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Strong stochasticity threshold in nonlinear large Hamiltonian systems: Effect on mixing times
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The dynamics of high-dimensional Hamiltonian Bows is extensively investigated by means of numeri-

cal simulations in the case of the Fermi-Pasta-Ulam (FPU) P model and classical lattice &p model; both
are considered at N =512 degrees of freedom. This work aims at investigating the major consequences
on the dynamical phenomenology of the existence of a strong stochasticity threshold. This threshold
corresponds to a transition from two different diffusion regimes in phase space: slow diffusion (along res-

onances) at low-energy density and fast diffusion (across resonances) at high-energy density. Wave pack-
ets are initially excited. The relaxation time wz toward equipartition of energy is measured following the
time behavior of spectral entropy. A systematic study of v.

& = ~& (c,n,„,) is reported, where c, is the ener-

gy per degree of freedom and n,„, is the average wave number of the initially excited packet. In the FPU
case, it is found that below the strong stochasticity threshold c,„the equipartition time is an increasing
function of n,„„i.e., high-frequency modes tend to freeze compared to low-frequency modes. This is in

qualitative agreement with the predictions of a so-called narrow-packet approximation in which the
FPU model is approximated by a nonlinear Schrodinger equation. However, above c.„the situation is

reversed, and initial excitation of high-frequency modes yields quicker mixing. Also, this is in qualita-
tive agreement with some analytical predictions. In the y case, at c, )c, the excitation of high-

frequency modes results in exponentially increasing ~& as a function of n „,. At E & c„above some criti-
cal n,„„~„is apparently divergent. It is also shown that the crossover in the scaling behavior A, &(c) of
the largest Lyapunov exponent occurs always at c, independent of the initial conditions, thus providing
a good intrinsic probe of the strong stochasticity threshold.

I. INTRODUCTION

In a recent paper [l] a qualitatively diff'erent explana-
tion of the dynamical properties of nonlinear Hamiltoni-
an systems with a large number of degrees of freedom
was given. The present paper is a continuation along the
same line. The main difficulty encountered in the study
of such systems is due to the fact that intuition is no
longer very helpful to grasp the phase-space structure,
hence the results of numerical simulations can have ambi-
guous interpretations and sometimes they can even be
misleading.

Let us remember that the study of Hamiltonian dy-
namics with a phase space of high dimensionality is
strongly motivated by fundamental problems in both
equilibrium and nonequilibrium statistical mechanics. In
this context the first numerical experiment by Fermi, Pas-
ta, and Ulam (FPU) [2] represents a breakthrough. Their
results were unexpected and striking, and raised a new in-
triguing problem for theoretical speculation. The con-
comitance with Kolmogorov's stability theorem [3] was
rather accidental, Fermi and his collaborators seemed not
to be aware of it. The suggestion of a possible connection
between the two works, numerical and analytical, was ap-
parently given for the first time by Izrailev and Chirikov
[4].

The problem raised by the FPU results originated from
mainly two di6'erent kinds of tentative explanations. The
first is based on integrability of nonlinear equations. In
fact, Zabusky and Kruskal [5] discovered the existence of

solitons in a modified form of the Korteweg —de Vries
equation approximating the FPU equations. The second
addresses the problem from the opposite point of view,
that of stochasticity [4]. Here the lack of equipartition in
the FPU experiment is attributed to the nonfulfillment of
some stochasticity condition by the initial data.

Many numerical works followed the line begun by
FPU. We single out the results of Bocchieri et al. [6] for
a chain of point masses interacting with a Lennard-Jones
potential; these authors were the first to find the existence
of a stochasticity threshold in such systems. Moreover,
the threshold seemed independent of the number of de-
grees of freedom.

On the mathematical side, as it is well known,
Kolmogorov's work was extended and generalized by Ar-
nold [7] and Moser [8], from whence the expression
"KAM theorem" originated.

All rigorous results, like the KAM theorem, are ob-
tained in the framework of perturbation theory, i.e., for
systems described by quasi-integrable Hamiltonians of
the form

H(9, I)=Ho(I)+H, (8, I), o.= ((l,
IIHo II

where (0, I) are the the action-angle canonically conjugat-
ed variables and

~~ ~~
a suitable norm.

For a generic perturbation H&, the Poincare-Fermi
theorem [9] ensures that at N ~ 3 no smooth integral of
motion can exist besides energy. Hence the constant en-

ergy hypersurface cannot be divided into disjoint regions.
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The KAM theorem, in the hypothesis of nonsingular
Hessian of Ho, states that there is a critical perturbation
amplitude o., such that for O~o ~o., a set of invariant
tori of positive measure exists. The tori are only de-
formed by the perturbation, provided that they are
sufficiently irrational.

A more powerful approach to the stability problem of
the perturbed motion is provided by Nekhoroshev
theorem [10], where absolute stability is replaced by
finite-time stability of regular motion. It states that some
constants aM, spy exist such that, if I(0) is the initial
vector of the actions, then it holds

~I(t) —I(0)
~

&Mcr',

at least for times t E [0,T] where

(2)

1T=~o —exp
0 0' (3)

Also, this theorem holds for sufficiently weak perturba-
tions such that 0 ~ cr ~ o,

Another important consequence of the perturbation
H, is that the resonant tori of Ho are destroyed for any
small cr and therefore the resonant manifolds n co(I)=0
become stochastic layers (n is an integer component vec-
tor and co is a vector whose components are
co =c)H /c)I ).

In fact, resonant tori are replaced by elliptic and hy-
perbolic points (according to the Poincare-Birkhoff [11]
theorem that can be generalized at any dimension [12]),
thus the perturbed stable and unstable manifolds have
homoclinic intersections which originate chaos. Since at
large N the intersection of the constant energy hypersur-
face with the resonant manifolds of Ho form a very com-
plicated and connected web, in the presence of H& this
turns into a connected stochastic network, the Arnold
web, filling the phase space.

