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Dark optical solitons with reverse-sign amplitude
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We prove the existence of anti-dark-solitons, i.e., dark solitons of the reverse sign of the amplitude,
near the zero-group-dispersion wavelength of normally dispersive optical fibers using direct numerical
simulations of the nonlinear Schrodinger equation which includes the third-order dispersion. These
solitons were predicted earlier in the small-amplitude limit [ Yu. S. Kivshar, Phys. Rev. A 43,
1677 (1991)] and they may exist only for a certain propagation direction, so that the interaction
of dark and anti-dark-solitons propagating in opposite directions is possible; this is probably the
only possibility to observe direct collisions of dark and bright solitons. We investigate the collision
numerically and demonstrate that it looks elastic at least for small-amplitude solitons.

The possibility of using bright soliton pulses as infor-
mation carriers in optical communication systems has at-
tracted considerable attention since it was shown theoret-
ically and experimentally that the solitons can propagate
in single-mode optical fibers without dispersion broaden-
ing (see Ref. [1] and references therein ). Recent ex-
perimental achievments [2] demonstrate a possibility of
real applications to construct soliton-based communica-
tion networks. In communication systems it is desirable
to work near the zero-group-dispersion (ZGD) point [3],
where the second-order dispersion is zero, because there
the power required for creating bright solitons is signif-
icantly lower. Although exact analytical solutions de-
scribing the soliton propagation near the point are not
available, numerical [4] and perturbative [3—5] methods
have explained the main features of pulse propagation
near and at the ZGD point in the anomalous-dispersion
regime. In particular, it was shown that bright solitons
may exist near the ZGD point but not at it.

Meanwhile, dark solitons have also drawn the atten-
tion of several research groups. They are stable localized
excitations of a cw background in the normally disper-
sive, nonlinear medium, and these solitons also have been
observed experimentally in optical fibers [6—8] (temporal
dark solitons) and laser beams [9 (spatial dark solitons).
Additionally, the results of Ref. [10] indicate that dark-
soliton propagation may be possible in nonlinear wave-
guides and such a propagation has probably been ob-
served experimentally [11].

In this paper we demonstrate that dark solitons may
exist near the ZGD point and we prove that, as was pre-
dicted by Kivshar [12], there is a region of the group-
velocity dispersion where a different type of optical soli-
tons, the so-called anti dark solitons (i.e-. , brig-ht solitons
on a pedestal), may exist. Analytical results are based
on the small-amplitude approach developed in Kivshar's
papers [13,14] but numerical simulations deal with the

Here we have used the notation

s = (t —k'z)/T, ( = ik'ix/T, (2)
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where 0 is the propagation wave number, k~"~

elk" /Oto", n = 1, 2, 3, n2 is the Kerr coefficient, ceo is
the carrier frequency, and T is the pulse duration.

In the case P = 0 and cr ) 0 Eq.(1) is exactly integrable
and it has stable soliton solutions in the form of localized
dark pulses propagating on the modulationally stable cw
background ~u~ = uo ——const. The one-soliton dark pulse
is

(A —iv)~ + exp Z
u((, s) = uo exp(2iuo(),1+exp Z

where

full nonlinear Schrodinger (NLS) equation including the
third-order dispersion. According to analytical and nu-
merical results, anti-dark-solitons exist for a certain prop-
agation direction so that they may interact with dark
pulses moving in the opposite direction. %e analyze
the interaction numerically and demonstrate that it looks
elastic at least in the small-amplitude limit.

Using the slowly varying envelope approximation (see,
e.g. , Refs. [1] and [3]) we may find that the pulse envelope
amplitude C (z, t) of the electric field in the neighborhood
of the ZGD point satisfies the dimensionless generalized
NLS equation
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Z = 2vupo, 'i'(s —sp —2An'i'up(), A' = 1 —v', (6)

v is the amplitude parameter (v &1), and sp is a con-
stant initial phase. At A = 0 the solution (5) and (6) de-
scribes the so-called fundamental dark soliton, u((, s) =
up tanh(upn ~ s) exp(2iuo(), and for v && 1 it corre-
sponds to the so-called "gray" (small-amplitude) solitons
[14].

To discuss analytically the dark-soliton dynamics in
the neighborhood of the ZGD point, i.e. at P j 0 in
Eq.(1), we look for a solution of Eq. (1) in the form of
a small-amplitude excitation of the cw background (see
Refs. [12—14])

u((, s) = [up+ a((, s)] exp[2iuo'(+ if'', s)].

Substituting Eq. (7) into Eq.(1), we may obtain two equa-
tions (a' « u2o):
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The method to analyze the system (8) and (9) is de-
scribed in Ref. [14]. The main idea of the approach is to
use new variables

r=e(s —C(), z=e (,
r being an arbitrary small parameter connected with the
soliton amplitude, and to present the wave fields a(r, z)
and P(r, z) in the form of the asymptotic series in the
same small parameter e,

a=a ap+e ai+ .
, P=ePp+e Pp+ . (11)

The parameter C is the limit velocity (in the s space) of
linear waves propagating on the cw background:

C:4'OpO. '.

