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Particlelike structures and their interactions in spatiotemporal patterns
generated by one-dimensional deterministic cellular-automaton rules
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Configurations generated by the evolution of some one-dimensional cellular automata may be
viewed, after many time steps, as particlelike structures evolving in a regular background. A classi-
fication of the most frequently observed "particles" is proposed according to their specific behavior.
The simplest —a straightforward generalization of the "kinks" in range-1 Rule 18 earlier studied by
Grassberger [Phys. Rev. A 28, 3666 (1983)]—exhibit a diffusive motion and annihilate according
to simple processes. Others have, in contrast, constant (positive, negative, or zero) velocities. The
"collision" of particles with different velocities leads to some "reactions" in which some particles
are annihilated and others are created. A detailed description of such "reactions" sheds new light
on the large-time behavior of range-1 rule 54 with a very slow decrease of the particle number, as
t ~ (y ~ 0.15). More "exotic" behaviors are sometimes observed. Some particlelike structures radi-
ate other "particles. " Some "particles" combine to generate a perturbation whose space extension
increases with time and can be annihilated through the interactions with other "particles. " These
different behaviors could lead to a more precise classification of cellular-automaton rules.

I. INTRODUCTION

Cellular automata are simple systems that often ex-
hibit complex self-organizing behavior [1—4]. They con-
sist of a lattice with a discrete variable at each site. Each
site variable evolves in discrete time steps according to
a definite rule involving the values of neighboring site
variables at previous time steps. The site variables are
updated simultaneously.

Cellular automata may be considered as discrete dy-
namical systems. Let s: Z x N ~ (0, 1) be a function
that satisfies the equation

s(i, t + 1) = f(s(i —r, t), s(i —r + 1, t), . . . , s(i+ r, t)),

VigZ, VtcN

and such that

s(i, 0) = sp(i), Vi g Z

where N is the set of nonnegative integers, Z the set of
all integers, and so. Z -+ (0, 1}a given function which
specifies the initial condition. Such a discrete dynami-
cal system is a one-dimensional cellular automaton (CA).
The mapping f determines the dynamics. It is referred
to as the local rule of the CA. The positive integer r is the
range of the rule. The function Si. i ~ s(i, t) is the state
of the CA at time t. 8 = (0, l)s is the state space. An
element of the state space is also called a configuration.

Since the state at time t+ I is entirely determined by the
state at time t and the rule f, f induces a mapping f:
8 -+ 8, called the global rule, such that

Si+i ——f (Sr) .

Given a rule f, its limit set is defined by

AI = lim f'(8) = p f'(8).
t&0

AI is clearly invariant, that is, f(AI) = AI. Since any
f-invariant subset belongs to Ay, the limit set is the max-
imal f-invariant subset of 8.

Configurations generated by the evolution of some one-
dimensional cellular automata may be viewed, after many
time steps, as particlelike structures evolving in a regu-
lar background. As the result of their interactions, the
number of these particles decreases in time.

Consider, for example, range-1 Rule 18—rules are
numbered following Wolfram [5, 6]—defined by

1 if(zi& a2, zs) = (0, 0, 1) or (1, 0, 0)
0 otherwise.

For this rule, configurations belonging to the attractor,
which is contained in the limit set, consist of sequences
of 0's of odd lengths separated by isolated 1's. With
respect to this background a sequence of two 1's or a se-
quence of 0's of even length is a "defect" called a kink
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by Grassberger [7]. Since two sequences of 0's of odd
lengths separated by two neighboring 1's generate, at the
next time step, a sequence of 0's of even length, config-
urations generated by Rule 18 may contain kinks of one
type only. During the evolution these kinks move accord-
ing to a simple diff'usion process, and when they meet
they annihilate pairwise. This process has been studied
by Grassberger [7], who found that, starting from a ran-
dom initial configuration, the density of kinks decreases
as t i~s. These kinks may be viewed as particles. For
Rule 18 all particles are of the same type. A particle is
its own antiparticle. This is a particularly simple case.
In the following sections we describe various particlelike

structures and their interactions. We also study the time
dependence of their asymptotic density. It is important
to note that many particles have a very short lifetime.
We shall focus on particles that exist after transients of
a few hundred of time steps.

