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Doubly excited states with zero angular momentum and electrons in opposite directions
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L=O doubly excited states, whose mean value of the interelectronic angle is close to m. , are studied
within the O(4,2) group-theoretical framework. It is conjectured that the energies of these resonances
correspond in the limit of large excitation of both electrons to those of the Hamiltonian
H =p /2+p' /2 —Z/r —Z/r'+1/(r + r') in a space where both particles have fixed value, to be denot-
ed f, for their angular momenta (1 =1'=f). The choice for the fixed value f is not important in the limit
of infinite principal quantum numbers. In other cases, fmust remain smaller than or of the order of the
square root of the lowest principal quantum numbers of both electrons. The initial problem with three
degrees of freedom thus could be reduced, insofar as energies of resonances are concerned, to a problem
with only two degrees of freedom in the limit of large excitation of both electrons. It is of course obvious
that the state vectors af the above Hamiltonian with 1=1'=f are totally inadequate for describing real
two-electron atomic states with interelectronic angles close to ~. However, the coefficients of the expan-
sion of these unphysical states with respect to specified Sturmian vectors with 1 =1'=f approximate the
coeScients of the real two-electron states with respect to different specified Sturmian vectors; the latter
Sturmian vectors have a large distribution over different values of I ( =I').

I. INTRODUCTION

Doubly excited states of two-electron atoms have
aroused interest in the recent past. For a general view on
the subject see, e.g. , Ref. [1—7]. The present work
focuses on states with total orbital angular momentum L
equal to zero and with mean values of the interelectronic
angle 0,2 close to m. A classification scheme initially
based on the O(4) group and on the hyperspherical
analysis of the problem has been proposed [3]. Accord-
ing to this scheme, each state is designated by the nota-
tion (see Ref. [3]) „(K,T )g,

+ 'L . These quantum
numbers can also be introduced within a molecular ap-
proach where the interelectronic distance is used as an
adiabatic coordinate [8]. Within this classification, the
states of interest for the present paper are those with
L =0 and K maxima (K =X—1).

A general formulation which relies upon the O(4,2)
group-theoretical approach to the subject [9, 10] is out-
lined in Sec. II. The bases used for describing two-
electron states depend on two arbitrary scaled factors
P,P', and on six quantum numbers [see Eq. (14) below]:

~(n, n', J„J2,L,M)/3, /3') .

For Ji =J2, the parity of the vectors of Eq. (14) is related
to the angular momentum through the relation
sr=( —1) . The spin S has to be taken into account by
symmetrizing (S =0) or antisymmetrizing (S = 1) the
previous basis vectors. The attention is then focused on
the states with zero total angular momentum. For L =0
only three quantum numbers n, n', J remain independent
since Ji and J2 then must have the same value, to be
denoted J.

The key point of this paper is to note that for L =0
and large n, n' values, the vectors characterized by max-
imum value of J [J=(n+n' —2)/2], to be denoted
~(n, n')/3, /3') [see Eq. (16)], correspond to mean values of
the interelectronic angle close to ~ for n, n' large enough
[see Eq. (A15) of the Appendix] and that the two-electron
problem can approximately be studied inside the sub-
spaces generated by these vectors (n, n')/3, /3').

This approximation is first checked (Sec. III) in the
case of two noninteracting electrons, a problem whose ex-
act solution is, of course, known. It is found that the hy-
drogenic spectrum is exactly obtained. It is shown that
an appropriate choice for the scaled parameters /3, /3' al-
lows one to obtain an arbitrarily chosen hydrogenlike
state as an exact eigenvector of the approximate problem.
The other eigenvectors remain good in the vicinity of the
chosen hydrogenlike solution and become worse far from
it. A measure of "how good" is provided by the 1/r
overlap with the hydrogenlike solutions. The case of two
interacting electrons is then considered in Sec. IV. It is
conjectured that the energies of the resonance associated
with L =0 states whose electrons are almost in opposite
directions correspond to those of the Hamiltonian

H =
—,'p —Z /r + —,'p' —Z /r'+ 1/(r + r')

in the space where each particle has fixed angular
momentum (1=1'=f ). The common value f must
remain smaller or of the order of the square root of the
smallest principal quantum number of each electron.