As far as physical applications are concerned, with the
remarkable exception of the systems with two degrees of
freedom, the KAM theory is of little practical use when
the number N of degrees of freedom is N &&1. The same
holds true for the Nekhoroshev theorem.

The estimates of cr, (N) for the KAM theorem
always give a strong dependence on N like
[13] cr, (N)-exp( BN lnN), B)—0, or [14] o, (N)
-exp[ —A(lnN) +~], A, g)0, or N with 5=1300 in
some particular cases [15]. Numerical simulations of
coupled symplectic maps suggest an exponential decrease
of the measure of the regular regions when N is increased
at constant perturbation amplitude [16]. Hence for phys-
ically meaningful values of the perturbation, and large N,
the KAM tori can be considered, in general, of zero mea-
sure.

Also the Nekhoroshev theorem is not very helpful at
large N. The exponent y that enters Eq. (3) has a strong
N dependence: y(N)-(1/N ) is the estimate of the orig-
inal work [10], y(N)-(1/N) is obtained in Ref. [17],
again y(N)-(1/N) is worked out in Ref. [18] where it is
assessed to be optimal (then confirmed optimal by numer-
ical simulations [19]). A brilliant proof of the

Nekhoroshev theorem, based on a completely different
strategy [20], yields (a, y)=( —,', 1/(2N+3)) for the ex-
ponents of Eqs. (2) and (3). This estimate is again optimal
and practically no room is left for further improvements
in generic cases, even though in principle some improve-
ment could be attained for particular Hamiltonians. For
instance, this is the case of a completely resonant system
[21] and could be the case of systems where one or few
relevant degrees of freedom are weakly coupled to a
larger system playing the role of a "heat bath. "

Because of the existence of the stochastic web and after
the above-mentioned results, one could now argue that,
at large N, generic nonintegrable systems should be al-
ways ergodic. Nevertheless this is not in contradiction
with numerical results, where apparently a lack of
equipartition is observed [2,22]. In fact, as has been seen
in Ref. [1],the physically meaningful approach to the er-
godic problem should rather concern the mixing (or re-
laxation) time, i.e., the time needed to fill phase space, or
at least to have a sufficient sampling of it, to make time
and ensemble averages coincide for some observable [23].

It has been found [1] that in the dynamical behavior of
large systems a threshold actually exists that, strictly
speaking, is neither an equipartition threshold (because
equipartition is always observed after a sufficiently long
time) nor a stochasticity threshold (because the stochastic
web is always present); rather it is a strong stochasticity
threshold (SST). This has been found in the FPU P model
and the lattice y model, but it is reasonably much more
general.

This SST is a critical value of the energy density, c.„
such that at e) c, a quick diffusion occurs in phase
space; this can be viewed as a consequence of a locally
strong overlapping of resonances in the stochastic web.
Hence diffusion is allowed in any direction in phase
space, also across resonances; the mixing time is therefore
short and weakly dependent on energy density. On the
contrary, at c (c, a definitely slower diffusion mechanism
acts. One can guess that this is due to a drastically re-
duced local resonance overlap. Hence diffusion is no
longer allowed in any direction and acts along reso-
nances, therefore phase-space paths become tortuous and
less chaotic. This scenario well describes Arnold
diffusion.

Theoretically a lower bound for the efficiency of Ar-
nold diffusion is provided by the Nekhoroshev theorem.
Numerical results make the comparison with the theorem
mainly heuristic. In fact at E (e, it is found [1] that the
mixing time follows an exponential law:
rg (E ) =rpexp[(Ep/E ) ], where rz is an equipartition time,
c is the energy density, and 6 is independent of N. This
last fact is extremely interesting from the physical point
of view, but it is not understandable within the frame-
work of the Nekhoroshev theory since the optimal
analytical estimates give y —(1/N).

The complex network that arises from the intersection
of the constant-energy hypersurface with the resonant
manifolds of Ho is the backbone of the stochastic web
produced by the action of H&. In the present paper we
investigate, loosely speaking, the degree of homogeneity
of the stochastic web at different energy densities. In fact
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the coalescence of resonances into a unique "big stochas-
tic sea" could depend on the region of phase space where
the initial conditions are chosen. Among the infinitely
many choices that one can do, a physically interesting
possibility is to excite at t =0 wave packets of different
average frequencies.

In the FPU model it is found that the common wisdom
that high-frequency modes are frozen holds true only at
c, & c, In this situation initial excitations of high-
frequency modes implies longer mixing times compared
to low-frequency modes, which is in qualitative agree-
ment with a so-called narrow-packet approximation
(NPA) [24]. This situation is reversed at s) s„where
there is a qualitative agreement with the predictions of
Ref. [4].

Then it is shown that the crossover at c., in the scaling
behavior A, ,(s) of the largest Lyapunov exponent is in-
dependent of the initial conditions, thus it is a good in-
trinsic probe of the major change in the phase-space
structure depicted above. A comparison is then made
with the results concerning the lattice y model.