II. DIFFUSIVE PARTICLES

Let us first describe the simplest behavior, which is
a straightforward generalization of the "kinks" observed
for the first time by Grassberger [7]. As a simple example
consider the range-2 totalistic Rule 30 defined by
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FIG. 1. Spatiotemporal patterns generated by the evolution according to (a) range-2 totalistic Rule 30, (b) range-3 totalistic
Rule 126, (c) range-1 Rule 18, (d) block transform of Rule 18 for b = 3. Initial configurations are randomly generated. Numbers
k refer to types of particles dp. They combine according to the law d; + d~ ~ dq with k = (i+ j)mod2b; b is (a) 2, (b) 3, (c)
1, and (d) 3.
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fso(~i, ~~, ~s, ~4, ») = 1 if 0&) z;&5
i=1

, 0 otherwise.

A configuration belonging to the attractor of this rule
consists of alternating sequences of 0's and 1's whose
lengths are multiples of 4. The distributions of the se-
quences of 0's and 1's are identical, and the average num-
ber of a sequence of, say 0's, of length 4n per site is equal
to 1/2"+4 (Ref. [8]). Any sequence of 0's or 1's whose
length is not a multiple of 4 may be viewed as containing
a particle. There exist, therefore, three diferent parti-
cles. More precisely, if the length of a sequence of 0's
or 1's is equal to imod4, the corresponding particle will
be denoted by d; (i = 1, 2, 3). Figure 1(a) illustrates the
reaction

di+dj ~dk
with

0 = (i+ j)mod4.

di is the antiparticle of d3, and d~ is its own antiparticle.
More generally, a configuration belonging to the at-

tractor of the range-r totalistic Rule 2z"+i —2, defined
by

or
b b

Zi+ . '+Zb ) —, Zb+i++2b 42' 2'
b

&2b+1+ ' + &3b +
2

This rule is a block transform of Rule 18. Its limit set
is closely related to the limit set of Rule 18 [Fig. 1 (c)].
Any configuration belonging to the attractor consists of
sequences of 0's of lengths equal to (2n + 1)b, where n
is a non-negative integer, separated by blocks of b 1's.
With respect to this background we can define, as above,
2b —1 particles d; (i = 1,2, . . . , 2b —1), and we have

d;+d~ ~dy
where

k = (i+ j)mod2b.

Figure l(d) illustrates the case b = 3.
All the particles described so far are dift'usive. That

is, they perform a random walk and, as a result of their
interactions, their density decreases as t ~ as t tends
to oo.

f 2r+1
1 if0& ) z;&2m+1

f2~~+~-z(+li +2) ~ ~
& +2m+i) = ~ i=1

, 0 otherwise,

consists of alternating sequences of 0's and. 1's whose
lengths are multiples of 2r (Ref. [8]). Any sequence of
0's or 1's ~hose length is not a multiple of 2r contains
a particle. We may, therefore, define 2r —1 particles d;
(i = 1, 2, . . . , 2r —1) and we have

I&+d& ~dy

where

k = (i+ j)mod2i.

Figure l(b) illustrates the case r = 3.
There are many other cases in which particles of this

type can be found. Let b be a positive odd integer, and
consider the rule f defined by [9]

III. NONDIFFUSIVE PARTICLES

Another typical and frequently observed behavior cor-
responds to the following scheme. After a few hundred
time steps, the evolution of the CA is characterized by
the presence of particles of several types on a periodic
background. Each particle moves with a constant (posi-
tive, negative, or null) velocity. When two or more par-
ticles with difI'erent velocities "collide, " they lead to a
"reaction" in which some particles are annihilated and
others are created. In general, due to these collisions,
the total number of particles decreases with time. In the
infinite time limit, the attractor contains only particles
with the same velocity or no particle at all on a periodic
background. As a simple illustration, we first describe
range-1 Rules 184 and 62, for which the diA'erent particles
and interaction laws are simple. The rest of the section
is devoted to range-1 Rule 54 (one of the most complex
range-1 rules). The description of this rule in terms of
interacting particles sheds new light on its large-time dy-
namics.

if, and only if,

b b
&1+' '+&b & ) &b+1+&2b &2' 2' A. Rule 184

b
&rb+i+ . +3b & -)2'

Range-1 Rule 184 has been studied in great detail by
Krug and Spohn [10]; it is defined by