Clearly, only the energies of the resonances associated
to the above model are relevant for the real physical
atoms. It is, of course, obvious that the state vectors of
the above Hamiltonian with 1=1'=f fixed are totally
inadequate for describing real two-electron atomic states
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the scaled hydrogenic states
~ (n, 1,m ),p ) defined in terms

of the hydrogenlike states ~Z, n, l, m ) for nuclear charge
Z, by

with interelectronic close to ~. The requirement that the
electrons of the real atomic states be in almost opposite
directions implies that both are sufficiently excited but
does not necessarily require that their degree of excita-
tion be comparable. Stated otherwise, intrashell and
intershell resonances are both concerned by the present
approach provided the smallest degree of excitation of
the two electrons is sufficiently large.

~(n, l, m )p) =Z ' n exp[i[p+1n(n/Z)]t2] ~Z, n, l, m ) .

(12)

The hydrogenlike states introduced above are normalized
with respect to the usual scalar product of quantum
mechanics. The space of the UIR is spanned by all the
~(n, l, m ),p). These states, also called Sturmian states,
are orthonormal with respect to the 1/r scalar product:

II. GENERAL FORMULATION

It is known [11] that the Lie algebra o(4,2) is realized
by the following 15 generators:

&(, 1),»PI( «1««»P&=& (13)
l=rXP,
a(P) =exp( —P ) [ —,

' rp —p( r p ) ]——,
' exp( f3)r,

b(P) =exp( —P)( 2 rp —p(r p) )+ —,
' exp(P)r,

g="P

t, (/3) =
—,
' [exp( —P)rp —exp(P)r ],

t2 =r.p —i =rp, ,

t3(P) =
—,
' [exp( P)rp +e—xp(f3)r ] .

(3)

(4)

(5)

(7) ~(n, n', J, , J2,L,M)P, P')

= g l(n, l, n', 1',L,M)P, P')

The action of each of the 15 o(4,2) generators [Eqs.
(2)—(8)] on these states can be found in Ref. [12] and is, of
course, p independent since both operators and vectors
have been transformed by the same unitary transforma-
tion. A suitable basis for two-electron states is then [13,
14, 9, 10]:

a(p) —=exp(i pt2 )a(0)exp( —i pt2 ) . (10)

The physical meaning of this transformation is a change
of length scale by a factor exp(/3). The generators 1 and g
commute with t2 and therefore these seven generators are
f3 independent. The notation tz(p) or t2 will therefore be
used indifferently in what follows. We also introduce the
non-Hermitian generators

These generators are Hermitian with respect to the so-
called 1/r scalar product defined by

(e ~f )—:Id r(1/r )e*(r)f(r) . (9)

It is emphasized that the 1/r scalar product is always im-
plicit in the "bra ket" notation throughout this paper and
that, when two electrons are considered, the element of
integration is (d r/r)(d r'/r'). The /3 dependence of the
generators corresponds to a unitary transformation gen-
erated by t2. For example,

X [(21+1)(21'+1)(2J,+ 1)(2J2+1)]'

(14)

These states are eigenvectors of t3(p), t3(p'), [a(p)—a'(/3')]2, L2, and L.[a(p) —a'(p')], with respective ei-
genvalues n, n',

[2[J,(J, +1)+J2(J~+ I)] L(L+1)j,—

[J,(J, +1)]—[J2(J~+ I)] .

The explicit action of t, (p) on these states is given by Eq.
(74) of Ref. [10]. Within the phase convention [15]of Eq.
(14), the action of the permutation operator Pi& is

P„l( n, n', J„J2, L, M) P, P')

t+(p): t, (p)+it2 . — =( —1) ~(n', n, J2,Ji,L,M)P', P) . (15)

A unitary irreducible representation (UIR) of O(4,2) is
obtained (see, e.g. , Ref. [12]) if these 15 generators act on

Turning now to the special case L =0, J„J2 maximum,
and defining

~(n, n')P, /3') = ~(n, 'Jn, =
—,'(n+n' —2),J2= ,'(n+n' ——2),L =O, M=O)P, P'),

one obtains from Eq. (74) of Ref. [10]

t (P)~(n, n')P, P') =(n —1)[(n+n' —1)/(n+n' —2)]' ~(n —l, n')P, /3'),

t+(P)~(n, n')/3, P') =n[(n+n')/(n+n' —I)]'~ ~(n+ I,n')P, /3')

+(n' —1)/[[(n+n' —1)(n+n' —2)]]'~2

X ~(n+ l, n', Ji =(n+n' —3)/2, Jz=Ji,L =O, M=O)P f3') .