Substituting Eqs. (11) into Eqs. (8) and (9) and using
the variables (10), we can obtain the Korteweg —de Vries
(I&dV) equation for the soliton amplitude ap(r, z) (cf.
Ref. [12])
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—(n +2PC) = 0. (13)

The sign of the velocity C, C = +2uoni~2, selects the
propagation direction. The soliton solution of the KdV
equation (13) has the form

r2 (n2 + 2PC)
Qp 7) Z

up(2n +PC)cosh'[~o.'~'(r+2~ ~ + ~ lz)]
(14)

K being an arbitrary parameter related to the KdV
soliton amplitude.

As may be seen from Eqs. (13) and (14), the soliton
solution depends on the sign of the velocity C. In partic-
ular, it means that dark solitons propagating in opposite
directions are different, i.e., they have different parame-
ters (different energies) at the same value of the veloc-
ity. Moreover, to be a dark soliton, the solution (14) has
to correspond to a negative amplitude [cf. Eqs. (7) and
(14) ]. This is not valid for C & 0 in the region

~3/2
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and also used the notation

(16)

o. = sgnC.

As was demonstrated in Ref. [12], in the lowest approx-
imation of the asymptotic expansion the soliton phase P
is determined by its amplitude,

tLp

Bgp
Br
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(18)

when the dark soliton (14) changes the sign of its ampli-
tude and is transformed into an anti-dark-soliton [12].

The results obtained in the framework of the pertur-
bation theory in the soliton amplitude have to be proved
by direct numerical simulations of the full NLS equation
(1). To d" t'iis, let us present our approximate solution
defined by Eqs. (7), (10)-(12), and (14) in the terms
of the variables s and ( for the wave field u((, s). To
simplify the resulting formulas, we have introduced the
p ar ameters

i.e. , the phase Pp(r) may be found as the following:

Pp(r) = —20 n ao dr.

Therefore, using Eqs. (7), (10)—(12), (14), and (19), and
introducing the notation defined by Eqs. (16) and (17),
we may demonstrate that near the ZGD point of a nor-
mally dispersive optical fiber the small-amplitude soli-
tons are described by the following expression:
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FIG. 1. Pro a atip g on of the anti-dark-soliton at = 0.3.
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FIG. 2. e~"e same as in Fig. l but at P = 0. The in nt
pulse deca s bys ecause anti-dark-solitons can t ' tanno exist or t is
parameter region.

u (g s) = u
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P(Z) = —,, tanh Z+ P(0),
o.p(p+ 4o)

(21)

where

Z = duo(s —2uo~~'"() (22)
CD

and P(0) is an arbitrary constant.
We have used the pulse (20)—(22) for numerical simula-

tions of the NLS equation (1) at n = 1 and uo ——l. Ac-
cording to analytical predictions, the anti-dark-solitons

, sot at we putmay exist in the region 1 ( & 4 h
= 0.5 (i.e. , y = 2 ). Figure 1 shows the propagation

e input pulse waso the anti-dark-soliton at p = 0.3 Th
aken in the form of the soliton (20) and (21) on a finite-

extent (Gaussian-like) pulse
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u(0, s) = u, (0, s) exp[—(s/T, ) ], (23)

T, being suf5ciently large. For comparison we
e same picture for the case when the third-order

ig. ~. In the lat-dispersion is absent, i.e. , at P = 0 (Fi . 2).
ter case t e initial anti-dark-pulse decays very fast as a
dispersive wave packet, .

As we can see directly from Eqs. (20) and (21), the
anti-dark-soliton exists only for o = —1, , for o = —,i.e. , for a certain
propagation direction. It means th t th
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FIG. 3. Collision of dark and anti-dark-solitons at p, =

anti-dark-pulse is not destroyed due to the collision because
anti-dark-solitons are stable in h

' fin suc a region of parameters.
The collision is inelastic and radiation is observed
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FIG. 4. The same as in Fig. 3(a) but at p = 0.2. The
collision in this small-amplitude case looks quite elastic.

collision generates only a small emission which may be
explained by nonintegrability of the NLS equation includ-
ing the third-order dispersion (see, e.g. , Ref. [5], where
the Ilonintegrability was discussed for the anomalous dis-
persion region). However, in the limit of small-amplitude
pulses (e.g. , at p ( 0.2), the collision looks almost elastic
(see Fig. 4), and the pulses are much more stable. This
is in agreement with the analytical predictions that dark

and anti-dark-solitons in the small-amplitude limit are
described by the exactly integrable KdV equations (13).

In conclusion, we have proved analytically and by di-
rect numerical simulations of the nonlinear Schrodinger
equation including the third-order dispersion that near
the ZGD point the so-called anti-dark-solitons may prop-
agate. These solitons are similar to dark ones, but they
have the reverse sign of the amplitude, so that they may
be considered as bright solitons on a pedestal. However,
these solitons are not usual bright optical solitons be-
cause they are one-parameter ones, and in the small-
amplitude limit the solitons are described by the KdV
equation. Since anti-dark-solitons exist only for a cer-
tain propagation direction, they may interact with usual
dark pulses propagating in the opposite direction; prob-
ably, this is the only possibility to observe direct interac-
tions of dark and bright (in fact, anti-dark) solitons. As
may be seen from numerical simulations, the collision of
small-amplitude dark and anti-dark-solitons looks elastic;
however, for larger soliton amplitudes the soliton inter-
action demonstrates emission of small radiation, which
may be explained by nonintegrability of the nonlinear
Schrodinger equation including the third-order disper-
sion.
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