1 if (xi, xg, zs) = (0, 1, 1), (1,0, 0), (1,0, 1), or(1, 1, 1)
0 otherwise.
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Starting from a random initial configuration, a spa-
tiotemporal pattern generated by this rule is shown in
Fig. 2. The background is a checkerboard of alternating
0's and 1's. Two types of particles may be distinguished.
They consist of sequences of 0's or 1's whose lengths n+1
is greater than 1. They all propagate with the same con-
stant velocity (equal to 1) but in opposite direction. If+-
we denote these particles, respectively, by 0 „and
where the arrows refer to the direction of propagation,
we have the reactions (Fig. 2)

0„, „, ifno)ni
0 „,+ 1 „,~

if no(n
If np ——n~, the two particles annihilate. Configurations
belonging to the limit set contain particles of only one
type. These particles are clearly nondiKusive.

B. Rule 62

Not all particlelike structures are propagating. Con-
sider, for instance, range-1 Rule 62 defined by

0 if (zi, zq, zs) = (0, 0, 0), (1, 1, 0), or (1, 1, 1)
1 otherwise.

Starting from a random initial configuration, a spa-
tiotemporal pattern generated by this rule is shown in
Fig. 3(a). The background is periodic in space and time,
both periods being equal to 3. Three types of particles
may be distinguished. Two of them are nonpropagating
and periodic in time. Their periods are equal to 3. They
may be generated by sequences of 0's whose lengths are
greater than 2. They will be denoted, respectively, by
g, and g, (g stands for "gutter"), according to whether
they consist of sequences of 0's of even or odd lengths
[Fig. 3(b)]. There is also a propagating particle, denoted
by m, which may be generated by a sequence of two 0's.
Its trajectory in the the two-dimensional space Z x N
is the analog of a domain wall. It separates two equiva-
lent patterns of the background. This particle propagates
only to the right with a velocity equal to 1.

As represented in Figs. 3(c)—3(e), we have the reactions

Q) + g~ ~ t8) 6) + g~ ~ g~) 2' + g~ ~ g~.

Figure 3(f) also exhibits the reaction 2'+ g0 ~ m. This

go ge

(b)

I

is not, however, a new process; it follows directly from
the first two reactions. As a result of all these reactions,
depending upon the initial configuration, the number of
particles decreases rapidly. In the infinite time limit, all
the remaining particles have the same velocity.

(c)

(e)

FIG. 2. Spatiotemporal pattern generated by the evolu-
tion according to Rule 184. The initial configuration is ran-
domly generated.

FIG. 3. Rule 62. (a) Evo1ution from a randomly gener-
ated initial configuration. (b) Particles g and g . (c) Inter-
action between particles is and g, . (d) Interaction between
particles w and g . (e) Interaction between two neighboring
particles zu and g, . (f) Interaction between two neighboring
particles m and y .
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C. Rule 54

Rule 54 is defined by

1 if (z$ SQ Z3) —(0, 0, 1),(1,0, 0), (0, 1, 0), or (1,0, 1)
0 otherwise.

Starting from a random initial configuration, a spa-
tiotemporal pattern generated by this rule is shown in
Fig. 4(a). The background is periodic in space and time,
both periods being equal to 4. As for Rule 62, three
types of particles may be distinguished. Two of them are
nonpropagating and periodic in time. Their periods are
equal to 4. They may be generated by sequences of 0's
whose lengths are greater than 3 [Fig. 4(b)], and are very
similar to the particles g, and g, described in Sec. III B.
We shall denote them by the same symbols according to
whether they consist of sequences of 0's of even or odd
length. There exists also a propagating particle ia, which
may be generated by three 0's following three 1's or the
converse. This particle may propagate to the right or to
the left. Its velocity is equal to 1.

These particles have a rather rich variety of interac-
tions. As represented in Fig. 4(c), we have the reactions

m+ m —+g„m+g, m, m+g, to,

where the arrows over the symbol n indicates the direc-
tion of propagation of the corresponding particle. Many
other similar reactions can be written down. Figure 4(d)
illustrates the interaction of the particles m and g, . A
pair of even gutters g, may also be annihilated. There

I

are many multiparticle reactions in which a pair of g,
disappear. A few of them are illustrated in Fig. 5. Such
reactions are relatively rare because they involve at least
four particles (two g, close together and two or more to).
More complex annihilation processes of a pair of g, in-
volving more particles, in particular the presence of one
odd gutter g„also occur.

