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Regular window structure of a double-well Duffing oscillator
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A special, seemingly infinite sequence of saddle-node bifurcations of the driven double-well Duffing os-
cillator is investigated. It occurs in resonances with even torsion number and shows period-adding be-
havior. The sequence of saddle-node bifurcations gives rise to a regular window structure of higher and
higher period. An empirical law is given of the organization of periods and torsion numbers when
proceeding along the sequence to the limit.

I. INTRODUCTION

X) =X2

x2= —dx2+x, —x, +f cos(2mx3),

COX3=
2m

(2)

with a phase space R XS'.
Due to the symmetric potential of the Duffing system

with V(x, )=x, /4 —x, /2, i.e., V(x, )= V( —x, ), Eq. (2)
possesses two different kinds of closed trajectories. A
periodic trajectory of this system projected onto the
(x „x2 ) plane is either inversion symmetric to itself

The Duffing oscillator with a double-well potential is
investigated. It can be described in normalized form by
the three-parameter equation (1):

x +dx —x +x =f cos(cot ),
where d is the damping parameter and the further two
parameters f and co are the amplitude and the frequency
of an external driving force, respectively.

The Duffing-type system, albeit looking simple with its
just one nonlinear term x, shows a richness in behavior
not yet fully explored despite many attempts [1—14].
Research along different lines has revealed the qualitative
shape of its attractors and invariant manifolds [4—7] and
put forward results on the coexistence of attractors
[8—10] and on the bifurcation set [11—14] similar to those
found for other oscillators, e.g., those described in Refs.
[15—18]. A topic not yet explored in this system is the
laws behind the investigated window regularities and
chaotic band structure occurring repeatedly inside reso-
nances (see, e.g. , Ref. [17]). This paper presents results
pertaining to a certain inner structure of chaotic bands
different from what is known to occur in other systems
and what is known as the Feigenbaum scenario with its
inner structure [19]. It gives rise to the conjecture that a
hierarchical structure within chaotic regions is observed
in this system.

Written as a set of autonomous differential equations of
first order, Eq. (1) has the form

[x(t )=(x, (t ),x, (t ),x, (t ) )

=( xi(—t), x2(t),—x3(t)+ —,')]
or to a coexisting asymmetric trajectory x ( t )Ax ( t ) but
which is inversion symmetric to

x(t )=(x, (t ),x, (t ),x, (t ) ),

x(t ) =( —x, (t ), x, (t ),—x, (t )+-,' ),
as shown in Ref. [20].

Swift and Wiesenfeld [20] have shown that for systems
with a symmetric vector field the Poincare map
P: (x,v)~P(x, v)=N (xi,x2, x3=const) is the second
iterate of a map —P=P', where U=x and T is the
period of the driving (T= 1 in our case). The orbit of P
loses its stability and splits into two stable asymmetric or-
bits via a symmetry-breaking bifurcation which corre-
sponds to the first period-doubling bifurcation of the root
P.

This situation is illustrated in Fig. 1 which is calculated
with a damping parameter d=0.2. An inversion sym-
metric trajectory of period 1 is plotted near but just be-
fore where a symmetry-breaking bifurcation has taken
place (co=0.795). Therefore the trajectory is inversion
symmetric to itself [Fig. 1(a)]. After the bifurcation the
orbit has lost its symmetry and the two asymmetric
period-1 orbits shown in Figs. 1(b) and 1(c) coexist at
co=0.775. They are inversion symmetric to each other.
The basins of attraction for the Poincare cross section
X,= [(xi,x2, c)E [R XS'] with c =0 for the two attrac-
tors of Figs. 1(b) and 1(c) are shown in Fig. 2. The two
period-1 attractors —fixed points of the Poincare map
P—are indicated as small white squares at (x, v )
=(1.891,0.354) representing the orbit of Fig. 1(b) and at
(x, v ) = (1.077, 1.476) representing the corresponding in-
version symmetric orbit. When applying the Poincare
map P with an initial condition of the grey or black area
the trajectory will be attracted by the corresponding
white fixed point. In addition, a third symmetric period-
3 attractor coexists. Its basin is white in this figure
and the periodic points are marked as black dots
at [(x,v )] = [(1.434, —0.957), (

