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Statistical mechanics of Henon-Heiles oscillators
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It is shown that the laws of equilibrium statistical mechanics modified for finite number of degrees of
freedom are approximately valid for chaotic vibrations of the Henon-Heiles oscillators.

I. INTRODUCTION

Statistical mechanics is an asymptotic theory valid in
the limit of an infinite number of degrees of freedom.
The study of small-dimensional chaos, starting from the
papers by Lorenz [1]and Henon and Heiles [2], raises the
question: What is essential for the laws of statistical
mechanics to be true —a large number of degrees of free-
dom or chaos? For ergodic Hamiltonian systems the
answer was given in Ref. [3]: ergodicity (chaos) provides
the validity of the laws of equilibrium thermodynamics
and statistical mechanics, which ought to be slightly
modified for finite numbers of degrees of freedom. Unfor-
tunately, most small-dimensional Hamiltonian systems
encountered in physics are not ergodic. Nevertheless, it
seems plausible that statistical mechanics could be ap-
plied to describe systems of such kinds if the motion is
"chaotic enough. " Our aim is to test this hypothesis for
the case of the Henon-Heiles oscillators. We show that
the motion of the Henon-Heiles oscillators matches very
accurately the predictions of small-dimensional statistical
mechanics for high-energy vibrations and we also study
the changes that occur when the energy level decreases.
First we outline, according to Ref. [3], thermodynamics
and statistical mechanics of finite-dimensional ergodic
Hamiltonian systems.

II. EQUILIBRIUM THERMODYNAMICS
AND STATISTICAL MECHANICS

OF ERGODIC HAMILTONIAN SYSTEMS

Consider a Hamiltonian system with generalized co-
ordinates q =(q„. . . , q„), generalized momenta p
=(p„.. . ,p„), and the Hamilton function H, which de-
pends also on some parameters y =(y„.. . , yi, ), describ-
ing the inAuence of external factors. The Hamilton equa-
tions are

BH(p, q, y ) . BH(p, q, y ) (2.1)

If the parameters y are fixed, trajectories of the system
belong to energy surfaces H(p, q, y) =E=const. It is as-
sumed that the system is ergodic on energy surfaces and
every energy surface bounds a finite volume of the phase
space I (E,y ).

The following three statements express the laws of
equilibrium thermodynamics and statistical mechanics.

(2.2)

The common value of (2.2) is called by definition the ab-
solute temperature T. This temperature is expressed in
terms of the function I (E,y ) by the relation

I (E,y)
BI (E,y) GABE

(2.3)

B. Entropy

Allow slow variations of the external parameters y.
Then the energy of the system is also changed. The quan-
tity I (E,y ) is an adiabatic invariant, i.e., could be con-
sidered as a constant (in some sense) in the course of the
variation in E,y (the Hertz-Kasuge theorem [4,5]). Any
adiabatic invariant is a function of I (E,y) (Kasuge's
theorem [5]). It is natural to introduce the entropy of a
finite-dimensional system in such a way that (1) entropy is
an adiabatic invariant; (2) the energy equation is true,
dE=dA+TdS, where dA is the work done by external
forces in order to change the parameters y.

For Hamiltonian systems the work done by external
forces is

dA= dt= dy; .

The mean value ( BH /By, ) is calculated for the ergodic
system in terms of the function I (E,y):

1 Bl (E y)
Bl (E,y) ZBE By,

Hence, the energy equation takes the form

dE= — dy;+TdS .ar
aryaE By

(2.4)

It is easy to find that the only quantity satisfying the re-
quirements (1) and (2) and Eq. (2.4) is

S(E,y) =lnI (E,y )+const. (2.5)

A. Temperature

Denote by ( ~ ) the averaging operator along a trajecto-
ry. For any function g (p, q ) the quantity (g ) does not
depend on the trajectory chosen on an energy surface (up
to some exceptional sets with zero measure). For any er-
godic Hamiltonian system the equipartition law is valid:
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This function S(E,y) is linked with the temperature T by
the relation

1 dS(Ey)
T BE

(2.6)
l

The work of external forces is found in terms of entropy
as

d & = T dS (E,3 ~

dy; .
By;

(2.7)

Note that usually in statistical mechanics, entropy is in-
troduced by another formula,

Br8 =ln +const.E (2.8)

The quantities (2.5) and (2.8) coincide in the limit n ~ oo,
and it does not matter which of the two formulas (2.5)
and (2.8) is used to calculate the entropy. Both expres-
sions were known to Gibbs [6]. Historically, the quantity
(2.8) got preference. However, for finite n the quantities
(2.5) and (2.8) are essentially different. Unlike the entro-
py (2.5), the quantity (2.8) is not an adiabatic invariant
and does not satisfy the energy equation (2.4).