(17)



E. de PRUNELE

For n, n' large enough, it is seen [right-hand side of Eq.
(18)] that the coefficient in front of the last vector is small
with respect to the one in front of the first vector. It is
therefore very tempting to approximate t(p) by ~(p)
defined by

r3(p) = t3(p),

(P) l (n, n ')P, P' ) = [n (n —1 ) ]' l (n —1,n ')P, P' ), (20)

r+(P)l(n, n')P, P") =[n(n+1)]' 'l(n+ 1,n')P, P') . (21)

The action of ~(p) on the two-electron states
l(n, n')p, p') corresponds to the action of t(p) on the
one-electron states with zero angular momentum,
l(n, l=0, m =0),P) Namely, one has

r+(P) l(n, i,~ )P) =c(/, +n ) l(n+1, /, m )P),

two-electron subsp aces: The two-electron subspace
spanned by all the vectors

l ( n, n ')p, p' ) (p, p' fixed) is
different from the two-electron subspace spanned by all
vectors l(n, n')a, a') (a, a' fixed) if the pair p, p' is
different from the pair o;,a'. The sentence "the operators
t(p), t'(p') are replaced by the operators ~(p), r'(p')"
means in particular that we are working in the p, p'-
dependent two-electron subspace generated by the vec-
tors of Eq. (16).

The approximation will first be tested in Sec. III for the
case of two noninteracting electrons, a problem whose ex-
act solution is the hydrogenlike one. The approximation
will then be considered for the real two-electron problem
in Sec. IV. It will be seen that in both cases the spectrum
does not depend on the particular values chosen for the
pair p, p'.

r3(p) —2(p) —r2(p) =0 . (22)

It should be noted that the approximation is P dependent.
This means that we are free to choose an arbitrary value
for p. It is, however, very important to realize that
different values of the pair P,P' correspond to different

I

with

c(l, n ) = [(n +/+ 1)(n —l )]'~

The approximation of the coe%cients n —1 and n appear-
ing in Eqs. (17) and (18) by the functions c(l, + n )

remains good provided I remains smaller or of the order
of &n . We choose the case / =0 in Eqs. (20) and (21) and
this choice is retained throughout this paper. This choice
is purely arbitrary if one considers the limit of infinite
principal quantum numbers. In that limit, any fixed
value f for I in c(l, + n ) still leads to a good approxima-
tion and corresponds to a limit eccentricity of one for the
Kepler orbits. It is, however, adapted to choose a small
value for f in order to determine the lowest energy from
which the Hamiltonian (1) becomes a good approxima-
tion for determining resonance energies. We choose
f=0 but this choice is not crucial and, for example, the
difference of the resonance energies of the Hamiltonian
(1) in the space f =0 and f = 1 will rapidly become negli-
gible when the degree of excitation rises. From now on
we always consider the case l =l' =0 but it should be re-
called that this value is not of any fundamental impor-
tance.

The most important property of this approximation is
that the subspace spanned by the vectors of Eq. (16)
remains invariant under the action of the operators r(p).
Moreover, the operator r (/3) (j= 1,2, 3) are Hermitian
with respect to the I /r scalar product. More precisely,
the three equations (19)—(21) correspond to a positive
discrete UIR of su(1, 1) [16]characterized by the eigenval-
ue zero of the Casimir operator

III. TEST QF THK APPROXIMATION
FQR TWQ NQNINTERACTING ELECTRONS

The Schrodinger equation for two noninteracting elec-
trons can be written in terms of the generators t [see Eqs.
(6) and (8)]:

[e ~'[t ', (P') —t ', (P') ][t,(P)(e~—2ce ~)

+t, (p)(ep+2ce ~) 2Z]—
+e ~[t3(p) —t, (/3)][t3(p')(e~ 2c'e —~)

+t', ( p')(e~ +2 c'e P) —2Z]] l%') =0,

with the total energy E separated according to

(23)

and /3, p' arbitrary. The bounded eigenvectors are given
by the Eq. (14) where P=ln(Z/n ), P'=ln(Z/n'), and the
corresponding eigenvalues are

E=Z [
—1/(2n ) —1/(2n' )] . (25)

We now arbitrarily fix two integer values to be denoted
no and no and define

Po—:ln(Z/no )

Po = ln( Z /n o )— (26)

We then consider the exact Schrodinger equation for two
independent electrons [Eq. (23)] with these fixed values
for P and P'. We rePlace in this equation t(Po), t'(Po) by
r(/3o) r'(Po). Using the relation

exp[ —iar2(po) ]73(po)exp[iarz(po) ]

=cosh(a)r3(Po)+sinh(a)r&(Po), (27)

the replaced Schrodinger equation takes the form

+no( —8c') ' [r3(Po) —r, (Po)]e ' ' [r3(Po) —noe ]e ' '
] l&b) =0, (28)
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where

e —= ( —2c) '
Z /no (29)

and the same for variables with a prime superscript. The spectrum of ~3, ~3 is the set of positive integers. The energy ei-
genvalues corresponding to Eq. (28) are then exactly the hydrogenlike ones [see Eq. (25)]. This can also be seen as fol-
lows: Since the action of r(/3o), ~'(Pp) on the vectors

~
(n, n')/3, Pp) is the same as the action of t(/3o), t'(Pp) on the vectors

~(n, l=0, m =0),Po) ~(n', l'=O, m'=0), /3t),

Eq. (28) corresponds, insofar as energies of the resonances are concerned, to the eigenvalue equation

( —,'p —Z/r+ —,'p' Z/r—' E)~%—) =0, (30)

restricted to the subspace where both particles have zero angular momentum (l = l'=0). It is emphasized that the en-
ergy eigenvalues are independent of the values of P, /3'. The corresponding eigenvectors, to be denoted ~n, no, n', no ),
are given by

" "o "' "o & —=exp['ln("o In)~z(/3o)+i ln(no/n')~z(/3o)]l(n, n')/3o»o& . (31)

These vectors are exact eigenvectors of the replaced Schrodinger equation [Eq. (28)] and will be called replaced eigen-
vectors in the following. These replaced eigenvectors have a large distribution over the values of 1 ( = l') since they are
constructed from the vectors ~(n, n')/3, /3p) defined by Eq. (16). The mean values of 1 for the vector of Eq. (16) is explic-
itly given by Eq. (A16) of the Appendix where the total angular momentum L has to be taken equal to zero. It is seen
that the replaced eigenvector is the hydrogenlike one for the special case n =no, n'=no. The replaced eigenvectors will
now be compared to the hydrogenlike ones in the general case by considering the 1/r overlaps, to be denoted X, be-
tween them:

X(n, n', np, no)=(n, np, n', no ~(n, n')ln(ZIn ), ln(Z/n'))

n '
)Pp /3p l exp [i ln( n /no )~2(/3o) ]exp [i ln( n '/n o )'rz(/3o) ]

Xexp[ i ln(n/np—)t~]exp[ i I n( n'I—n o)tp]l( nn')/3p Pp& . (32)

This expression does not depend on the charge Z. X represents the cosine of the angle, measured with respect to the
1/r scalar product, between the hydrogenlike vector [Eq. (16) where /3=1n(Z/n ), /3' =In(Z/n ')] and the replaced eigen-
vector [Eq. (31)]. It is seen from Eq. (31) and Eqs. (19)—(21) that the expansion of the replaced eigenvectors in terms of
the vectors ~(n, n')/3o, /3p ) involves only SU(1, 1) representation functions [16],to be denoted 5, as defined in Ref. [17]:

n, no, n', no&=
I

nl, n
l

no
6,', ln

n &n'
no

n)qn ) o~ o (33)