—0.389,0.976), (1.892,
1.481)].
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II. THE RECURRENT BIFURCATION STRUCTURE
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co=0. 18 and 0.32 Eq. (1) is solved for 32 diFerent, equal-
ly spaced initial conditions ([ xo, Uii), i =1, , 32 where
xo E ]0,3[,uo =OI ). After attaining a stationary solution
(the attractor), one coordinate (x and U in the upper and
lower diagrams of Fig. 3, respectively) is plotted at phase
x 3 0 of the driving for a certain number of driving cy-
cles. Then a maximum of 32 coexisting attractors can be
caught, sufficient for the present purpose. To get an
overview of which and how many attractors to expect
many basin calculations similar to those given in Fig. 2
have been done beforehand. When reading this type of
bifurcation diagram one must be cautious as to the period
of the attractors, e.g. , one single period-2 attractor yields
two points for one frequency value whereas two coexist-
ing attractors, both of period 1 also yield two points for
one frequency value. Thus, full information has to in-
clude trajectories for ambiguous cases.

The diagram in Fig. 3 makes visible the qualitative
changes of the system in the range of the driving frequen-
cy from ~=0.18 to 0.32. For the lowest driving frequen-
cy shown in this plot the response of the system is a
period-1 limit cycle indicated by one dot at the corre-
sponding co value. This period-1 solution stays stable un-
til the frequency reaches a bifurcation point at co=0. 1863
where a symmetry-breaking (sb) bifurcation takes place
and two asymmetric period-1 cycles originate from the
symmetric one. These two attractors coexist in the pa-
rameter region up to co=0. 1927 (the upper and lower
branches in the diagram) where they merge again by a
symmetry-breaking bifurcation. There the single sym-
metric period-1 attractor which became unstable resumes
its stability. The region between the two symmetry-
breaking bifurcation points where the symmetric period-1
orbit is unstable belongs to a resonance of the system and
is labeled R &6, which also represents the torsion and the
period at these bifurcations. In general, a resonance R„
is labeled by the torsion n of the local Aow around the
closed unstable orbit (first index) and the period m of this
orbit (second index). For the definitions see Refs.
[21—23]. In the parameter region co=[0.2082, 0.2210]
the same situation as described before occurs and is la-
beled as the resonance R,4 &.

When the frequency is increased further, two saddle-
node (sn) bifurcations occur (just visible around
co=0.233) comprising a region of bistability with sym-
metric attractors. This small region of bistability belongs
to the resonance R i3 &

(not explicitly marked in the
figure) that has already developed a hysteresis loop. At
even higher frequencies further symmetry-breaking bifur-
cations take place. Additionally, it can be noticed that at
the resonance R,z, the two asymmetric period-1 orbits
double their period via a period-doubling (pd) bifurcation
and then halve it by an inverse period-doubling bifurca-
tion, so that a loop for each branch occurs. This is also
called "period bubbling" [24]. For a higher driving force
the parameter regions of the resonances become wider
and different resonances start to overlap. Also, the corre-
sponding period bubbling seen at the resonance R &z, has
developed to full period-doubling cascades into chaos for
the resonance R ~p ~

~ The chaotic regions contain period-

ic windows which again turn into chaos via period dou-
bling. The diagram shows the recurring structure of res-
onances, i.e., the alternating occurrence of saddle-node
bifurcations and symmetry-breaking bifurcations, which
has already been found in many other systems [14—18].

III. W'INDOOR STRUCTURE INSIDE
A SINGI.E EVEN RESONANCE

A. Observations and definitions
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FIG. 4. A fixed-point diagram of the asymmetric period-1
solution of the resonance R6 &

(x and U projection). The driving
amplitude is f=1. This fixed-point curve covers the entire co-

parameter region of the resonance. The line shape indicates
difFerent states of stability (see text).