II. DYNAMICAL MODELS AND THEIR
NUMERICAL STUDY

In this paper the results of numerical simulations are
reported concerning two models described by the follow-
ing Hamiltonians:

N

H(p, q)= g [—,'p; + —,'(q;+, —q;) + —,'m q; + 4pq; ]—(4)

for the so-called lattice y model, and
N

~(p, q)= & [ ,'p + ,'(q;+i -q;)'+-.'s (q;—+i q;)'-]—(5)

for the FPU P model [2].
The equations of motion derived from (4) and (5) are of

the form

qi = (q;+ i+q; &

—2q; )+F;(q(t) )
—= G, (q(t) ),

dt

where

—m q,
—pq;

F, (q(t))= .
v[(q;+i —q;) —(q, —q;-i) ]

(7)

for the y model and the FPU P model, respectively. The
numerical integration is performed by the leap-frog algo-
rithm which, in spite of its simplicity, is the most reliable
to simulate Hamiltonian Aows because it is symplectic
[1];it is an explicit integration scheme given by

q, (t+b, t) =2q;(t) q, (t b, t )+(At )2—G;(q(t))—,
where the truncation error is O((ht) ). At each integra-
tion step the algorithm performs a canonical transforma-
tion on the coordinates through a symplectic mapping
which can be made as close to the identity as one wishes
taking At sufficiently small; this fact ensures a faithful lo-
cal representation of a Hamiltonian liow [25]. The dy-

namics is integrated with periodic boundary conditions,
1.e.)

qi qN+i

We want to study the efficiency of phase-space
diffusion through the time needed to sample the constant
energy hypersurface in such a way that time averages
along the trajectories converge to ensemble averages ob-
tained with a typical invariant measure (microcanonical
or canonical). It is worth mentioning that, because of the
high dimensionality of phase space, during the numeri-
cally accessible integration times only a small fraction of
the phase space is actually visited. Even though the
mathematical definition of ergodicity requires that time
and ensemble averages coincide for any measurable func-
tion, numerically this can be observed only for sufficiently
smooth observables, so that the trajectories have enough
time to make a reasonable —even though poor-
sarnpling of phase space. Roughly speaking, an analogy
can be made with the Metropolis's importance sampling
upon which the Monte Carlo technique for statistical
mechanics is based [26]; when the dynamics itself per-
forms an importance sampling of phase space, then time
and ensemble averages are equal.

Rigorously, since equipartition is a necessary but not
sufficient condition for ergodicity, an equipartition indi-
cator can only reveal the lack of ergodization. At vari-
ance, from a physical point of view, equipartition of ener-

gy is commonly accepted as a meaningful probe of ergo-
dicity.

As normal modes play an important role in weakly
coupled systems (they can be phonons, oscillators of the
electromagnetic field, many different kinds of quasiparti-
cles, etc.), equipartition is traditionally intended among
the normal modes of a system.

For a generic Hamiltonian H(p, q) describing linear
oscillators plus a perturbation [as in Eqs. (4) and (5)], the
generalized equipartition theorem states [27] that

Pk a '"' qk
aq

'"' E (9)

where ( ),„, stands for ensemble average, and f (E) is a
quantity which depends only on the total energy of the
system of the microcanonical ensemble. This general for-
mulation contains the statement that each canonical vari-
able, entering quadratically the Hamiltonian, contributes
with —,'k~ T to the mean energy.

The time averages have to fulfill the same relation of
Eq. (9) and have to equate ensemble averages if the sys-
tem is ergodic. Bpt since the equipartition theorem is
asymptotic, nothing is stated about the time convergence
properties between the two kinds of averages. In particu-
lar, very different results are obtained computing the
averages for different sets of canonical coordinates. For
instance, using the coordinates (p, q) that appear in Eqs.
(4) and (5), one finds numerically that Eq. (9) is always
verified also at p=0 because all the q; are coupled. At
variance, using the transformation

' 1/2
2 " . ik~q;= — g Q„sinX k, N
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(4) and (5) can be cast in the form 1 N/2

A~ co. s ij +B sin ij
N J o

~ N
(15)

k=1

k), k2, k3=1
C(k, ki, k2, k3)

x Qk Qk ( Qk
2

Qk 3
(10)

where AJ =Q +Q&, B.=Q.—Qz . for
j =1, . . . , N/2 —1, Acz&2=Q~+&z, and N is assumed
even. These coeKcients A~ and B (the amplitudes of
normal modes), are precisely what is computed with an
FFT. In terms of these amplitudes the total energy is
written, in the limit p=O, as

where the coefticients are

C(k, k„k2,k3)

( 1/8N)5(k +k, +k~+ k3 ),
(1/8N)cokcok cok cok 5(k+ki+kq+k3)

for the y4 model and the FPU p model, respectively, and
cok=2sin(mk/N). Then in the limit @=0 Eq. (9) will

never be satisfied (with the only trivial exception in which
initial conditions are chosen ad hoc). Therefore, to get
meaningful information through Eq. (9) about the struc-
ture of phase space, the set of canonical coordinates
(P, Q) is definitely more useful than that of (p, q).

These are the normal-mode coordinates and diagonal-
ize Hamiltonians (4) and (5) in the limit of vanishing
anharmonicity. With these coordinates Eq. (9) is rewrit-
ten as

N/2E=—,
' g [(A; +B;)+co;(A; +B; )], (16)

8, (t)
w;(t) = &&2, 0~ w;(t) ~ 1 .

(t)
m=0

Let us now define the spectral entropy S (t) as [22]

(18)

where Bo=BN/2=0.
A temporal coarse graining is introduced of size AT

much longer than the inverse of the eigenfrequencies m„.
Then the average content of harmonic energy 8, (t) in the
ith mode is obtained by

t. +AT/2
6', (t )= f dt' ,'co', [A,2(—t')+B2(t')], (17)

J

where it has been assumed virialization between kinetic
and potential energy. The relative energy content in each
normal mode is then given by

&k (12) N/2
S(t)= —g w;(t)lnw;(t), (19)

(E„(t)),= ( ,'P„'(t)+ ,'co'„Q-„'(t) ), . — (13)

Thus, as already done in previous works [1,22], we define
an equipartition indicator through the quantities
«, (t) &, .

By numerically integrating the equations of motion (6),
for both models, the harmonic energy content of the nor-
mal modes is easily computed with the aid of a fast-
Fourier-transform (FFT) algorithm. To be rigorous, one
should check that Eq. (12) is dynamically satisfied, after
some relaxation time, using Hamiltonian (10), but this
should make the numerical computation more tedious
without significantly changing the final results.

