
ATOMIC, MOLECULAR, AND OPTICAL PHYSICS

THIRD SERIES, UOLUME 44, NUMBER 3 1 AUGUST 1991

RAPID COMMUNICATIONS

The Rapid Communications section is intended for the accelerated publication of important new results. Since manuscripts
submitted to this section are given priority treatment both t noh'e editorial offtce and in production, authors should explain in
theEr submEltal letter why the work justtftes this special handling A.Rapid Communicatton should be no longer than 3Yz printed
pages and must be accompanied by an abstract. Page proofs are sent to authors

Basis-set approach to calculating the radiative
self-energy in highly ionized atoms

Steven A. Blundell and Neal 3. Snyderman
University of Cah'fornia, Lawrence Livermore Xationa/ Laboratory, Iivermore, Cah fornia 9/5'M

(Received 15 February 1991)

We present a complete numerical implementation of an alternative approach for evaluating the
electron radiative self-energy in high-Z hydrogenic ions. Using basis-set techniques, we demonstrate
that the partial-wave expansion of the most numerically intensive term converges relatively rapidly
as approximately 1/L, making this an attractive calculational approach. Numerical results extrap-
olated to zero nuclear size are in agreement with Mohr [Ann. Phys. (N.Y.) 88, 26 (1974); 88, 52

(1974); Phys. Rev. Lett. 34, 1050 (1975); Phys. Rev. A 26, 2338 (1982)] for the K and L shells, and
with the graphical results of Mohr and Kim (unpublished) for higher excited states. The algorithm
is suitable for immediate generalization to non-Coulombic potentials.

sequently, the extension of this work to many-electron
ions is problematic, except for high-Z He- and Li-like
systems [8, 9]. There has also been progress by Cheng
and Sapirstein f10] in extending earlier calculations by
Desiderio and Johnson [ll] and Cheng and Johnson [12],
based in turn on the original approach of Brown, Langer,
and Schaefer [13]. While this approach is more easily
generalized to many-electron atoms [11],even for the I&
shell hydrogenic problem there are troublesome conver-
gence problems in both the partial-wave expansion and
the photon frequency integration.

In this Rapid Communication we describe an alter-
native method for calculating the radiative self-energy,
which we demonstrate to have rather rapid convergence
properties, and which has a natural generalization to an
arbitrary local potential. The approach is developed from
the recent work of Snyderman [9].

FIG. 1. Feynman diagrams for the bound-state radiative
self-energy, and the decomposition used in this algorithm.

The old problem of quantum electrodynamic (QED)
corrections to atomic structure has recently acquired new
significance on account of both experimental and theoret-
ical advances. Experimentally, heavy atoms stripped of
most of their electrons can now be studied with preci-
sion. For example, the 2S&~2-2P&~2 transition in Li-like
U has been measured to about 0.1 eV [1], and compara-
ble accuracy has been obtained in a measurement of the
3Sql2-3Pql2 transition in Na-like Pt [2] and 4S 4P tran--
sitions of Cu-like Th and U [3]. Theoretically, relativistic
many-body calculations of the electronic correlation and
Breit corrections to the Dirac Hartree-Fock approxima-
tion can now be performed with great accuracy for high-
Z ions with one electron outside a closed shell f4]. The
remaining theoretical problem, then, is to compute the
QED corrections, both to the single-particle levels in the
many-electron atom and to the electronic correlations.

Of the QED corrections, the most important numer-
ically, as well as the most difFicult to calculate, is the
radiative self-energy correction to single-particle levels.
For high-Z hydrogenic ions, Mohr and Kim [5] have re-
cently presented results for the self-energy correction to
excited states. These calculations generalized Mohr's al-
gorithm for the It and L shells [6, 7], which involves
highly accurate treatment of special functions particu-
lar to the point-nucleus Dirac-Coulomb problem. Con-
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FIG. 3. Representation of the numerical calculation for
the principal value contribution of the many-potential term.
The heavy solid lines represent the efkctive wave functions

FIG. 2. Photon frequency plane singularities for the 2s-
state hydrogenic self-energy graph. For finite nuclear size,
the 2S —2P&g2 degeneracy is lifted. For the many-potential
term there are multiple branch cuts at +mc + E2„ including
those of the free electron propagators as well as the bound-
state Green's function.