The problem therefore reduces to the calculation of

Y—= ((ni, ni )Pp, /3pIexp[ i ln(n—/np)tz i ln(n'/no)t2—]l(n, n')Pp, Pp& . (34)

Y=[(ni+n', —1)(n+n' —1)]'

X g (21 + 1)e(n „l)e(n 'i, l )e(n, l )e(n', 1)
I

X5„'„'(ln( n In p ) )5,', '( ln( n
' In p ) ), (35)

where

e(n, l ) —= (n —1)![(n —l —1)!(n+1)!] (36)

The overlaps X thus can be expressed in term of SU(1,1)

Y can be calculated from Eq. (14) and the explicit expres-
sion of 9j coefficients [18]. One obtains

representation functions. From the symmetry property

5r „(f3) = ( —1)" "5~„(—/3), (37)

it is seen that the overlap X(n, n', no, no) is invariant by
the transformation of no into n /no (the same holds for
variables with a prime superscript). Algorithms for the
numerical evaluation of the SU(1,1) representation func-
tions have been described elsewhere [17]. Numerical re-
sults are reported in Fig. 1, where X(n, n, np, np) is plot-
ted as a function of n for the three cases no =3, 10, 20. It
is seen in this figure that the decrease of the scalar prod-
uct when n moves away from no rapidly slows down as
no increases. Stated otherwise, for fixed values of n —no,
the angles between the replaced eigenvectors and the hy-
drogenlike ones decrease to zero as no goes to infinity.
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[a(p) —a(p') ]'I (n, n ')p, p')
= [t, (/3)+ t', (p') —2][r,(p)+ t,'(p') ] I(n, n')/3, p'),

(42)

it is seen that the action of r.r' on the vectors
I(n, n')p, p') can be expressed in terms of the operators
t(p), t'(p') only. We then proceed as in Sec. III, i.e., we
approximate t(p) by r(p) [see Eqs. (19)—(21)] and one
finally obtains, within this approximation only,

a(p) a'(p') (n, n')p, p')

= [
—

r3 (P )r3(/3' ) +r3(P ) + r'3( /3' )
—1 ] I ( n, n

'
)/3, P' ) .

(43)

For n and n,
' sufficiently large, one has

—nn'I 1 —(1/n') —(1/n )+ [I/(nn')] I = nn' —(44)

0 10 20 30 QQ and therefore

a(p) a'(p')l(n, n')p, p') = &3(p)&3(p')l(n, n')p, p') .

FIG. 1. X(n, n, no, no): Cosine of the angle with respect to
the 1/r scalar product between the two-electron hydrogenlike
states and the replaced two-electron states (see text). This
cosine is plotted as a function of n for three different values of
no. Y, no =3; &, no = 10; +, no =20.

IV. THE REAL CASK
OF TWO INTERACTING ELECTRONS

e~+ ~ rr' = —r, (/3)r 3 (P—')+ t, (P)r ', (P')

+r, (p)r 3 (p') —r, (p)r ', (p'), (38)

e~+~r r'=a(P) a'(/3') —a(P).b '(/3')

It is clear from Eq. (A15) of the Appendix that the
mean value of the interelectronic angle is closed to ~ for
those vectors of Eq. (14) which have Jmaximum,

J, =J2=(n+n' —2)/2,

provided that n and n' are sufficiently large. The action
of r r' on these vectors will therefore be compared with
the action of rr'. From Eqs. (3—), (4), (6), and (8) one has

(45)

It is then easy to show that within the above approxima-
tions the actions of r.r' and of —rr' on the vectors
I(n, n')/3, P') coincide.