The coordinate transformation q —&Q has for eigenval-
ues the frequencies

mn
co =4sinn +I (14)

(m =0 for the FPU model). Taking into account the de-
generacy of the frequencies (i.e., co&,=co;) one can
write [1]

where ( ), are obtained by averaging along a trajectory
of the system given by numerical integration; g(E) is a
function of the total energy E and is independent of k.

When p in Eq. (10) is small, Eq. (12) means that all the
normal modes have approximately the same harmonic
energy. S,„S(t)—

g(t) = S,„—S(0) (20)

so that rt(t) = 1 for an harmonic system, where no energy
exchange among modes occurs, and g=O at equiparti-
tion.

As already stated in the Introduction, we aim at inves-
tigating the degree of homogeneity of the stochastic web
on the constant energy hypersurface, that is, how do the
results of Ref. [1] depend on initial conditions? A physi-
cally sensible way to tackle this problem is to excite wave
packets of different average frequencies.

In particular, it is widely believed that high-frequency
modes do not interact to the same degree as other modes.
Freezing of high frequencies can be motivated in many
different ways and in a variety of physical contexts. In
our case a simple argument based on the Nekhoroshev
theorem can lend further credence to this fact. Consider
a system of weakly coupled oscillators of nonresonant fre-
quencies co1, . . . , co„described by a Hamiltonian as in Eq.
(1). If at t =0 it is

~
I(0)

~

(A, assuming that
cr =[~I(0)~/A] and recalling that E; =co;I; (at zeroth or-

i =n 0

which attains its maximum value when all the weights are
equal, which is at equipartition. To get rid of the X
dependence of S, the normalized entropy is defined
through
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der in o), from Eq. (3) one obtains that the freezing time
is at least

A coi

E;(0)

a
A co;

E;(0)

ay

(21)

which means that if some energy Eo is fed to the ith de-
gree of freedom of frequency co; [hence ~I(0)

~
=I;(0) and

E,.(0)=Eo], the freezing time increases exponentially
with co;. Therefore mixing time must be affected too.

In our numerical simulations the initial conditions
[p(0),q(0)] correspond to wave packets made of JV nor-
mal modes (k„.. . , k~), among which the initial energy
Eo is equally shared.

The simplest way to excite such wave packets consists
of setting q, (0)=0, i = 1, . . . , N, so that at t =0 the ener-

gy Eo is separated into independent contributions

N/2 —1

Eo =
—,
' g [ A; (0)+B;(0)]+—,

' 3~~2(0)+ —,
' Ao(0) .

128 bits per word, respectively), (ii) by reducing the time
integration step by a factor of 10, (iii) by inverting the
sign of the velocities, at some given time, and checking
that g(t} retraces back its decay pattern. Typically wave
packets of four neighboring modes out of 256 are excited
at t =0; both the average wave number n,„,of the packet
and its energy content are systematically varied.

In Figs. 1(a) and 1(b) we report some g(t) curves for
the y and FPU models, respectively; the curves refer to
different average frequencies of the initial excitation and

0.8 I I I I
i

I I I I
[

I I I I
]

I I I I

0.6

thus A; and 8,- are chosen to satisfy

Ak (0)+Bk (0)=, k„=1, . . . , ——1
2 4Eo N

2EO N
Ak (0)=, k„=O,—

n

and finally

(22)

0.4

0.2

p;(0) =q;(0)

N j=k), . . . , k~

2' . .
A (0)cos ij 0 5x16 10 1.5X 10 8& 10t

2' . .+B.(0)sin ij (23)
0.4 I I 1

[
I I I

[
I I I

]
I I I

[
I I I

With the q;(0) =0 and the p, (0) given by (23},the integra-
tion scheme (8) is initialized by q; (t —ht ) = q;( )0b.t—

III. RESULTS ON EQUIPARTITION TIMES

In the following, unless otherwise noted, all statements
refer to both y and FPU models.

We chose N=512 degrees of freedom (a power of 2 is
required to speed up the FFT algorithm); the parameters

p and m in Eqs. (4) and (5) are held constant at 0.1 and
0.01, respectively. We remind the reader that in what
follows s is the energy per degree of freedom (s=E/N )

The typical value of the time integration step adopted
is b t =0.01. At high energy densities, it is reduced down
to At =0.001. The criterion to make the choice of At is
that of keeping the relative Auctuations of energy bE/E
in the interval 10 —10 . Because of the symplectic na-
ture of the leap-frog algorithm, energy is conserved
without any drift, i.e., the fluctuations have zero mean.
In some cases up to 10 integration steps were necessary.

In order to test the reliability of numerical integra-
tions, standard tests have been performed. These consist
of a comparison of the decay curves of the spectral entro-

py obtained: (i) using single and double precision (64 and

(b)

0.3 —,;

I'
~ ~

f'i

$e

I',

O. 2 )-:

0. 1

h Am'~ ~ p,v
~ ~ ~ ~ ~ lg ~ ~ ~ ~ '~ ~ t=—I

~J J
~ ~ ~

2x10 4x10 Gx10 Bx10 10t

FIG. 1. (a) y model. Decay patterns of the spectral entropy
g(t). I, m=0. 01, 5„,=101.5; II, c=0.39, 8',„,=201.5; III,
a=0.0015, S,„,=3.5. (b) FPU model. Solid line refers to
a=0. 195, N,„,=201.5; dotted line refers to c, =0.059,
6„,=29.5; dotted-dashed line refers to c=0.049, 8',„,=3.5.
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are chosen of comparable relaxation time. In the y
model, a qualitative change of g(t) is observed at increas-
ing average excitation frequency: at higher frequencies
the decay pattern of g(t) becomes steeper. On the con-
trary, in the FPU model it is found that rj(t) fairly well
follows a stretched exponential decay [I] up to some time
~z, then a plateau regime is attained with g )0. At low
energy (E(E, ), this decay pattern does not significantly
depend on the average frequency of the initially excited
wave packet. Our operational definition of the relaxation
(or equipartition, or mixing) time rz is the time that r)(t)
needs to attain the plateau regime.