If two g, are close enough, the impact of one or more
neighboring m in precise positions creates a new non-
propagating periodic particle whose period is equal to
32. A few examples of such processes are illustrated in
Figs. 6(a)—6(c). This new particle "radiates" continu-
ously particles m: four to and four m during one period.
Figure 7(a) shows in which conditions such a particle can
be annihilated. Figures 6(d) and 7(b) represent the same
processes as Figs. 6(c) and 7(a), but in order to exhibit
them on a uniformly black background, we transformed
the pattern by the following mapping:

3

0(i, t) = ) s(i+ k, t)mod2, Vi, Vt.

Rule 54 is probably the most complex range-1 rule. We
have studied its evolution over many generations. Vfe
have found that the number of particles decreases very

(b)
W

W

(a) {b)

9e 99 9e Qe WW

W

W

W

W W

W

FIG. 4. Rule 54. (a) Evolution from a randomly gener-
ated initial configuration. (b) Particles g and g . (c) Inter-
action between two particles m with opposite velocities and
interaction between one particle tu and g~. (d) Interactions
between particles to and g, .

(c)

FIG. 5. Rule 54. Pairwise annihilation processes of "even
gutters" y~. More complicated reactions involving for example
two even and one odd "gutters" are also possible.
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9e Qe Ww

(a)
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(b)

WW slowly. Simulations done on a lattice of 10 sites for a
number of time steps of order 10 show that the number
of even gutters nz. tends to zero as t r [Fig. 8(a)j. The
exponent y determined over two decades from 3 x 106 to
3 x 10 time steps is approximately equal to 0.15. Fig-
ure 8(b) shows the diff'erence between the concentration
of nonzero sites c(l) and its asymptotic limit c (1) = 0.5
as a function of time. It follows the same behavior as the
number of even gutters. In order to show that, in this
simulation, boundary eA'ects are not important, we also
report, on the same figures, results obtained on a 10 site
chain for a number of time steps of order 10 .

Figure 9 shows, using a mapping similar to the preced-
ing to obtain a white background, the remaining parti-
cles after, approximately, 5 x 102 [Fig. 9(a)] and 3 x 10

0.05 I I i i I ill) I i I I

Illa'[
I i I i I ITrt I I I I IIilI

0.02-

(c)

FIG. 6. Rule 54. (a)—(c) A few reactions leading to the
creation of a "radiating" particle. (d) The same as (c),
the periodic background is eliminated through the mapping
o (i, t) = Q, s(i + k, t) mod2.
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FIG. 7. Rule 54. (a) Annihilation of the radiating parti-
cle. (b) The same as (a) with the mapping defined in Fig. 6.

p pp5, I I I I IIIII I I I

&0 10 10 10 10 10
t

FIG. 8. Rule 54. (a) Average number of even gutters
as a function of time. (b) Difference between the density of
nonzero site variables c(1) and its asymptotic limit c (1) =
0.5 as a function of time. Time averages are taken over 500
time steps. Circles and crosses are obtained, respectively,
from 10 and 10 chains with periodic boundary conditions.
The straight lines represent a t law.
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[Fig. 9(b)] time steps. From these figures, it is clear that
the total number of particles is directly related to the
number of even gutters and follows the same asymptotic
law. The decrease of the number of particles is indeed
governed by the pairwise annihilation processes of even
gutters.

This very slow decrease of the number of even gut-

ters can be, at least qualitatively, understood through
the following arguments. From Fig. 4(d), it is clear that
the space translation of an even gutter is related to the
impact of a (simple or multiple) wall w. Having observed
that the number of walls to is proportional to the number
of even gutters nz. , the mean velocity for the displace-
ment of even gutters is proportional to n&. . Moreover,
when two even gutters come close together, their pair-
wise annihilation requires the occurrence of at least two
simultaneous events, i.e., the impact of at least two walls
m in very precise positions as illustrated in Figs. 5(b) and
5(c) (otherwise, for example, through the impact of a sin-
gle wall m, they move away). Since the number of walls
is proportional to n~. , let us assume that the probabil-
ity of such a double event is proportional to n . From
these conjectures, the mean time required for two neigh-
boring even gutters to annihilate is roughly proportional
to n 2n in 2 (the first factor represents a simple diKu-
sion process with constant velocity, the second term takes
into account the decrease of the velocity as nz and the
third contribution includes the probability of the double
event previously described) and the number of even gut-
ters nz is expected to decrease roughly as t ~5. Taking
into account the crudeness of these arguments compared
to the complexity of the problem involving a large num-
ber of intricate annihilation processes, the behavior so
estimated in t . reasonably agrees with the result of
the simulation (t o' 3).