The parameter region of the resonance R6 &
is chosen

for a closer examination of its inner structure. We took
this resonance because it is the best choice with respect to
fast and efficient computation. To find the corresponding
behavior in higher resonances the driving amplitude f
has to be higher and/or the driving frequency co has to be
lower. Both lead to an increase in computer time. For
the lower resonances (R4, and Rz, ) a large number of
coexisting attractors (due to the double-well potential)
additionally cause an increase in computer time.

The fixed-point curves of the asymmetric period-1 solu-
tion of the resonance R6 &

are given in Fig. 4. The fixed-
point curves in this paper are calculated with a continua-
tion program written by Knop based on standard con-
tinuation techniques and are described in detail in Refs.
[15] and [25]. A fixed-point diagram is similar to a bifur-
cation diagram except that only one distinct periodic
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solution is followed regardless of its stability, whereas in
the bifurcation diagram shown in Fig. 3 only stable solu-
tions are shown regardless of their period. The diagram
of Fig. 4 is calculated for the driving amplitude f=1.
The stability of the solution in this plot is indicated by
the line style. A solid line indicates a stable solution [the
complex eigenvalues p; of the linearized Poincare map
DP(x, u) yield ~ILt, ~, ~p2~ & 1], a dotted line indicates an
unstable solution due to a period-doubling bifurcation
[Re(IM&) or Re(pz) & —1] which takes over stability, and
a dashed line represents an unstable solution due to a
saddle-node bifurcation [Re(p, ) or Re(IMz) ) 1]. The
fixed-point curve of the period-1 solution forms a single
loop and can be regarded as constituting a basic entity of
the R6 &

resonance.
The bifurcation diagram comprising a large part of the

resonance R6, is given in Fig. 5. This diagram has been
calculated similar to that of Fig. 3. Here a set of 128
initial conditions in the range of (x o, U o )

=(1,0), . . . , (3,0), i=1,. . . , 128, is used with two dots
plotted for each initial condition after a suitable transient
time. Again after increasing the control parameter m by
a small amount, the same set of initial conditions as be-
fore is used to calculate the final state at the parameter
co+ her. As mentioned before it is possible to detect coex-
isting attractors with this technique. This can be seen in
the plot for the parameter m =0.25, for instance, where a
third attractor of period 3 exists besides the two asym-
metric attractors. The three branches of the third attrac-
tor can only be seen in the upper diagram. In the lower

subplot one of the branches is hidden in the chaotic re-
gion that originated from the period-1 solution. In this
view of the resonance it is noticed that the chaotic re-
gions of the resonance are interrupted by a high number
of periodic windows showing certain regularities. These
obvious regularities are the subject of this article and in-
vestigated in more detail below.

Several enlargements of Fig. 5 have been calculated,
just one of which is shown in Fig. 6 presenting the range
of ro= [0.205, 0.220]. The diagram is obtained in a
slightly different way than the previous one. Here the x
or v coordinate, respectively, of the periodic points of the
Poincare map P is plotted versus the control parameter co

as before. But starting with the initial condition
(x,u)=(1,0) at co=0.205 the Duffing equation is in-
tegrated for 100 periods of the driving frequency until the
transient has died out, the trajectory is expected to be
close to the attractor and the local calculation error is
sufficiently small (e & 10 ). Then the system is integrat-
ed for the next 150 driving periods to find out whether or
not the trajectory is (low) periodic or chaotic. These 150
points (or the eventually detected m periodic points) are
plotted versus the driving frequency co. Then the param-
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FIG. 5. Bifurcation diagram of the resonance R6 &
for the

driving amplitude f=1. A large number of periodic windows
can be detected whereat the period of the windows seems to in-
crease for decreasing co value. P3 denotes a coexisting period-3
attractor.

FIG. 6. Bifurcation diagram showing an enlargement of Fig.
5. For decreasing co values the symmetry period number q is in-
creasing by 1 for successive windows. The diagram at the bot-
tom shows the winding number m for the parameter region
shown. Here, it is increasing and converging toward w =7 for
higher periodic windows.
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eter co is increased by a small amount (b,co=3.33 X 10 )
and integrated with an initial condition obtained from the
last calculated point of the previous parameter value.
Using this method of calculation one distinct attractor
can be followed until it becomes unstable or until the ini-
tial point is no longer lying inside its basin of the new pa-
rarneter value cu. After the parameter has reached its
maximal value, it is decreased again until the starting pa-
rameter value co =0.205 is attained. When doing so there
exists a possibility that a coexisting attractor is reached
due to the different initial conditions which are handed
over from one parameter value to the next.