Let us now briefly comment about the asymptotic
values g that are not exactly vanishing. As a general

0.015 I I I I
j

I I I I
j

I I I I
j

I 1 I I j I 1 I I

0.01

0.005

comment, we remark once again that one should test
equipartition through Eq. (12) using all the terms of
Hamiltonian (10), as already discussed. Anyway, there
are also other reasons. In Figs. 2(a) and 2(b) two spectra
of the harmonic energy content of the normal modes are
reported in the case of the y model. Both refer to t )~z
and are obtained at low and high energy, respectively.
Mainly two facts are evident which can explain the non-
vanishing values of g: (i) the existence of a dip at low
wave numbers in the energy spectrum; this is found at
high energies and independently of the initial condition:
(ii) the existence of fiuctuations around the average
shapes of the spectra. These fluctuations tend to soften at
t ))~~, therefore revealing the existence of a slower re-
laxation process. An example of this fact is given in Fig.
3 in the case of high-energy excitations (getting the same
evidence at low energy is numerically prohibitive). In
Figs. 4(a) and 4(b) two harmonic energy spectra are re-
ported in the FPU case; both refer to t )~~. Similar ar-
guments hold in this case too: it is clearly seen that some
memory of the initial excitation and some fluctuations are
still present, again explaining why g )0. In the present
paper, we only deal with the faster relaxation process and
neglect the slower one which is a higher-order effect.

A comparison between the energy spectra of the two
models gives evidence of the existence of some peculiarity
in the high-energy spectra of the tp model. This is not
very surprising and an elementary dimensional argument
suggests that some difference between this model and the
FPU model must be expected. In fact, consider Eqs. (10)
and (11): the coupling term for FPU is 0 (cok Qk ), thus a
spectrum Qk-cok makes the harmonic term indepen-
dent of k, and within a good approximation it also makes

0 I I I I I I I I I I I I I I j I I I I j I I I I j

0 50 100 150 200 250

0.01 I I I I
j

1 I I I
j

I i I I
j

I I I I
j

I 1 I I
j

E

0.008—

001 i yg&j&y

E

0.008—

0.006

I

~ I

e I

II
1I ~ I|I ~

~
W
iI

0.006—

0.004

0.004

0.002

0.002

0 I I

0 10050 250150
I I i r & j I & r & I & i & I j I i I l j

0
0 50 100 150 200 250

FICx. 2. y model. Harmonic energy spectra. (a) c=0.0025,
Nexc =3.5, t =2 X 10 . (b) c=0.781~ nexc =3.5) t = 10 .

FICs. 3. y model. Harmonic energy spectra at
v=7. 81, n,„,=21.5 and at t =2X10 (dashed line), t =5X10
(solid line).
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the couphng term independent of k at any energy. At
variance, the coupling term in the y model is 0 (Qk so
that at low energy (when ~Qk ~

((1) the harmonic term
ct)k gives E —co

s; u at high energies this can no longer be true.
The most important result of our numerical experi-

ment is that equipartition of energy [28] is always
reached with only a remarkable exception in the y case,
as shall be discussed in the following.

InFi. 5an'ig. an illustrative example is given of the he-
nomenology that is produced by high-frequency excita-

monic energy spectra at t =5 X 10 and t =5 X 10,, corre-

sponding to n,„,=201.5, i.e., n,„,=(200,201,202, 203

equipartition (while at the same energy, with n,„,=3.5,
equipartition is attained after a time t =20 000 see7

below, but at t =650000, after a rather abrupt decay of
g t see Fig. 5(b)], the (quasi)equipartition spectrum re-
ported in Fig. 5(a) shows up. In correspondence to the
decrease of g(t), Fig. 5(b) shows that the largest
Lyapunov exponent A, &(t) starts increasing' the tt f

an &(r) suggests the existence of a trapping mecha
nism of the hphase-space trajectory in some region of the
energy surface corresponding to HFE D '

hurging t Is trap-
ping process, the local stochasticity, as measured by
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n,„,=3.5, t = 10 . (b) c=0.978, I,„,=3.5 t = 10

FIG. 5. y model. a Harm&a& Harmonic energy spectra at c =0.391,
N,„,=201.5 and at I, t=SX10' and II, t=5X10. b S

py g t) ( ) and largest Lyapunov exponent A, t)
(II). Same parameters as (a).
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FIG. 6. FPU model. Synopsis of spectral entropy q(t) (I) and
largest I.yapunov exponent A, &(t) (II). c, =0.195, n„,=201.5.

A, ,(t), is definitely weaker than its asymptotic strength
[29] A, &(oo). When the phase-space trajectory escapes
from this region, it quickly joins the "big stochastic sea"
formed by the coalescence of the stochastic layers as al-
ready mentioned in the Introduction. Hence regions of
weak resonance overlap coexist with the big stochastic
sea, and the steeper decrease of rt(t) at increasing n,„„
shown in Fig. 1(a), can be attributed to the nonhomo-

geneity of the stochastic web in phase space.
The FPU case is rather different. The pattern of rt(t)

and A, ,(t), as reported in Fig. 6, and the insensitivity of
the relaxation pattern ri(t) to if,„„asevident in Fig. 1(b),
suggest that the stochastic web is more homogeneous.
This will be suggested also by other results.

In Figs. 7—11 all the results on rz =rz(e, n,„,) are re-
ported for both models. Figure 7 shows how rz(s)
changes with n,„, in the y" model; for graphical reasons,
only the cases n,„,=3.5, n,„,=101.5, and n,„,=201.5
are reported. In all these cases r~ (E) qualitatively
displays the behavior already reported in Ref. [1] (i.e., ap-
proximately constant at c. larger than some c, and steeply
increasing at E & s, ).