The procedure for the study of the real case of two-
electron atoms having total angular momentum zero and
electrons almost in opposite directions is now summa-
rized. First, one chooses two values for P and P', to be
denoted po and po. The Schrodinger equation is then for-
mulated in terms of the operators t(/30), t'(po). As in Sec.
III, these operators are replaced by r(po), r'(po). This
corresponds to working only in the subspace generated
by the vectors I( nn')/3 op )0. With the further approxi-
mation given by Eq. (44), the initial Schrodinger equation
is equivalent, insofar as the energies of the resonances are
concerned, to the study of the Hamiltonian given by Eq.
(1) in the subspace where both particles have zero angular
momentum (/=l'=0). The eigenvalues are therefore in-
dependent of the initial choice po, po for /3, p'. Once
again, it is of course obvious that the state vectors of the
Hamiltonian of Eq. (1) with /=l'=0 are totally inade-
quate for describing real two-electron atomic states with
interelectronic close to ~. However, the coefficients of
the expansion of the eigenvectors of the Hamiltonian of
Eq. (1) in the basis

—b(P).a'(P')+b(P) b'(P') . (39) I(n, l=O, rn =0),/30) i(n', l'=O, m'=0), P0)
From the commutation relation

[t2, aj (p) ]=ib/(p), (40)

+t~ —[a(p) —a(p')] j . (41)

it is seen that r r ' can be expressed in terms of the opera-
tor t, t' and of

a(p) a '(p') = —1+—,
'

I t', (p)+ t', + t", (p')

are also the coefficients of the expansion of the real two-
electron problem in the basis (nI, n')

p, op)o[Eq. (16)].
The mean values of l for these basis vectors [Eq. (16)]
are clearly different from zero, as can be seen from Eq.
(A16) of the Appendix where the total angular momen-
tum L has to be taken equal to zero. One can expect in
view of the results obtained in Sec. III that the eigenvec-
tors associated with energy eigenvalues close to

—exp(2PO) /2 —exp(2/3O) /2

From the further relation should represent good eigenvectors, provided their ex-
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pansion in the basis (n, n')P~, Pii& is sufficiently localized
in an interval centered on the vector basis with

n =Z exp( —P~), n'=Z exp( —P~) .

The size of this interval should increase rapidly with the
degree of excitation. The initial choice for Pii, Pii thus de-
pends on the particular eigenvector to be studied.

V. REMARKS AND PROSPECTS

The words eigenvalue and eigenvector in the above
sentences have to be considered in a large sense since
doubly excited states are not true eigenstates of the Ham-
iltonian but are resonances. Thus, "eigenvalue" should
be interpreted as resonance positions and "eigenvector"

as an autoionizing state. Numerical calculations of the
position and width of these resonances can be performed
using a large number of different specific methods (Fesh-
bach projection methods, complex coordinates methods,
etc.). A study of the Hamiltonian of Eq. (1) by these
methods within the subspace characterized by l =/'=0 is
beyond the scope of the present paper. We only briefly
discuss here a perturbative approach which should be of
interest as Z increases. Neglecting exchange effects, the
mean value of 1/(r+r') for two noninteracting electrons
both with zero angular momentum can be obtained for
large n, n' on the basis of classical mechanics. The classi-
cal probability density is inversely proportional to the ve-
locity associated with a rectilinear Coulombic motion
and, therefore,

&1/(r+r')&=[Z/(n n n' )]J dr J dr'[(2/r) —(1/n )] ' (r+r') '[(2/r') —(1/n' )]
0 0

=Z j —,'s —[(2/nn')+d arcsin(d /s )]/sr], (46)

where

s —= (1 ln )+(1/n' ),
d —= (1/n )

—(1/n' ) .

For the intrashell case ( n = n '), one obtains

& 1/(r+ r') & =Z[1—(2/vr)]/(n ),

(47)

(48)

a result previously obtained by Dmitrieva and Plindov
[20]. These authors then [21] have shown that a double
Rydberg formula,

E= —( [ Z —
—,
' [1—(2/~) ] ] In )

= —(Z/n) +&1/(r+r')& for Z large enough,

approximately reproduces the positions of lower edge in-
trashell resonances for n large enough. This seems to
support the fact that the Hamiltonian of Eq. (1) with
l =I'=0 should be relevant for the study of the energies
of these resonances. Our present work indicates that the
initial problem with three degrees of freedom (the inter-
nal coordinates which describe the geometry of the
three-particle system) could well be reduced to a problem
with two degrees of freedom only [Eq. (1) and l =l'=0].
It would be of particular interest to check this conjecture
by the numerical computation of the position of the in-