Even though the structure looks similar to the bifurca-
tion diagrams of the well-known van der Pol oscillator or
other systems with a mode-locking dynamics on an in-
variant torus [22,26], it must be emphasized that the
Duffing system investigated is a strictly dissipative oscil-
lator. The Poincare map is area contracting over the en-
tire phase space with the contraction rate det(DP)
=exp[ —(2'/co)d] & 1 which is not dependent on x, .
This means that a Hopf bifurcation cannot exist and
must be excluded here. Therefore similarities with the
phase-locking regions known from the van der Pol oscil-
lator and leading to Arnold tongues cannot be expected
in this system. In addition, this is not a Farey-tree order-
ing of the periodic windows. The period-adding ordering
within a resonance found here is different but is known to
appear in a wide class of systems [27]. This phenomenon
has first been found in driven nonlinear series RLC cir-
cuits [27—30] showing a regular occurrence of saddle-
node bifurcations forming periodic windows inside a
chaotic region. For successive windows the period is in-
creasing from m to m+1. The same behavior has also
been modeled by piecewise linear maps [27,30], an ordi-
nary differential equation describing the features of a
driven RLC circuit [29], and a laser rate equation [17].
However, Ringland and co-workers could show in recent
publications [31,32] that maps can be constructed with a
transition between the Farey-tree ordering and the period
adding of periodic windows.

At the right hand side of the diagram of Fig. 6
(co~0.22) a period-3 window exists. This period-3 win-
dow comes into existence by a saddle-node bifurcation of
a symmetric period-3 orbit such that the chaotic region
(not visible on this plot) is annihilated. No hysteresis is
involved here. The following bifurcation, when decreas-
ing the parameter co, has to break the symmetry [33] or it
will be a sn bifurcation. This can be seen at co=0.219
where a symmetry-breaking bifurcation takes place. The
next large window at lower ~ seems to be a period-4 win-
dow. But in fact it is just a period-2 window as
exemplified by plotting an actual orbit out of this region.
Here the orbit is born asymmetrically by a saddle-node
bifurcation and therefore a second asymmetric orbit —its
inversion symmetric —with the same period (mo=2)
coexists. Both are accidentally caught —by the calcula-
tion procedure described above —one while increasing
the parameter ~ and the coexisting one while decreasing
~. Here the notation mp is used for the period where the
subscript 0 denotes the "basic" period of an orbit born by
an exterior saddle-note bifurcation [15]. The following

bifurcation at lower co must be a period-doubling bifurca-
tion or a sn bifurcation. The next window at lower co is
born by a saddle-node bifurcation of a single (symmetric)
orbit of period mp =5. It is followed by a window of two
coexisting (asymmetric) period-3 attractors and so on. So
we have the case that every second "large" window is
born due to a saddle-node bifurcation of a symmetric or-
bit with a basic period mp, whereas every other "large"
window in between consists of two coexisting orbits born
as a pair by a saddle-node bifurcation. Because of this
situation two new numbers p and q are introduced in the
following way:

mo for a symmetric orbit (q ENo odd)

2mo for an asymmetric orbit (q ENO even) . (3)

The number q is called the symmetry period number,
and Np is the set of non-negative natural numbers. In the
same way the variable p called the symmetry torsion num-
ber is defined accordingly to the q value:

n for q ENp odd

2n for q ENp even, (4)

(5)