Two major points must be noticed: (i) At increasing
n,„„r~(s ) displaces upward, hence excitations of higher
frequencies have a greater tendency to freeze in. (ii)
rz(E) obtained at HFE (n,„,=201.5) seems to suggest
the existence of a divergence of ~z at nonvanishing c.

Complementary information about these facts is pro-
vided by Fig. 8, where rid(n, „,) is plotted at different en-
ergy densities. Apart from some oscillations, on the aver-
age rz(n, „,) is an increasing function of n,„„in particu-
lar, above n,„,= 100 and at E )0.3, rz(n, „,) grows al-
most exponentially. On the contrary, at c(0.3 and
n„, & 150 one observes a sudden change of the relaxation
behavior. For instance, at a=0. 195, n„,=201.5, and up
to an integration time t=2X10, the dynamics is very
regular, the spectral entropy remains practically constant
at -0.9, and the largest Lyapunov exponent drops down
to zero following a 1/t power law typical of regular be-
havior. This fact, together with the shape of ra(E) at
n,„,=201.5 (Fig. 7), makes it possible a true divergence
of rz(s) at a=0.3.

In Fig. 9 ~~ is plotted versus co„„the mean excitation
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FICx. 7. y model. Equipartition time ~z vs energy density E.
Circles refer to n„,=201.5, squares to I,„,=101.5, and trian-
gles to n„,=3.5.

FIG. 8. y model. Equipartition time ~& vs mean wave num-
ber n,„,of the initially excited packet at different values of ener-

gy density c. From top to bottom: c, =0.011, 0.019, 0.049,
0.078, 0.137, 0.195, 0.39, 0.78, 1.66, 3.9, and 19.5.



STRONG STOCHASTICITY THRESHOLD IN NONLINEAR. . . 983

I I I
[

I I I
[

I I I
[

I I I
[

I I I
[

I

+R 10
R

106

x

10

10

105

10

10

10

104 10

10 I I i I

50
I I I I I I

100 150 200 250

10 i i & ] i t & I » & [ i i & I « i I

1 1.2 1.4 1.6 1.8 2

exc

FIG. 9. y model. Equipartition time ~z vs mean frequency

co,„,of the initially excited packet for different values of energy
density E. From top to bottom: c, =0.137, 0.195, 0.39, 0.78,
1.66, 3.9, and 19.5.

rz (E,co,„,) =roexp[( Cco,„,)'], (24)
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FIG. 10. FPU model. Equipartition time ~& vs energy densi-

ty c. Mean wave numbers of initial excitations are I,„,=201.5
(circles), 29.5 (squares) 3.5 (triangles).

frequency. Apart from the two lower curves, whose
points are affected by some indeterminacy, the upper
curves suggest an increase of ~z faster than the exponen-
tial of co„,. Moreover, the deviation from a simple ex-
ponential gets larger when c is lowered. One can tenta-
tively summarize the c and co dependencies of vz, at high

~ey, c& by

FIG. 11. FPU model. Equipartition time ~& vs mean wave
number 5,„,of the initially excited packet for different values of
energy density c. From top to bottom: a=0.059, 0.137, 0.39,
1.66, 3.9, and 54.7.

where ro and C are suitable constants and a =a(E) is a
suddenly increasing (divergent?) function at e= 8, . We
do not have enough information to suggest anything
better than this; moreover, in the absence of any theoreti-
cal hint, overinterpretation of numerical results is an ac-
tual danger.

The estimated value of c, is the same at which the SST
has been found in Ref. [1]. Therefore one concludes that
below this threshold a major anisotropy of the stochastic
web shows up and it is responsible for the freezing of
HFE. Regular regions of positive measure are also likely
to exist below the SST (in the qr case). This means that
in a physical system modeled by the Hamiltonian (4), one
would expect the existence of a critical temperature
below which a lack of thermalization could occur for a
relevant class of excitations.

A rather different phenomenology is found in the FPU
case, as is shown by Figs. 10 and 11. Here a noticeable
property of HFE is that they are not necessarily hard to
relax. Figure 10 shows that at high-energy density,
higher n„, yield shorter mixing times ~~. As in the y
case, a major change occurs at E = c,, (now the SST for the
FPU model is [1] E, = 1); in fact, at e =1 there is a cross-
over of the two curves r~ (e) corresponding to n,„,=3.5

and 201.5. In Fig. 11 the same effect is displayed by
rz(n, „,) obtained at difi'erent c,. The dotted lines join the
first points (at n,„,=3.5) to the last ones (at n,„,=201.5)
in order to evidence the existence of two families of
curves rz(n, „,) having opposite slopes. Below the SST
the slope is positive and one recovers the tendency of
high-frequency excitations to produce slower relaxations,
while above the SST the situation is reversed and high-
frequency modes yield a faster mixing.

Let us now make some comparison of our numerical
results with existing analytical predictions; though neces-
sarily qualitative, this comparison helps much for a better
understanding of the dynamical properties of high-
dirnensional Harniltonian flows.
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We refer to the results reported in Ref. [4] (that can be
better understood with the aid of Ref. [30]) and in Ref.
[24]. Both papers concern the FPU model and deal with
the condition for generation of stochasticity. Izrailev and
Chirikov followed the idea of reducing the dimensionality
of the system in a way that could permit the application
of the resonance overlap criterion for the onset of sto-
chasticity. They considered the equations of motion de-
rived from Hamiltonian (10). In the case of weak cou-
pling, each mode can be considered in the zeroth-order
approximation as independently oscillating like

Qk '(t) =Ck(t)cos[(tpk+5cok )t+const], where 5cok is the
anharmonic correction to the frequency. Substituting
into the equations of motion and retaining only one of the
resonant terms that fulfill the relation n (cok +5cok )

++3,n;co; =0, where n, n; =+1, they worked out an ap-
proximate evolution equation for the amplitude Ck of the
dominating resonance (which will depend on initial con-
ditions); from here they computed the resonance width
b, Ck. Using the separation b, k -da~(k)/dk between
nearest-neighboring resonances, they computed the sto-
chasticity parameter K =ECk /5k. Finally, from the res-
onance overlap condition K ) 1, they found that stochas-
ticity is produced when a nonlinearity parameter
R =3pE/N exceeds a critical value

R =, k«—const
k 2

(25)

6k « 1
0

(26)

where 6k is the number of the excited modes and ko is
the mean wave number of the wave packet.