I

trashell resonances associated to the Hamiltonian of Eq.
(1) in the space where I = I'=0 and compare the results as
n increases with the lower edge resonances associated
with the real two-electron problem. The 6rst 15 L =0
lower edge resonance positions have recently been com-
puted [22] with a method which takes the interelectronic
axis as adiabatic coordinate. Comparison with double
Rydberg formula (see, e.g., Ref. [23]) would also be of in-
terest. For previous works on the Hamiltonian given by
Eq. (1), see, e.g. , Refs. [24,25).
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APPENDIX: MEAN VALUES
OF cos(8&2) AND 12

The quantum-mechanical mean value & 0 & of an
operator 0 in an arbitrary state is given within our nota-
tions [see Eq. (9) and below]:

(Al)

For the vectors given by Eq. (14), one obtains from Eqs.
(6)—(8) and from the fact that the diagonal element of
t&, t', are zero:

&0 & =[1/(nn')]&(n, n', J„J2,L,M)P, P'~[t3(P) —ti(P)][t3(P)—t', (P')]0 (n, n', J„J2,L,M)P, P'& . (A2)

When the operator on the right-hand side of Eq. (A2) is a polynomial function of the O(4,2) generators of the two elec-
trons, the calculation can be made algebraically. Two cases will now be considered: o=cos(8,z) and 0=/ . These
operators commute with t2, t 2 and thus Eq. (A2) becomes independent of P,P' and these scaling factors will therefore be
dropped out in the sequel. One thus obtains

As

&cos(8,z) &
= &(n, n', J„J2,L,M) ~(b —a) (b' —a')i(n, n', J„J2,L,M) &/(nn'),

& l &
=

& (n, n', J„J2,L,M) ~(t3 —t, )(t3 t', )l ~(n, n', J„J2,L,M ) &
—I(nn') .

(A3)

(A4)
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and as odd powers of t „or t '„or b or b ' give zero contribution [12],one obtains

(cos(8,z) ) = ((n, n', J„Jz,L,M) ~a a'~(n, n', J&,J2,L,M ) ) l(nn'),

(l ) =n —((n, n', J„J2,L,M)~t, +t2 (n, n', J„J2,L,M)) .

From Eq. (41) it is seen that the only nontrivial part remains the calculation of the matrix element of

+t2 t+ t +t3 ~

This problem is solved as the action of t+, t is known from Eq. (74) of Ref. [10]. One obtains

((n, n', J&,Jz,L,M) ~t
&
+t2 ~(n, n', J&,J2,L,M) )

=n+ [1/[4(2J, +1)(2Jz+I)]][f(j ',j +J, )f(j ',j +J2)f(L,J, +Jz)/(J, J2)

+f(Ji jj ')f—(j
' j +J2)f(Ji J2 L —) Il (Ji+I)J2]

+f(j ' J+Ji )f(J2 jj ')f—(J2 Ji L )
—Il Ji(J2+1)l

+f(J, j,j')f(—J2 j,j ')f(—L,J, +J2+1)/[(J, +1)(J2+1)]I,
where

f(x,y)—:(y+x+1)(y —x ),
j=(n —1)/2,
j'=(n' —1)/2 .

For the intrashell cases n =n', one obtains

(cos(8,2) ) =(n —1+—,
' [L(L+1)—3[J,(J, +1)+Jz(J2+1)]]) l(2n ),

(l ) =[2n —J&(J&+ I)—J2(Jz+I)+L(L+ I)—2]/4 .

(AS)

(A6)

(A7)

(A8)

(A9)

(A10)

(A 1 1)

(A12)

(A13)

(A14)

Equation (A13) was previously obtained [19] on the basis of O(4) group-theoretical considerations. Turning now to the
cases J, =J2 = ( n + n ' —2) /2, one obtains

(cos(8,z)) = —1+[(n —1) +(n' —1) +nn' —1+L(L+1)(n—1)(n' —1)/(n+n' 2)]/[n—n'(n+n' —2)],
(l ) =(n —1)[n' —1+(n —1)L(L+1)/(n+n' —2)]/(n+n' —2) .

(A15)

(A16)
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