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Relative randomness of quantum observables
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We investigate statistics of matrix elements of observables, calculated in an eigenbasis of a quantum-
mechanical evolution operator corresponding to a classically chaotic system. We propose a criterion
that allows one to predict whether or not such statistics are faithful to random-matrix theory and define
a random operator with respect to a given system.

The theory of random matrices [1] proved to be ex-
tremely useful in investigations of quantum systems that
are chaotic in the classical limit. Spectra of Hamilton (or
evolution) operators of such systems differ in cases of
classically regular and chaotic motions. It is believed
that for systems with fully developed chaos in the classi-
cal limit, (quasi)energies repel, whereas for classically reg-
ular cases one finds clustering of levels [2]. The appropri-
ate distributions of the level spacings for chaotic systems
coincide with the theoretical predictions from random-
matrix-theory and correspond to so-called Gaussian en-
sembles in the case of autonomous systems and the circu-
lar ensembles for periodically driven systems. Depending
on the symmetry properties of a system, one has to
choose among orthogonal, unitary, and symplectic en-
sembles that give different degrees of level repulsion [2].

Recently, similar considerations were extended to the
statistics of eigenvector components of chaotic systems
[3]. The conclusion was reached that statistical proper-
ties of eigenvectors can also serve as a signature of chaos
in quantum mechanics. There is an obvious advantage in
this approach, at least from the computational point of
view: The components of eigenvectors outnumber the ei-
genvalues and therefore give more reliable statistical en-
sembles. On the other hand, however, in contrast to ei-
genvalues, eigenvectors are defined relative to some basis
while any statistical statement must be basis independent.
For example, it is clear that if we choose (in an "unfor-
tunate" way) as a basis the eigenbasis of the operator un-
der investigation, then the components of eigenvectors
bear no statistical information. Vaguely speaking, one
faces the problem of defining an appropriate basis [4].
Let us consider a quantum system H with eigenvectors
~P;), the classical analog of which displays full-scale
chaos. A basis {~k ), k = 1, . . . , N] might be called ran-
dom [5] with respect to this system, if the eigenvector
statistics (i.e., statistics of ~(P;~k ) { ) confers to the pre-
dictions of random-matrix theory. Depending on the

system's symmetry, the we11-known y distribution with
v= 1, 2, or 4 should be applied [6].

The whole problem also may be looked upon from a
slightly different point of view. Instead of asking ques-
tions about eigenvectors, one can investigate squares of
absolutes values of matrix elements of some chosen
operator (observable) between the (quasi)energy eigen-
states of the system under consideration. The case is of
particular interest inasmuch as such matrix elements
define the transition strengths between eigenstates-
quantities that can be measured experimentally. Hence-
forth we shall call an operator "random" with respect to
a given system if the statistics of its matrix elements in
the energy eigenbasis is well approximated by the g dis-
tribution resulting from the appropriate ensemble of ran-
dom matrices. In other words, a random operator X pro-
duces from the energy eigenvectors ~(t,. ) the random
basis X~/; ). The problem of finding a random basis is
now shifted to the one concerning the random operator.
It is to be noted that an observable commuting with a
Hamiltonian (or with the Floquet operator in the case of
maps) is not random with respect to this operator: the
distribution of its matrix elements gives no statistical in-
formation.

In this paper we want to give a simple criterion for
finding random observables. First we want to stress that
the problems of finding a random basis and a random
operator are not equivalent in the following sense. Since
an observable (being Hermitian) defines a basis consisting
of its eigenvectors, one could expect that two commuting
observables sharing the same eigenbasis should have simi-
lar distributions of their matrix elements between eigen-
states of the investigated chaotic system. This is not the
case since one also has to take into account the properties
of eigenvalue spectra of both operators and, in particular,
their degeneration. A simple example of such a case is
presented in Fig. 1. We calculated the matrix elements of
J, and J, between the eigenstates

~ p; ) of the Floquet
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operator U for the kicked top [7]:

U =exp —i .J, exp —i—J. k
2j' 2

not good for characterizing statistical properties of a
chaotic system. This leads to the concept of measuring
the degree of noncommutativity between U and an ob-
servable Xby introducing

where J and J,are angular-momentum operators. The
square of the total (conserved) angular momentum equals
j(j+ 1), which sets the dimension of the resulting ma-
trices U, J, and J, to 2j+1. The parameters k and p
were assigned the values 10.0 and 1.7, respectively, which
ensures that in the classical limit j~~ the system is ful-

ly chaotic. The figure shows histograms of
y =

l & p; l J,'lpj ) l normalized [6] to fulfill &y ) = 1, for
I = 1 [Fig. 1(a)] and 2 [Fig. 1(b)]. The obtained distribu-
tions display considerable differences. Whereas J, gives
the expected y, result (denoted in the figure by a solid
line), the distribution for the operator J, deviates
significantly from the predicted curve.

To characterize such situations in a more quantitative
manner, we suggest the following reasoning. As previ-
ously mentioned, the observables commuting with U are

and, more generally,

ll«U(» II'
(3)

where

llxll = &xfx)'"

&XII )=Tr(xr')
define the norm and scalar product in the space of Her-
mitian matrices representing observables. The «U(X)
are n-fold commutators,

adU(X)=[U, X], adU+'(X)=[U, «U(X)] .