Perhaps a few details will help the reader. One begins

where k is the mean wave number of the excited modes.
This seemed a good explanation of the lack of equiparti--
tion in Fermi's experiment where only the lowest modes
were excited. This argument has been criticized as being
in conflict with numerical results [22,31] and also with ar-
guments leading to results like in Eq. (21). Actually there
is no conflict. In Fig. 11 it is shown that our numerical
results are in qualitative agreement with the predictions
of Izrailev and Chirikov and also with apparently
conflicting results, and that the dependence on the energy
value cannot be left out. Above the SST, at fixed energy
and at n„, «N/2, the effect of increasing n„, is to de-
crease the mixing time. A shorter mixing time means a
more efficient stochastic pumping and this occurs in more
stochastic regions of phase space. In other words, if by
increasing n„, at fixed energy the dynamics gets more
chaotic, this means that the stochasticity threshold is cor-
respondingly lowered. It is now clear that the stochasti-
city condition of Izrailev and Chirikov, having a local
meaning in phase space, cannot be used to predict the
lack of equipartition.

Below the SST the excitation of high-frequency modes
results in longer mixing times; this suggests that the so-
called narrow-packet approximation [24] (NPA) starts to
become valid at c. &c,. In this approximation it is as-
sumed that

X5(k, +k~ —k3 —k4), (27)

where the condition (26) has been assumed and only the
four-wave resonant terms are retained (these are the slow-
ly varying ones, when the frequencies are high). Then cok

and Vk k k k are expanded around ko in powers of
1 2 3 4

q =k —kp (lql ((kp) as follows: cok—-cok +Aq —Qq
0

and Vk k k k ——Vp=(3/N)sin (mkp/N). Then these ex-
1 2 3 4

pansions are used in the equations of motion derived
from Eq. (27), hence the following set of equations is
found for the interacting 5q modes:

iA = —Qq 3
+p Vp g A& A& A& 5(q +q, —

q2
—

q3 ), (28)

with A =akexp[i(tok +Aq)t]. Finally it can be shown

that the function 4(B,t)=g Aq(t) exp(iqB) obeys a
nonlinear Schrodinger equation

ia, c =na2a+i v, el'c,

which is integrable. This suggests that in the NPA there
is a simple approximate way to incorporate in the in-
tegrable part of the system an important fraction of the
perturbation (i.e. , of the anharmonic term); the neglected
part breaks the integrability of the system but makes only
a weak chaos. The consequence is that the better the
condition (26) is satisfied, the longer are the mixing times.
Therefore the NPA can work only for less chaotic re-
gions of phase space and certainly not when there is a
coalescence of the stochastic layers of the stochastic web.

In the FPU case this is true below the SST, where ex-
citing the highest modes results in longer mixing times
with respect to the lowest modes. At variance, in the y
case it is always true that HFE are harder to relax and
this agrees with the fact that the NPA works much better
for the cp model. In fact, the substitutio~ Vk k k k

= V
1 2 3 4

is now exact [see Eq. (11)]at any energy. This suggests a
simple but nontrivial explanation of the main differences
of the dynamics of the two models.

As a final remark, notice that both works in Refs. [4]
and [24] tackle the equipartition problem in high-
dimensional Hamiltonian flows using a nonlinear reso-
nance approach. This seems a promising complement to
classical perturbation theory; basic concepts and tools
can be found in Ref. [32]. Recently this approach has
been successfully applied [33] to some fundamental prob-
lems in plasma physics.

with a transformation of variables to the new ones ak and
ak such that ak =(2cok )

' (I'k —itokQk ). The Hamil-
tonian (10) is approximated by

N —1

X 'pkakak
k=0

N —1

+O'. X. Vkkkkakkkk
k1 4=0
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FIG. 12. FPU model. Largest Lyapunov exponent A,
&

vs

energy density c at N=128. Initial conditions: random at
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FIG. 13. y model. Largest Lyapunov exponent A,
&

vs energy
density c at N =128. Initial conditions: n,„,=(2,3,4, 5) (cir-
cles); n,„,=(54,55, 56, 57) (squares). Reference power laws are
c and c.

IV. SST AND THE LARGEST LYAPUNOV EXPONENT

By means of a standard method [34], we have comput-
ed the largest Lyapunov exponent A,

&
at different energy

densities and for the initial conditions that have been
considered in the preceding sections. As it is well known,
A, , is a stochasticity indicator: if nearby trajectories in
phase space diverge and lose memory of the initial condi-
tions, then A. , )0. It has been found in Ref. [1] that A, , is
always positive and that A, , (E) displays a crossover be-
tween two different scaling laws with c. The value of c. at
which the crossover occurs defines the SST. This seems
the only intrinsic way, i.e., independent of the starting
point in phase space, to detect and therefore to define the
SST.

We have checked that this is true in the case of
N=128 and for n,„, divided by 4 in order to keep
n,„,/N=const with respect to the preceding sections.
%'e have been obliged to use N =128 by the prohibitive
convergence times of A,

&
at N =512 with HFE. The con-

vergence time of A, , is in general much longer than the
mixing time. An idea of this fact (though approximate,
because convergence of k& is usually checked in log-log
scale) is given by Figs. 5(b) and 6.