C. Entropy and probability

Consider some set of characteristics
N, (q,p), . . . , @ (q,p) and denote by f(z„.. . , z ) the
probability density function of these characteristics. The
probability density function f(z„.. . , z ) can be ex-
pressed in terms of the entropy S(E,z) of some auxiliary
Hamiltonian system. This system is obtained from the
original one by setting the kinematic constraints
@i(q,p)=z&, . . . , @~(q,p)=z . The relation between

f (z) and S(E,z) has the form (we do not mention here
explicitly the dependence on the external parameters y)

Of course, this is an approximation of the situation when
the second oscillator has two stable points and one stud-
ies the vibration in the vicinity of one of them.

Henon and Heiles introduced an asymmetric interac-
tion of the form H, 2 =q, q2, so the total Hamilton func-
tion is

H= —'(p, +p2)+ U(q„q2),

U( q i, q2 ) =—'q i + U2 ( q z ) +q l q2
(3.1)

This system has one stable equilibrium point at the ori-
gin: q& =q2=0, and three unstable equilibrium points
P, (q, =0, q2=1), P2(3'~ /2, —

—,'), P3( —3'~ /2, —
—,').

They are shown in the contour plot of the potential ener-

gy U(q„q2) (Fig. 1). The separatrices connecting the un-
stable points are straight lines. These separatrices corre-
spond to an energy level U= —,'. All contour lines with
energy levels less than —,

' lie inside the triangle P&P2P3.
For the following references we give here the Poincare,

sections P, =q, =0 of energy surfaces with E=—,
' (Fig. 2)

lator with the Hamilton function Hi =(pi+qi )/2. The
second oscillator is a nonlinear oscillator with the follow-
ing properties: (1) it has a stable equilibriuin point at
q2 =0; (2) the frequency of linear vibrations in the vicini-
ty of this equilibrium point is equal to the frequency of
the first oscillator; (3) if qz exceeds some value, the oscil-
lator tends to escape the origin. The potential energy
U2(q2) was chosen as

U2(q2) q2 q2

s(,E,z)1 B

ar(E)/aE aE' (2.9) 0 ~ 75-

The formula (2.9), derived in Ref. [3], is an exact relation
valid for finite Auctuations of characteristics. It general-
izes the Einstein formula

o.5"

0.25"

f(z) =const e (2.10)
0"

derived for small fluctuations near equilibrium state:
(2.9) reduces to (2.10) in the limit n ~ oo.

Note that the Gibbs distribution f(x)
=Z 'exp[ —PH(x)] can be derived from the Einstein
formula (2.10); therefore, the Einstein formula could be
considered as the basic relation of equilibrium statistical
mechanics. Formula (2.9) plays the analogous role in sta-
tistical mechanics of systems with finite numbers of de-
grees of freedom.

-0.25"

-0 5"

-0 75"

-X -0.7S -O'. S -O.'2S O O.'2S O. S O. 7S

III. THE HENON-HEILKS OSCILLATORS

One of the first examples of chaotic motion of small-
dimensional system was discovered by Henon and Heiles
in 1964 [2]. They considered a system of two interacting
oscillators. The first oscillator is simply a harmonic oscil-

FIG. 1. Equipotential lines of the potential function. The
points P&, P2, and P3 are unstable equilibrium points of the sys-
tem. The origin (q, =q2 =0) is a stable equilibrium point. The
particular energy E=

6 represents the maximum energy, for
which the motion is bounded.
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0,60

0.36-

O.Q-

-O.Q-

-036-

I (E)=f dp, dp~dq&dqz

p&+p&/'~~E- U~q& q, )

=2~f (E U—(q„qz)]dq, dqz .

This last integral is extended over the region of positive-
ness of the integrand. It can be rewritten as follows:

E
I (E)=2m.f (E—e)dA(e) .