0.6

It is possible to rewrite Eq. (3) in the form

2n ~ 2n 2Re&XlX~&~)+ V( —1)'n; n —I

where

X'"=U~'XU' .

(7)

0.2—
Observing that for unitary operator U

.00. -6

and using Schwartz's inequality, one sees easily that

0( (22Pl (10)

0.6

I«~o (y)

(b)

Moreover, the minimal (maximal) value of p„ is achieved
if and only if U commutes (anticommutes) with X. In the
latter case, one should not expect that the matrix ele-
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FIG. 1. Distribution of squares of absolute values of matrix
elements for the operators (a) J, and (b) J, in the Floquet basis
of the kicked top. Solid lines correspond to the y„distribution
provided by random-matrix theory. Total angular-momentum
number j= 100 and coupling constants k = 10.0, P= 1.7.
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FIG. 2. Coefficients R„ for the operators J, (asterisks) and J,
(circles). Total angular-momentum number j =50, other pa-
rameters as in Fig. 1.
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ments of X between the eigenstates of U are distributed
randomly since anticommutation indeed requires strong
correlations among them. In order to avoid efFects corre-
sponding to quantum recurrences, we shall restrict our-
selves to some first coefficients, say [p„, n = 1, . . . , N) .

Et is convenient to invert the relation (7) between p„'s
and the iterations of the quantum map X' ' to obtain

n+I —1R„=1+—g (
—1)'

&

—pi, (11)
I=1

1.0
R)
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(12) FIG. 4. Coefficient R, for the operator V=exp( —idJ, ) as a

function of the parameter d.
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The extreme cases of commutation and anticommutation
correspond now to R„=1 and —1, respectively. It is
thus reasonable to suppose that the most preferable case
of statistical independence occurs in the middle between
these values, i.e., for R„=O. An operator X is random
with respect to the system described by the evolution
operator U if is orthogonal to its images
&Xi U'"XU") =0.

As a support to this reasoning, we present in Fig. 2 the

relevant results for the operators J, and J, and U given
by Eq. (1) with j =50. The values of the coefficients R„
for both operators are nearly constant as functions of n

and j, giving remarkably difFerent results for J, and J, .
For the former, which exhibits nice statistical properties
according to the Porter-Thomas distribution with respect
to U, the values of R„Auctuate around 0, whereas for the
latter the coe%cients R„prefer values close to O.S.

The observed saturation of the coefBcients R„with the
iteration number n allows us to argue that a random
operator conserves its statistical properties during time
evolution. In other words, a random operator X and its
image X'" have the same statistics of matrix elements.

Actually, the whole argument can be extended to in-
clude operators which are not observables. It is of some
interest to know how the coeKcients R„change when the
degree of commutativity changes gradually. In Fig. 3 we
present statistics of matrix elements for the unitary
operator V=exp( idJ, ) —in the eigenbasis of U for
j =100 and two difFerent values of the parameter d. Two
parities of eigenstates can be treated separately [7], so one
has to deal with two matrices of dimension N equal to j
and j + 1. The matrix elements are normalized as
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FICx. 3. Distribution of squares of absolute values of matrix
elements for the operator V =exp( —idJ, ) in the Floquet basis
of the kicked top for (a) d =0.04 and (b) d =0.001; system pa-
rameters as in Fig. 1. Solid lines correspond to the predictions
of random-matrix theory.
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FIG. 5. Coefficient R& for the operator J, calculated for
difFerent realizations of the kicked top in the transition region
between regularity (k ~ 4) and chaos (k ~ 4); j = 50, P= l.7.
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=i~ V t ~

=N so that ( ~
V i ~

) =1. For large values
of d, the statistics is very well approximated by the ex-
pected y curve (v=2 in this case since operator Vis uni-
tary), but differs significantly from the predictions of
random-matrix theory for smaller d, where V is close to
the unity operator. Note the peak of distribution at
log, oy =2 (i.e., at y =j) in Fig. 3(b), which is characteris-
tic of the unity operator, under this normalization rule.
This change of matrix-element distributions is accom-
panied by the dependence of the coefficient R, on the pa-
rameter d, as shown in Fig. 4. For those values of d for
which the coefficient R &takes values smaller than 1.0, the
operator V(d) indeed gives the expected distribution of
its matrix elements.

One can also address the question of how the
coefficients R„calculated for some observable vary when
the system itself undergoes a transition between regular
and chaotic regimes. In the case of the kicked top, where
we have at our disposal two parameters k and P [Eq. (1)],

we can easily investigate such a transition. While for
k =0 the system is classically integrable, for higher
values of this parameter chaotic behavior can be observed
[7]. The resulting dependence on k of the coefficient R i
for the operator J, is presented in Fig. 5. Similar results
can be obtained for R„, n & 1. It is worth stressing that a
change of R& from 1 for k =0 to approximately 0 for
k &4 is completed exactly in the transition region be-
tween regular and chaotic regimes [7]. This observation
suggests a possibility of using coefficients R„as indicators
of such transitions.
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