hardly seen for values of z larger than
16 optical cycles.

The same general behavior can be seen in Table III.
The photon energy is now such as to require a two-photon
ionization at low fields and the parameter ao is in the
range from 1.7 to 5.36.

In Table IV we show numerical results for three-
dimensional hydrogen. The parameter ao ranges from
0.45 to 10. We can see that a very small value of z (in the
first column z is equal to 2 optical cycles which is almost
four times smaller than the smallest one used in the one-
dimensional model) is required to show significant evi-
dence of the suppression of the ionization. We can also
see from Table IV that even with a pulse parameter z as
short as 5 optical cycles (z =31.4159 a.u. =0.76 fs),
which is of course unrealistic, any significant suppression
of the ionization at the end of the pulse is hardly seen.
This is in agreement with the analysis of Ref. [12], stating
that the requirements of high intensity and high frequency
are less strict for one-dimensional than for real three-
dimensional systems.

We would like to point out that in our calculations 90%
or more of the ionization takes place during the rise of the
pulse, at least at high values of the peak intensity, while
the pulse consists of a symmetric rising and falling shape.
This asymmetry of the ionization under a symmetric pulse
is due to the fact that, initially, the atom is in the ground
state which is the orbital closest to the nucleus and has the
largest chance to absorb protons, while after passing the
peak value of the intensity, almost everything is in excited
states which have less chance to absorb photons, since
they have a smaller probability to get close to the nucleus.
More detailed results on ionization from excited states
will be discussed in a future paper [13].

We undertook this investigation with a dual purpose.
First we wanted to explore the possible danger in drawing
conclusions about the dynamics of atoms in strong fields
on the basis of one-dimensional models. Our results have
indeed demonstrated that under realistic pulse conditions
the one-dimensional model produces stabilization that
cannot be expected from the real atom.

Second, we wanted to produce realistic results for the
real three-dimensional hydrogen atom under realistic
pulse shapes. Choosing a frequency su%ciently high and a
range of intensities beyond present day possibilities (for
that frequency) we have shown that suppression of ioniza-
tion (in the sense of decreasing ionization with increasing
intensity) is obtained only for unrealistically short pulses
(z =0.3 fs). The effect disappears for slightly longer, but
sill unrealistically short (z =0.76 fs) pulses. The effect
found for the shorter pulses can be understood as a conse-
quence of populating excited states —owing to the enor-
mous bandwidth of the pulse (Fourier width) —which do
not ionize easily during the time available to them. It
should be noted that this aspect of the phenomenon is not
(cannot be) included in the predictions of time-
independent calculations. We can also seen from Table
IV that probabilities for trapping into higher exited states
are quite dramatic for z =0.3 fs and ao~ 5 at end of the
pulse, but that the trapping probabilities are decreasing as
z increases, which, of course, connected to suppression of
ionization and can be also understood as an eff'ect of the
Fourier bandwidth.

We could continue with calculations at higher frequen-
cies and intensities. We believe, however, that they would
be nothing more than mathematical exercises, since our
present combination of frequency and intensities already
extends well beyond realistic expectations for the foresee-
able future.
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