Part of t,he diKculty of the self-energy calculation
arises because it is a difference of formally infinite quanti-
ties. In Fig. 1, the rearrangement of the Feynman graphs
necessary to isolate the divergent parts is shown. The
propagator for the virtual electron is expanded in terms
of the binding potential V(r) The . first two terms to-
gether with the mass counterterm have canceling diver-
gences. The last term is the finite many-potential term.
This is the same grouping used by Baranger, Bethe, and
Feynrnan [14] to isolate terms through order n(Zn) 5 mc~,
but here we evaluate to atj orders in Zn and jn(Zn).

From Fig. 1, the zero-po/ential term is the matrix ele-
ment between atomic states of the finite part of the free-
electron self-energy, while the one-potential term involves
an atomic matrix element of the finite part of the oR'-

mass-shell vertex function [9]. The zero-potential term
reduces to a single integral in momentum space, and the
one-potential term to a triple integral.

The integration of the zero-potential term is straight-
forward. For the one-potential term, which contains
integrable singularities and spikes, we have devised a
weighted Gaussian integration scheme that gives five- or
six-figure accuracy.

We now describe the numerical algorithm for the com-
putationally intensive many-potential term. The pho-
ton frequency (~) integral has the singularity structure
shown in Fig. 2 for the particular case of a 2s atomic

state. The bound-state electron propagator contributes
poles and branch cuts; the photon propagator gives
branch cuts which pinch the real axis at the origin. To
permit numerical evaluation of the u integral we rotate
the contour to the imaginary axis, picking up pole terms
from states of lower energy than the 2s, and a half-pole
term from 28 itself. The remaining contour integral is
then a principal-value integral, which we evaluate by
Gaussian integration.

We express both the free-electron propagator and the
electron propagator in the potential V(r) in the eigen-
function representation. Dirac eigenfunctions are solved
for inside a cavity a few atomic units in radius, so that
the positive and negative energy continua are discrete.
The large and small radial wave functions are expanded
in terms of N piecewise polynomials or basis sphne [15]
functions 8; (r),

with coeKcients determined by a variational principle.
We thereby obtain a set of N postive-energy pseudostates
and X negative-energy pseudostates and energy eigenval-
ues which we use to approximate sums over the infinite
set of cavity states. For the basis set in the potential
V(r), the low-lying positive-energy states accurately ap-
proximate the discrete bound-state energies and eigen-
functions.

A compact and eFicient way of using a basis set to
evaluate the many-potential term is depicted graphically
in Fig. 3. The principal-value part of the term is reex-
pressed as an eA'ective exchange interaction between the
atomic state of interest gA and a frequency-dependent
ejjectiiie basis s/ate P;(~),

Epv = ——

where the sum over i is over all positive- and negative-
energy states in the basis set for the potential V(r) The.
states P, (~) satisfy

where the sum over o. is over all positive- and negative-
energy free-electron basis states. For the single value
ice = EA —E;, one may show P; equals g;, the ith basis
state.

To illustrate the entire calculation, we give in Table I
results for the 28 state of hydrogenic mercury, Z = 80.
The basis set size (X = 110) and the number of Gaussian
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TABLE I. Self-energy of the 2s state for hydrogenlike Hg (Z = 80). The first two columns show
the many-potential term for varying nuclear radii r„; the third gives the extrapolation to r„~ 0.
Nuclear charge density: p(r) = po/(1+ exp[(r —r )/u]], a = r /12. 6. Units are rydbergs.

Zero potential
One potential

Principal value
L=0
L=1
L=2
L=3
L=4
L=5
L=6
L=7
L=8
L=9

L =10—oo
Pole terms

2s
271/2

18
Tot. many pot.

r =6.6 fm

-11.552
-4.274
0.184
0.078
0.039
0.022
0.013
0.009
0.006
0.004
0.015(2)

13.772
4.827
3.520
6.662(2)

r„=3.3 fm

-11.555
-4.275

0.184
0.078
0.039
0.022
0.013
0.009
0.006
0.004
0.015(2)

13.776
4.829
3.522
6.666(2)

Extrapolation
r~ =0
-15.001

10.947

5.744
0.555
0.184
0.078
0.039
0.022
0.013
0.009
0.006
0.004
0.015(2)

6.668(2)

Total
Mohr

2.614(2)
2.616(3)

The pole terms have been added on to the appropriate L-wave contribution.
Reference [7].

points (nG = 20) in the ~ integration were increased until
the digits shomn were stable. The partial wave expansion
was truncated at I. = 9, and the contribution from I =
10—oo was estimated by fitting to a polynomial in 1/I.
The I th partial wave is seen to drop oA' asymptotically as
roughly 1/Is. By varying the number of terms in the fit,
as mell as the form of the fitting polynomial, we estimate
a numerical error of about 10'Fo in the extrapolate. This
is the leading numerical error in the entire calculation.