Over one period of the system the torsion number n is a
multiple of an integer in the vicinity of a saddle-node or
symmetry-breaking bifurcation, because here the two
complex eigenvalues of the linearized Poincare map be-
come real and one of them crosses the unit circle of the
complex plane at +1. For a period-1 orbit Eq. (5) im-
plies that the torsion number and winding number are
the same as long as the eigenvalues are real. Near a

where n is the torsion number which indicates the torsion
of the local flow in units of 2m. for the closed orbit (see
Refs. [21], [34], and [35]). The symmetry period number
q indicates the number of periodic points in the Poincare
section with the period mp ~ This means q is either the
number of periodic points with period mp in the Poincare
cross section of a single symmetric attractor or the sum
of the periodic points of the asymmetric attractor with
period mp and its counterpart. For an example refer to
Fig. 5. At co=0.232 the q value is equal to 2 because the
periodic window consists of two coexisting, asymmetric
period-1 orbits. Their two basins are shown in Fig. 7
where the black (white) dot indicates the attractor of the
Poincare map inside the white (black) basin. The basins
are calculated using about 10 initial conditions. Oppo-
site this, it is q =mp=3 at the parameter value co=0.225.
Here a symmetric orbit is born and no other period-3 or-
bit exists for this parameter value. In fact there is no oth-
er attractor at all with a basin detectable within the same
resolution as used in Fig. 7. So whenever q is even it
means that two coexisting orbits exist with the period
pl p

=g /2.
At the bottom of Fig. 6 the (generalized) winding num-

ber [21] w is plotted. This winding number is, for the
case of periodic orbits, simply related to the torsion num-
ber n and the period m of the system by
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This scheme shows two interwined subsequences. One of
them —valid for the windows developed by the saddle-
node bifurcation of symmetric orbits —increases the tor-
sion number n by 14 at every step to the next element of
the sequence and increases the period mo by 2. For the
other subsequence, the torsion number is increased by 7
and the period by 1 which is valid for the windows con-
sisting of two asymmetric orbits. To put this into ac-
count the sequence of winding numbers given above can
be rewritten in terms of p and q without changing the
value of the winding numbers and the modified complete
sequence of fractions is obtained:
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26
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= 33
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FIG. 7. The basins of the two asymmetric period-1 orbits are
shown for the parameter values f=1 and co=0.232. The at-
tractors are marked as a white or black square at
(x,v) =(0.7279, —0.7585) (white) and (x,v) =(1.1496,0.9227)
(black).

period-doubling bifurcation the torsion number is a con-
stant multiple of —,

' when related to the bifurcating orbit
with the lower period while one eigenvalue of the linear-
ized Poincare map DP of the doubling orbit crosses the
unit circle of the complex plane at —1. This means that
near a saddle-node, symmetry-breaking and period-
doubling bifurcation the winding number is constant in a
certain parameter region around a bifurcation point and
it forms (possibly very small) plateaus when plotted
versus one of the parameters of Eq. (1). Figure 6 (bottom)
shows the evolution of the winding numbers for the bifur-
cation diagram above. For a further discussion of wind-
ing numbers and their properties see Ref. [21].

B. Formulation of a law for the winding number sequences

+14 +7 +14 +7 +14 +7

The winding numbers of the parameter values for
which a saddle-node bifurcation occurs are noted. When
decreasing the ~ values from 0.225 to the beginning of
the region shown, the winding numbers lead to the fol-
lowing sequence for successive windows (cf. Fig. 6):

The cases k=1 and k=2 are added to complete the re-
cursive formulation. The corresponding "windows" of
periodic solutions are special cases but naturally fit into
the series. This becomes clear when the limits of the res-
onance R6, to the neighboring resonances R 5 I and R7,
are considered. The sequence starts with the winding
number w I

=—', which belongs to the former saddle-node
bifurcation of the period-1 solution in the neighboring
resonance R». The end of the sequence is obtained as
the limiting value of wk for k ~~:

pk p, +7(k —1)
w = lim wk= lim = lim

k k qk k k
=7.

Obviously the sequence follows a certain rule where the p
values increase by 7 when moving from one to the next
window whereas the q values increase by 1. This is
rewritten as a recursive formula in the following way:

ql =1

p& 5
WI =

q1 1

pk+I pk+7
Wk+ I

qk+1 qk +
where pk is the symmetry torsion number at the "birth"
of the period-qk orbit. This formulation can be made ex-
plicit because of its simplicity:

pk pl+7(k —1) 5+7(k —1)
wk = k=1,2, 3, . . . .

qk qlk k

n. 19
W =—:

mo 3
= 13

2

+2 +1 +2 +1 +2 +1

(6)

The winding number limit w„=7 is the w, (=p, ) value
of the next saddle-node bifurcation of the period-1 solu-
tion as can already be guessed when looking at the plot of
winding numbers in Fig. 6.