IV. PARTICLES GENERATING
EXTENDED PERTURBATIONS

In the study of some block transformations [ll], we
frequently find a peculiarly interesting behavior. Some
localized particles as described in Sec. II are present,
but they generate during their interactions other objects
which cannot be called "particles" because their space
extension increases as a function of time. Nevertheless,
such extended perturbations do behave during their in-
teractions just as the particles described in the preced-
ing sections, in particular they can be destroyed though
the interaction with particles or other extended pertur-
bations, according to simple rules.

Let H2 be a homomorphism defined on the state space
S by

H2(. . . , z;, z;+i, z;+2, . . .)

(b)

FIG. 9. Rule 54. Remaining particles after approximately
(a) 500 time steps, (b) 3 x 10 time steps. The figures show
the evolution of 512 lattice sites from a 10 site chain during
512 time steps. A similar mapping as defined in the preceding
figures is used to suppress the periodic background. (3) shows,
in particular, the pairmise annihilation of trvo even gutters and
the presence of a radiating particle that transforms after some
reaction into two walls and a pair of even gutters. In (b), the
density of particles has decreased by a factor of about 3.

~
~ +i ~ +i1 +i+1) &i+11 &i+21 +i+22 ~ ~

where . . . , z;, z;+~, z;+2, . . . is a configuration in 8; and
consider, for example, range-1 Rule 18 defined above. Is
it possible to find a range-2 rule, denoted T2fis, such
that its limit set coincides with H2 (Ay„)? In this case,
configurations belonging to the limit set of rule T2fis
would consist of sequences of 4n+ 2 0's, where n is a non-
negative integer, separated by pairs of 1's. The function

(zi J z2L z3L z4L zs) ~ T2fis(zl J z2L z3L z4L z5)

should, therefore, be such that, for all (zi, z2, z3)
(» I)'
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T2flS(Z1I Z1I Z2I Z2I Z3) = T2flS(Zi I Z2I Z2I Z3I Z3)
—fis(zl z2 z3).

These relations do not determine a unique function T2 fis.
Only the images of 14 quintuplets (zi, z2, z3, z4, z5) are
determined. The images of the remaining 18 quintuplets
are arbitrary. There exist, therefore, 2 rules T2 fis that
ful6I1 the condition T2fqsoIIq ——H~ o fqs. 2 of them are
legal. Starting from a random initial configuration, some
of these rules generate spatiotemporal patterns similar
to the pattern represented in Fig. 10(a). After a space
contraction of a factor 2, in a background identical to the
pattern generated by the evolution of Rule 18 [Fig. 1 (c)j,
two types of objects may be distinguished.

(i) The defects di and d2 are diffusive particles, as
described in Sec. II. They are generated by sequences of
(2+i) mod4 (i = 1, 2) 0's.

(ii) The other objects are extended perturbations

whose space extensions increase as a function of time:
ds, which results from the interaction of di and d2, has a
space extension increasing in time with a velocity equal
to 2. d4 is the result of the interaction of d~ and d3. Its
space extension depends upon the space extension of d3
at the time of the interaction. It may propagate to the
right or to the left and its space extension exhibits a slow
variation.

The use of similar notations for particles (i) and ex-
tended perturbations (ii) is justified by their mutual par-
ticlelike interactions. As shown in Figs. 10(b)—10(i), we
have the following reactions:

dy+dj ~dg)
dg+ dg ~dp)
dg+ d2~d3)

dy + d3 ~ d4
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FIG. 10. (a) pattern generated by the evolution of range-2 Rule 769861902. The initial configuration is randomly generated.
(b) Interaction between two di particles. (c) Annihilation of two d2 particles. (d) Interaction between particles di and d2
leading to the extended perturbation d3. (e) Interaction between particle di and the extended perturbation ds leading to
another extended object d 4. (f) Interaction between dq and ds. (g) Interaction between two ds. (h) Interaction between d 4

and di. (i) Interaction between d2 and d 4. (j) Interaction between d 4 and d 4. Note that, for all of these reactions, the sum
of the subscripts on the 1eft-hand side is equal to the sum of the subscripts on the right-hand side mod4.