Since our numerical techniques have been designed and
optimized for the finite nucleus problem (the Coulomb
singularity in the point-nucleus wave function is not well
represented by basis splines), we must extrapolate to zero
nuclear size to compare with the point-nucleus results of
Mohr. This we do by a three-point polynomial extrap-

olation, but we show only two nuclear sizes in Table I.
The momentum-space wave functions for use in the zero-
and one-potential terms are evaluated from the analytic
point-nucleus expressions, so that no extrapolation is re-
quired here.

In Table II we summarize results for the 18 state for
several values of Z, and in Table III we give results for
excited states for Z = 80, in each case after extrapolation
to zero nuclear size. We find precise agreement with the
published Ii and I;shell results of Mohr [6, 7]. We also
agree with the graphical results of Mohr and Kim [5j for
excited states.

In the Feynman gauge used here, there are substan-
tial gauge-dependent cancellations between the zero-,
one-, and many-potential terms. The cancellations be-

TABLE II. Self-energy of the 18 state in hydrogenlike systems, after extrapolation to zero
nuclear size. Units are rydbergs.

Zero potential
One potential

Many potential
I =0—9

L= 10—oo
Tot. many pot.

-27.828
20.021

17.106
0.011(2)

17.117(2)

Z=80
-32.176

25.348

22.042
0.017(3)

22.059 (3)

-37.075
33.140

28.063
0.017(4)

28.081(4)

Total
Mohr

9.310(2)
9.311(2)

15.231(3)
15.232(6)

24.145(4)
24.152(11)

' Reference [6].
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TABLE III. Self-energy of excited states of hydrogenlike Hg (Z = 80), after extrapolation to zero nuclear size. Units are
rydbergs.

Zero potential
One potential

Many potential
I. =0 —9

1, =10 —oo
Tot. many pot.

2+1/2

-17.177
10.400

7.000
0.015(2)
7.O15(2)

2J'3/2

-15.122
9.279

6.166
0.015(2)
6.181(2)

—8.660
6.357

3.074
0.019(2)
3.O93(2)

311/2

-9.381
6.292

3.163
0.018(2)
3.182(2)

313/2

-8.657
5.841

2.911
o.o19(2)
2.93O(2)

Total
Mohr

o.23s(2)
O.2386(4)

o.33s(2)
0.3383(5)

0.789 (2) 0.093(2) 0.114(2)

Zero potential
One potential

Many potential
I. =O —9

I = 10 —cx)

Tot. many pot.

383/2
—9.223
6.216

2.977
0.019{2)
2.996(2)

36'/2

-8.985
6.099

2.889
o.o2o(2)
2.909(2)

-5.708
4.266

1.753
o.ols(2)
1.771(2)

—6.029
4.263

1.789
o.o2o(2)
1.808(2)

-5.688
4.038

1.682
Q.o19{2)
1.701(2)

Total

Reference [7].

—0.012(2) 0.022(2) 0.33Q {2) 0.043{2) Q.051(2)

come more severe for higher-l states, because the phys-
ical self-energy is reduced by about one order of mag-
nitude for each unit increase in t, while the zero-, one-,
and many-potential terms have nearly the same size for
all states of a given n. Thus our error remains roughly
constant in absolute terms at about 0.002 Ry or 0.03 eV,
but our fractional error increases sharply as t increases.

We believe that the accuracy of the method can be
improved by eliminating the spurious gauge-dependent
terms that dominate the zero-, one-, and many-potential
terms. The I"ried-Yennie gauge is known to have the de-

sired property [16,9]. Based on preliminary calculations
of the many-potential term, we believe that the Coulomb

gauge also has the desired property. Thus, at the expense
of the additional formal complexity entailed by using ei-
ther of these gauges, one may be able to achieve sub-
stantially improved accuracy without further refinement
of numerical techniques.

In summary, we have shown that an alternative ap-
proach to calculating the self-energy is numerically feasi-
ble and, with relatively few partial waves, reproduces the
known results for a Coulomb potential. Furthermore, the

approach can readily be generalized to any local binding
potential V(r) with no significant change in numerical
technique. The algorithm for the many-potential term
generalizes immediately for any potential in configuration
space. To generalize the zero- and one- potential terms
requires only numerically determined momentum-space
atomic wave functions. By using a relativistic Hartree-
Fock-Slater potential, as done by Desiderio and 3ohnson
[ll] for the It shell, we can approximately account for
screening corrections in many-electron atoms. A discus-
sion of these considerations, together with more details
of the numerical algorithms used above, is planned to be
presented in a lengthier future publication.
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