The case k =2 leads to wz = —", and corresponds to two
asymmetric period-1 solutions of torsion number 6 which
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developed at the sb point. Thus a complete window cas-
cade exists covering the range of winding numbers from 5
to 7. It has been found numerically by the authors that
similar cascades exist between every two odd winding
numbers with period number 1, so that Eq. (9) can be
written in a more general form:

k=1,2, 3, . . . .
p, +(p, +2)(k —1)

WI—

Using / as a label for the sequences according to the reso-
nance wherein they can be found it then reads for even
winding numbers w =n
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It is well known that, in the case of a fully developed
saddle-node sequence, the period of the windows, when
coming from high m values to lower ones, increases to
infinity [36—38]. The parameter values of the saddle-
node bifurcations for which the winding number se-
quence is valid accumulate at the parameter

=co (w' ) where the corresponding sequence limit~min =~g oo

w' is reached. Here the arrow subscript denotes the de-
OO

crease of the parameter co. With increasing period the
width of the windows, i.e., the parameter regions where
the saddle-node bifurcation of a period mo occurs and
stays stable until the period-doubling cascade sets in are

etting smaller. Due to the period-bubbling phenomenonge
the sequence limit w „ tEq. (13)] is reached at twoI

different parameter values for the resonance R„&, (com-
pare Figs. 10 and 11 below). When increasing the pa-

Irameter co there also exists an upper bound co,„ofsuc-
cessive co vssive co values for which a saddle-node bifurcation with

I Iincreasing period occurs such that co,„=~&(w ).
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Gd
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~ ~ 6value of the sequence investigated with the limit co;„.
The small additional loops for q =3 at the high-frequency
end are added for completeness (symmetry broken
period-3 solution). It can be seen clearly, that a certain

1.5
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0.9—

FIG. 8. All fixed-point curves for the periodic windows with
the symmetry period numbers q =i, i =3,. . . , 8. The loops are
frequency interlocked. Di6'erent line shapes indicate di6'erent
states of stability as in Fig. 4.

C. Membership questions

From the bifurcation diagram Fig. 6 many more
(smaller) windows can be detected, e.g. , the period-5 win-
dow at co=0.2175 inside the chaotic region which lies be-
tween the large windows with symmetry period numbers
3 and 4. These periods have different properties than
those extracted for the above sequence. To show this,
fixed-point curves of the first few periodic windows are
ca cualculated for the /=6 sequence. In a fixed-point dia-

edgramram a period-m orbit is represented by m separate
coexisting loops, according to their m periodic points be-
cause, when taking the m-fold iterate P of the Poincare

Themap P, this corresponds to m different fixed points. e
fixed-point loops for the windows with q =i, , i =3, . . . , 8
are given altogether in one plot (Fig. 8). The solid lines
which mark the stable solutions are the same that appear
in the bifurcation diagram of Fig. 5. The unstable
branches extend to lower frequencies far below the co

0.6 I
'

I
'

I
'