874 N. BOCCARA, J. NASSER, AND M. ROGER

dg + d3 ~ dy + d4,

ds + ds ~ d4 + d2 + d@,

d4 + dg ~d])
dp + d4 ~ dy + dy ~

do represents the vacuum. The arrows on the symbol d4
indicates the direction of propagation of the correspond-
ing object. The order in which the particles and extended
perturbations appear in the reactions listed above is im-
portant and corresponds to the relative spatial positions
of these objects from the left to the right in the corre-

(a)

10

sponding figures. As a consequence of the above reac-
tions, we could write down more reactions. For example,
we have [Fig. 10(j)]

G4 + G4 + dy + dg + de
Note that, for all these reactions, the sum of the sub-
scripts on the left-hand side is equal to the sum of the
subscripts on the right-hand side mod4.

The diffusive particles di and d2 dominate the asymp-
totic behavior of the number of defects at large time.
The number of particles and extended perturbations also
decreases as t ~ [Fig. 11(a)]. However, as shown in
Fig. 11(b), there are large fluctuations of the concentra-
tion of nonzero sites c(1). For a chain with a fixed length,
the amplitude of these fluctuations increases with time.
This is easily understood, since when the number of par-
ticles decreases, the lifetime and space extension of d3
and d4 objects increase and these extended perturbations
have a concentration of nonzero sites much larger than
the background: c~(1) = 0.5.
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FIG. 11. Range-2 Rule 769861902. (a) Average number of
defects ng defined as the total number of sequences of 0's and
1's, whose length is not equal to 2 mod4, as a function of time
t (log-log scale). (b) DifFerence between the concentration of
nonzero sites c 1) and its asymptotic value c (1) = 1/4 as a
function of t . The size of the lattice is 10; time averages
over 500 time steps are taken. The straight lines represent a
t law. Both figures indicate that the number of particles
decreases as t . The large fluctuations in the concentration
of nonzero sites are due to the fact the space extension and
lifetime of extended perturbations d3 are roughly inversely
proportional to the number of particles, and consequently in-
crease with time.

V. CONCLUSION

Configurations generated by the evolution of some one-
dimensional cellular automata may be viewed, after many
time steps, as particlelike structures evolving in a regu-
lar background. We have described the behavior of some
typical particles. Sometimes these particles behave in a
rather simple way, but more complex behaviors are often
found. There exist, for instance, both diffusive and non-
diA'usive particles. Among the nondiFusive particles we
have found nonpropagating particles, complex particles
radiating periodically in time other simple particles, etc.
Mutual annihilation of particles causes particle number
to decrease during the evolution of an automaton. The
number of particles does not, however, necessarily go to
zero even in the infinite time limit. Rule 54, which is
probably the most complex range-1 cellular automaton
rule, has been studied in detail. The number of nonprop-
agating particles has been found to tend, as a function of
time t, to zero approximately as t 5 over two decades
from 3 x 10 to 3 x 10 time steps.

Based on investigation of a large sample of CA's, Wol-
fram [6] has shown that, according to their asymptotic
behavior, CA rules appear to fall into four qualitative
classes. Class-1 CA's evolve, from almost all initial
states, to a unique homogeneous state in which all sites
have the same value. Class-2 CA's yield separated sim-
ple stable or periodic structures. Class-3 CA's exhibit
chaotic patterns. The statistical properties of these pat-
terns are typically the same for almost all initial states.
In particular, the density of nonzero site variables tends
to a fixed value as time t tends to oo. The evolution of
class-4 CA's leads to complex localized or propagating
structures. Range-1 Rules 18, 54, and 62 and range-2
totalistic Rule 30 are considered to be class-3. The evo-
lution of the corresponding CA's analyzed in terms of
interacting particles shows that that Rules 18 and 30 are
very diA'erent from Rules 54 and 62. In the first case, the
various particles are diffusive, whereas in the latter they
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are not. We have the feeling that the nature of the par-
ticles identified during the evolution of a CA could lead
to a sharper classification of CA rules.

Particles in two-state cellular automata may be used to
simulate many-state cellular automata [12]. Each parti-
cle would represent a state and the interactions between
particles would simulate the rule. Behaviors that are
thought to occur only in the case of many-state cellular
automata could, therefore, exist in two-state cellular au-
tomata. Many types of particles probably remain to be

identified, and it is of course not at all obvious that the
evolution of any CA can always be interpreted in terms
of interacting particles.
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