0
-0.60

-0.6 0.4 -04 0.0
I

04
qp

OA 0.6 O.e 'LO After integrating by parts we have

I (E)=2m.f A (e)de . (3.2)

FIG. 2. Poincare section (ql =0, p& &0) for an energy level
E= 6. Poincare sections are obtained by computing the
system's trajectory and plotting the successive intersections of
the trajectory with the q l plane in the upward direction (p &

& 0).
Smooth curves indicate ordered motion, while scattered points
indicate chaotic motion.

and E=
—,
' (Fig. 3). It can be observed that the motion is

almost completely chaotic for the highest energy E=—,':
periodic orbits occupy a small part of the energy surface.
The portion of ordered motion increases as the energy
level decreases. Figures 2 and 3 show that the Henon-
Heiles system is not an ergodic Hamiltonian system, be-
cause the set of periodic orbits has a nonzero measure.
Nevertheless, we shall treat this system as approximately
ergodic and predict probability characteristics and ther-
modynamic functions.

The key quantity is the volume of phase space I (E),
bounded by the energy surface II(p„pz,q„qz)=E. This
volume can be expressed in terms of the area A (e) of the
region in the (q„qz) plane, bounded by the curve
U(q &, qz ) =e. Really, one can write

0.60

Hence

dr =2+A(E} . (3.3)

From (2.5) and (2.6) we obtain the following expressions
for entropy and temperature of the Henon-Heiles oscilla-
tors:

ES(E)=ln f A (e)de+const,
0

(3.4)

T(E)= f A (e)de .
A E o

The area A (e) can be calculated using the expression
1/2

b 2[e —U~(x)]
A(e}=2f dx,

a 1+2x
(3.5)

where a and b are the two smallest roots of the cubic
equation Uz(x)=e (assume a ~ b). The integral in (3.5)
could be reduced to the standard elliptic integrals. How-
ever, we prefer to find this and similar integrals encoun-
tered below numerically. The dependence of 3 on e is
shown in Fig. 4.

Besides temperature, we shall study probability density
functions of the coordinate and momentum of each oscil-
lator and denote them by f & (p, q ) and fz(p, q), respective-
ly. Consider erst the probability density function of the

0.36-

O.Q-
1.2

-O.Q- 1.0

-0.36-,

-0.60
-0.6 DA -04 0.0 04

qg
OA 0.6

/8 = 0.125

O.e

0.8

0.6

0.4

0.2

FIG. 3. Poincare section (q& =0, pl &0) for an energy level
E=

—,'. Figures 2 and 3 show that the portion of phase space oc-
cupied by chaotic motion decreases with the total energy of the
system. For the maximum energy E=

6 the motion is almost

completely chaotic, while for E= —,
' a large part of the phase

space is covered by ordered motion.

0 0.05 0.10 0.15

FIG. 4. Area 3 (e) of the region in the (ql, q~) plane bound-
ed by the curve U(q l, q~ ) =e vs e.
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second oscillator fz(p, q). This probability density func-
tion is equal to zero outside the region of possible values
ofpz, qz, i.e., the set of all points in the (pz, qz ) plane that
could be visited by trajectories of the system. Denote this
region by R2. In accordance with the ergodic hypothesis,
it is analyt&cally defined as the set of such points (pz, qz )

that for some values of p „q] the equality
H(p i,pz, q „qz ) =E is satisfied. In order to describe R z
explicitly, it is convenient to introduce the function

zqz+ 3qz (3.12)

z p z +
z q 2 'q 2 +q i'qz =E—

—,
' (p i +q i )

It bounds the region with the area I,(E,p „q, ) equal to
bI",(E,p „q, ) —2 p, dq,

=2&2f [[E—
—,'(p, +q, )]

2(pz qz) H(pl ql pz qz)
P) ql

The region R2 is extracted by the inequality

hz(pz qz ) —E

(3.6)

(3.7)

where a and b are the two smallest zeros of the integrand.
In accordance with (2.S), S,(E,p „q, ) = lnl „and

2~~(E) aE

The function hz(pz, qz) is obviously equal to the energy
of the second oscillator

hz(pz, qz) ——pz+ Uz(qz)

—'(pi+qi )+qiqz=E ——'pz —U (q ) .

The curve (3.8) is an ellipse with the half axes

[2[E—
—,'pz —Uz(qz)]] '

and

[2[E—
—,'pz —Uz(qz )]/(1+2qz )] '~

The area I z(E,pz, qz) bounded by this ellipse is

(3.8)

I z(E, qz, pz ) =2n[E —'p z
—Uz(qz ) ]—IV 1+2qz .

and the admissible regions coincide with the interiors of
energy levels of the second oscillator in its free vibrations.