I

0.1980 0.2034 0.2088 0.2142 0.2196 0.2250
—0.69

—0.96-

—1.50
0.1980

, ~

~ 'C H

I

J

q=876 5 4
0.Z034 0.2088 0.2142 0.2196 0.2250

FIG. 9. One loop of each window shown in Fig. 8 is
displayed to emphasize the ordering of the fixed-point curves in
the parameter space. An ordering of the loops from the right to
the left for higher q values can clearly be seen.
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organization of the loops exist. The shape of the loops is
similar for di6'erent q, and they are grouped in a regular
way. For better visualization just one sequence of loops
is extracted from Fig. 8—similar to the subharmonic bi-
furcation diagram introduced in Ref. [26]—and shown
enlarged in Fig. 9. Exactly one of the q loops of each
window calculated is shown. It can be seen that the qual-
itative shape of corresponding loops for each window is
the same although every second one belongs to one of the
two coexisting asymmetric attractors. The phase curves
are different (symmetric or asymmetric) but the fixed
point curves are not. In addition, the loops are frequency
interlocked. The m-parameter interval, where a
period-(q+1) orbit exists, is always a subset of the
interval of the q window, Vq&)(N' [coq+i, min&~q+i, max]
C [co 'co ], which can be seen from Figs. 9 and 10.~q, min~ ~q, max
The latter is an enlargement of the left tip of the fixed-
point curves from Fig. 9. The maximum of the co values
for increasing period is converging to the left towards the
limit co;„(Fig. 9), as already mentioned above, whereas
the minimum of the co values for these periods is converg-
ing to the right [37,38] as shown in Fig. 10. Therefore
the parameter range where a periodic window with a
high period exists is getting smaller [36]. At the max-
imum and minimum parameters comj„and tom» for all i-6

tegers an unstable orbit with this period exists.
The following fixed-point diagrams introduce fixed-

point curves of two periodic windows which are not
members of the investigated (1=6) sequence, namely, the
windows with the symmetry period numbers q, =6 and
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FIG. 11. (a) The fixed-point loops of the main windows with
symmetry period numbers q =5 and q =4 and the surplus win-
dows with q =6 and q =7 within the chaotic region between
their stable high-frequency solutions. (b) Enlargement of (a) for
the low-frequency range of the fixed-point loops. The parame-
ter range for the subwindows is not limited by the main-window
fixed-point loops.
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wi, =7 within the chaotic region between the windows

q =5 and q =4 (Fig. 11, cf. Fig. 6). [Note that there are

g win w,—3 windows, when the larger of the two q values is tak-
en, and their symmetry period number q, lies in the range
from q, =q+1, . . ., 2(q —1)—1.] These windows are
called subwindows and subscripted with an s to distin-
guish them from the windows belonging to the "main"
period-adding sequence. The fixed-point curves of the
subwindows seem to match the gross appearance of the
fixed-point curves of the 1arge main windows but the pa-
rameter range of their existency is not limited by the
main windows as can be seen from the magnification [Fig.
11(b)] of the left border of the four fixed-point loops from
Fi . 11(a). Here the fixed-point curve of the q, =6 win-

dow is not bordered by the loops of the q, =7 and q ==5
window as is the case for high frequencies [Fig. 11(a ].
However, it is conjectured that the saddle-node bifurca-
tions and the fixed-point curves of the subwindows also

od ce sequences so that it might be possible to find a
complete hierarchy of periodic windows and their wan-
ing number sequences within resonances. A closer exam-
ination of the subwindows will be given elsewhere.

IV. CONCLUSION

FIG. 10. An enlargement of the left part of Fig. 9 showing
the ordering at the low-frequency end of the loops from left to
right for windows with higher symmetry period number q.

A special, infinite sequence of saddle-node bifurcations
giving rise to a regular window structure is found in the
double-well Du%ng system. The sequence is made up by
two subsequences of increasing periods. Such a sequence
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belongs to every resonance with even torsion number and
is a dominant part of the inner structure of the bifurca-
tion set of a resonance. Fixed-point diagrams are of great
help in locating those sequences because they form a loop
structure and give hints for grouping windows as belong-
ing together. The limits, specific co values for a specific
resonance and parameter set, are points where the com-
plexity and strong dependence of the solution on co sud-
denly drops back to simplicity, a simple period-1 solu-
tion, for instance. The same situation has been found in a
simple sinusoidal driven laser oscillator [17] and is ex-
pected to belong also to the universal bifurcation struc-
ture of a certain class of oscillators with symmetric po-
tential [39].

It can be expected that the surplus windows not inves-
tigated in the present paper also form series, presumably
with a more complex law than the one given here. These
investigations show how complicated the behavior of the
simple driven DuKng oscillator is and that there is yet a
long way before the complete bifurcation structure can be
stated even in a qualitative, topological way.
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