In Figs. 12 and 13 the resulting A, ,(e) are reported for
FPU and y models, respectively. They correspond to
the following initial conditions: random at equipartition,
wave packets at different n„,. The expected indepen-
dence of the SST from initial conditions is hereby
confirmed.

Notice that in the y case, for those initial conditions
that seem to correspond to a divergent relaxation time
rz, as we found A, ,(t)-1/t, no point has been reported.
Let us now comment about the meaning of the observed
scalingsofz, wit c.

At c)E, it is found A, , -c. . This is explained with a
random-matrix approximation for the tangent dynamics
[1]. Let

1 ~1

n I+'n (29)

be the Jacobian of the discretized Hamiltonian Aow asso-
ciated to Eq. (8); 0 is the Hessian of the potential part of
the Hamiltonian: 0, = —8 U(q)/Bq, .Bq. and r is a
discretization time (for instance, the time integration
step). M is a 2N X2N symplectic matrix that maps a vec-
tor g(t) tangent to the Aow into a vector g(t +w)

After Oseledet s multiplicative theorem, A, , is given by

A. &= lim ln
1

n~oo n7

n n

g' (0) + M (q(J~)) + M(q(kr)) g'(0)
J=1 k=1

g' (0).g(0)

1/2

(30)
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The matrix elements of Q contain terms like (q;+ &

—q; ) .
In the random-matrix approximation, the hypothesis of 6
correlation in time is made for the fiuctuating part Q of
II, i.e., (II, (k"r)Q, (lr")) =(y,"/r)5k&. The average ( )
in Eq. (30) is carried over difFerent realization of the
random-matrix process. The average of y;. is given by

1 N

r = —& [(q; —q;)' —&(q;+ —q;)'&)'.
i=1

(31)

The computation of Eq. (30) yields [1] k, -y' . Since
the numerical evaluation of y(E) gives y(E) —E, it fol-
lows k&-c. for both models. It is worth noticing that
the same result can be found also analytically, at least in
the FPU case, by computing the ensemble average of y
by means of an ergodic invariant measure. The micro-
canonical measure should be used, but at large N the
canonical measure can equivalently work. The canonical
configurational partition function is [23]

—]. /4

Z(w I- ~P
2 2

X exp D,&2(a&P/2p )
a2P

8p
(32)

where a is a dummy parameter multiplying the harmonic
part of the FPU potential, D ]&2 is a parabolic cylinder
function, and P= 1/T (k~ =1) is the inverse of the aver-
age kinetic energy per particle which is, within a good
approximation, proportional to [23] 8 thus P= 1/E. The
ensemble average ( y ) is then easily found to be

( ) i 4 BZ
'Y = a=1

—1Z:a= 1 p
BZ

(33)

and using the asymptotic approximation D»2( )x
-exp( —x /4)x ' (1—3x /8+ . ) which holds well
at x ))0, one immediately gets

(34)

At high c., where the above expansion for D &&& worsens,
the exact expression derived from Eqs. (32) and (33) gives
a correction lowering the exponent 2. Such a tendency is
actually present at high E in the numerical results of A, &(E)

reported in Fig. 12.
In conclusion, the meaning of A, &-c is that, corre-

spondingly, the representative point in phase space fills
the constant energy surface by making a random walk,
which, being completely uncorrelated, is supposed to take
place in any direction. At c, &c„maintaining the hy-
pothesis of ergodicity but introducing some correlations
in the temporal variation of 0, in order to mimic more
tortuous trajectories in phase space, it is possible to ob-
tain A, &(E) steeper than E ~, but the degree of arbitrari-
ness of the models so far considered [35] still makes them
unacceptable. Nevertheless it is the random-matrix ap-
proximation that breaks down and this at least is in
agreement with the already depicted scenario.

V. CONCLUSIONS

Let us brie Ay summarize the main results of the
present paper and the remaining open questions.

EPU case. Equipartition of energy is always reached,
independently of the initially excited modes: only the
length of time to equipartition differs. It is possible that
at a considerably lower number of degrees of freedom
and at sufficiently low-energy density some regular re-
gions of phase space may exist, but this is unsolved and
concerns another kind of problem.

The decay patterns rt(t) of the spectral entropy and
their relation with A, ,(t) suggest that the stochastic web is
rather homogeneous with respect to the change of the
mean frequency of an initially excited wave packet.

At c & c„high-frequency excitations yield longer relax-
ation times with respect to low frequencies. This is in
agreement with the common belief that high frequencies
have a tendency to freeze. The narrow-packet approxi-
mation [24] provides a simple tool for a qualitative inter-
pretation of the observed phenomenology.

At c)c, the previous situation is reversed. High-
frequency excitations yield a quicker relaxation with
respect to low frequencies. Also in this case a qualitative
explanation of numerical results is at disposal [4]. An ap-
parent contradiction between the prediction of Ref. [4]
and previous numerical results [22,31] is here explained.

case. Equipartition of energy is almost always
reached, independently of the initially excited modes pro-
vided that c)c„or c & c, with n„, sufficiently low: only
the needed observation time differs.

The decay patterns of g(t) and their relation with A, , (t)
suggest that the stochastic web is strongly inhomogene-
ous. Again homogeneity is probed by changing the mean
frequency of the initial excitation. High-frequency exci-
tations yield longer relaxation times, with respect to low
frequencies, regardless of the energy value. This is con-
sistent with a better fitness of the narrow-packet approxi-
mation to ihe y case.

At c & c., the possibility of a true divergence of the re-
laxation time is strongly suggested by the abrupt increase
of rz(E) when n,„, exceeds some value and by the per-
sistent decrease of A. ,(t) as 1/t. At E) E, equipartition is
always reached and the relaxation time, in a first approxi-
mation, increases faster than exponentially with co,„,
above some intermediate value of co,„,.

The concluding message is that the existence of the
strong stochasticity threshold has for both models major
consequences on the global structure of phase space,
hence on the dynamics. The details of these conse-
quences are model dependent.
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