Following the general scheme, in order to find fz one
has to calculate the entropy of the system with the kine-
matic constraints pz =p, qz =q. Trajectories p i(t) and
q i ( t) of the constrained system lie on the curve

Since the integrand is zero on the bounds, the di6'eren-
tiation with respect to the energy can be interchanged
with the integration, thus

1

2n. d (E)
X E —pi +g] —x

+—'x' —q'x] ' 'dx . (3.13)

IV. TEMPERATURE

The erst in1portant question is: how strongly do the is-
lands of ordered motion a6'ect the equipartition law? We
calculated the temperatures" of the oscillators:

T, =—f p, dt, T =—f pdt1 e, 1
(4.1)

This integral has been found pointwise by a numerical
procedure. Now we proceed to the comparison of the
theoretical relations (2.3), (2.5), and (2.9) with numerical
results.

Hence, the entropy of the constrained system is

E —
—,'pz —»(qz)

Sz(E,qz, pz) =ln +const.
Q 1 +2qz

(3.9)

for various energy levels and starting points. The averag-
ing time 6 was chosen between approximately 10 and
10 periods of vibrations of the first oscillator, according
to the rate of the convergence that was observed. Figure
5 shows the dependence of T, and T2 on the averaging

From (2.9) and (3.3) we find the probability density func-
tion of the coordinate and momentum of the second oscil-
lator: 0.%

fz«qz pz)= 1

A (E)+1+2qz
(3.10) 0.09-

Note a remarkable peculiarity of this function: It does
not depend on the momentum.

Similarly, one can 6nd the probability density function
of the first oscillator. The domain of this function is

"1(pi q 1 ) —E

0.07-

0.06-

E = 1/6, Init. Cond. : q = p = 0, q = -0.2

where

hi(pi, qi )=—,'p i+q', ——', ( —,'+qi )'~'+
—,', . (3.11)

0.05
0.0 LS S.O 10.0

Time
4.0 PD 20.0

x 10

The trajectories of the constrained system lie on the
curve in the (p z, qz ) plane:

FIG. 5. Numerical temperatures T, and Tz [according to
(4.1)] vs time.
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FIG. 6. Temperatue vs time for E=
6 and initial conditions

q2 =0.02, p2 =0.
FIG. 8. Temperature profile along the q2 axis (p, =0), E= 6.

time 8 for a chaotic trajectory and the maximum energy
E=

—,'. It can be clearly seen that T, and T2 converge to
a common value T=(T, +Tz)/2—=0.07433. The error

~ T&
—

T2 ~/T is below 0.1%. All calculations for chaotic
trajectories on this energy level yield the same result.
This supports the validity of the equipartition law for the
highest energy level.

The temperature on trajectories of ordered motion
show the same behavior; only the rate of convergence is
much faster. (One might assume that it occurs because of
the smaller dimensionality of a torus compared with that
of the energy surface. )

Figure 6 shows a run for E=—,
' and initial point

qz =0.02, p2=0 on the island. The temperatures T, and
T2 converge quite quickly towards T=-0.0819, the corre-
sponding error being b, T=0.0003 or 0.04%. The picture
is a little different for trajectories belonging to the left is-
land in Fig. 2. Here, as shown in Fig. 7, the temperatures
T, and T2 stabilize clearly but they do not converge to-
wards exactly the same value. However, the difference
between T, and T2 is rather small: ET=0.0007 or 0.9%.

Figure 8 shows a profile of the mean temperature T
along the qz axis (pz =0) for the maximum energy E=

—,'.

It can be seen that the temperature on the islands of or-
dered motion is slightly higher than the temperature of
the chaotic sea.

Similar experiments for lower energy levels show the
same type of behavior as observed for the maximum ener-

gy E=—,'. Figure 9 shows the mean temperature T of
chaotic trajectories as well as the theoretical temperature
T calculated according to (3.4) versus the energy level E.
The correlation between the numerical and the theoreti-
cal curves is very good. The largest margin of error is
about 3%.

An unexpected result of these experiments is that the
equipartition law is valid even for moderate and low ener-

gy levels on both chaotic and ordered trajectories, al-
though in these cases the fraction of the phase space that
is occupied by islands of ordered motion is quite large
and the assumption of ergodicity is strongly violated. In
order to eliminate the possible resonance effects that
could occur because of the equality of the frequencies of
the two oscillators in the linear region, a modification of
the Henon-Heiles system of the form

H=-'p~+, '~p2+ ,'q&+ U2(q, )+-q', q2

was tested for different values of the distortion parameter

0.086 0.08

0.084-
0.07

0.082-

~ ~
'~ +me s«a r ma~ a ~ a e a ea aenama awmwa awe

0 08O

OAPI
'

0.06

0.05

OAP6
0.00 L2S %SO 3.7S S 00 L25 7~ L75 . 00

Tree X)O'

0.125 0.150
Energy E

0.175

FIG. 7. Temperature vs time for E=
6 and initial conditions

q2 = —0.2, p2 =0.45.
FIG. 9. Temperature as a function of the energy E. Solid

line represents T from Eq. (3.4); the crosses, numerical T.



F HENON-HEILES OSCILLATORSSTATISTICAL MECHANICS OF 863

$.0g

gD

C4
CL

gD'

6.0-

g 4$-
lD

3.0-

E = 1/6, P2 = 0

Numerical

According to (3.10)

g.0

O,
O'

0.0
0.6

I-0.4 0.0 02

q2
0.4 0.6 O.e io

h of the probability densityFIG. 10. Three-dimensional graph o p
according to (3.10)]. The curve on the bottom ts

h'hf ' dfi d(othe boundary of the domain on w ic 2 is
with the boundary in Fig. 2).

2 5) that result in nonresonancesuch as a=1.5 or . a ance
f 11:for chaotic tra3ectortes,. The results are as o ows: ocases. e

lid with approximately thethe e uipartition law is va i wi
as for the Henon-Heiles oscillators, pro-

f d dvided thaat the size of the region o or ere
ne. The temperatures ofmall corn ared to the chaotic one. e

f d d otion can differ essen-trajectories on islands o or ere rn
r ow bi these islands are.tially (up to 90%%uo), no matter ow ig e

S.D-

gD
OJ

Dr
4

of the robability densityFIG. 12. Two-dimensional slice o p
'

n . The small fluctuations will presumably level out
r obs

' '
H r there re som d ts,r observation times. However, e

phenomenon can e o sb bserved more clearly in Figs. 11 an

hat led us to the conclusion that the
'

yvalidit of the
aw in the case of moderate energy vibra-

tions for the Henon-Heiles oscillators is ue o
nant frequencies.

V. PROBABILITY DENSITY FUNCTIONS
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le bin-counting experiment, during w ic eby a simp e in-

ver ion time
nt coord' t position of the trajec-
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FIG. 14. Two-dimensional slice of the probability density
function f, .

FIG. 16. Two-dimensional slice of the probability density
function f~.

dimensional slices of the probability density functions for
specific q or p were extracted out of the data; some of
them are shown in Figs. 12 and 13. Figure 12 shows the
probability density functions fz versus q2 at p2=0. The
shape of the theoretical curve is matched very nicely and
the maximal error is below 3%. Figures 13 and 14 show
similar slices for a constant q2=0.3 and q2= —0.4, re-
spectively. In accordance with (3.10), the probability
density function f2 does not depend on p2 (dashed line).
The real probability density function obeys this property
well enough at all points except at the two dents in Fig.
14. It can be seen from Fig. 2 that they are caused by is-
lands of ordered motion. In fact, it has been observed
that all deviations between numerical and theoretical
probability density functions f2 are due to islands of or-
dered motion (except some small numerical Iluctuations,
which will presumably level out for longer experiments).

The analogous results for the probability density func-
tion of the first oscillator are shown in Figs. 15 and 16.
For lower energies, these deviations are larger; as seen in
Fig. 17 (E=—,', p2=0) and Fig. 18 (E=—,', qz=O), for a
moderate energy E =

—,
' the error can be as large as 45%%uo.

It is interesting that the theoretical curve is located with
respect to the real one in such a way as to give close
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FIG. 17. Two-dimensional slice of the probability density
function fz.
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FIG. 15. Two-dimensional slice of the probability density
function f, .

FICx. 18. Two-dimensional slice of the probability density
function f2.
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momentum characteristics. In particular, the dift'erences
in temperature do not exceed 3%.

VI. CONCLUSIONS

The considerations above show that statistical mechan-
ics of finite-dimensional systems predicts quite accurately
the probabilistic and thermodynamic characteristics of
the chaotic motion of the Henon-Heiles oscillators. All
numerical aspects of this study are generalizable to other
Hamiltonian systems with the number of degrees of free-
dom larger than 2. One can expect that statistical
mechanics of finite-dimensional systems could be a

reasonable tool for the description of developed chaos in
small-dimensional Hamiltonian systems. We would like
to call attention to the two interesting open problems
here: the extension of the theory on nondeveloped chaos,
where one could expect the appearance of a number of
temperatures and entropies, and on systems with dissipa-
tion.
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