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Microscopic expressions for interfacial bending constants and spontaneous curvature
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We derive the interfacial-curvature free energy for a simple fluid from density-functional theory, and

find a form matching that for a two-dimensional shearless elastic media.

The fourth moment of the

direct correlation function and the density gradient determine the bending moduli ¥ and &, while the
spontaneous curvature ¢, is given by asymmetry in the density. We obtain the critical indices of these
quantities and corrections to the Laplace equation for curved interfaces.

PACS number(s): 64.70. —p, 05.70.Fh, 82.70.—y

The statistical-mechanical description of two-
dimensional shapes is a rich field, with novel and previ-
ously unforeseen features, currently undergoing rapid de-
velopment [1]. Attention to this subject has been
spurred, in part, by studies where the objects of interest
are interfaces with small or even vanishing surface ten-
sion, such as those occurring in microemulsions, lyotrop-
ic liquid crystals, and bilayer vesicle solutions [2]. Gen-
erally, fluctuations of an interface between coexisting
phases, say a liquid and its vapor, are governed by the
surface tension ¥, but in the case of the above-mentioned
systems the interfacial fluctuations are determined solely
by curvature effects [1-3] The determination of these
effects has been accomplished phenomenologically via the
consideration that the interface forms an incompressible,
two-dimensional fluid, with shape fluctuations regulated
by its elastic-curvature free energy. This free energy,
known also by the name of Helfrich [4], can be written,
per unit area, as

fa=«J —cy)*+kK , (1)

where J =c,+c¢, is the mean curvature and K =c¢,c, is
the Gaussian curvature of the interface and ¢; and ¢, are
the principal curvatures. The bending modulus « and the
saddle-splay constant K measure, respectively, changes in
fg due to deviations from the spontaneous curvature c,
and due to the Gaussian curvature. Minimization of fj
determines the stability of the various possible interfacial
shapes or structures.

In view of these developments it is of interest to con-
sider the microscopic origins of the moduli k and K, and
of the spontaneous curvature c,, and to provide the
necessary statistical-mechanical foundation to the
Helfrich-free-energy terms, just as it has been done some
time ago for the case of the surface tension [5—7] Here
we restrict ourselves to the simplest case of the liquid-
vapor interface of a simple one-component fluid, and con-
sider the free energy for the density inhomogeneity p(r),
i.e., the free-energy density functional F[p(r)], descrip-
tive of a macroscopic interface and obtain, besides the
customary surface tension term, the form corresponding
to fy and find the expressions for k, K, and ¢, in terms of
the molecular distribution functions. This exercise can
be done in two different ways: (i) Through the examina-
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tion of the general form that F[p(r)] assumes for an
unspecified nonplanar equilibrium interface. (ii) By con-
sidering the changes on F[p(r)] produced by arbitrary
shape fluctuations on a specific geometry for the equilib-
rium interface. We shall undertake both approaches
here. Along the first route we analyze the density func-
tional in the local form obtained via the gradient expan-
sion. This will allow us to obtain an expression for the
stress tensor, to examine the Gibbs equation, and to
derive the curvature corrections to the Laplace equation.
Finally, we consider briefly the second route to fy, and
analyze shape fluctuations about a planar interface that
do not change its topology, therefore with this choice we
have access only to k. The expression we find for « in
terms of the inhomogeneous direct correlation function
reduces to that obtained via the gradient expansion in the
appropriate limit. We also determine the critical indices
for k, K, and ¢,

The free-energy density functional F[p(r)] can be ap-
proximated by a spacially local expression [S—7] by per-
forming first a functional expansion around a density
p(r), and then an expansion of the density p(r) around
the field point r. See Ref. [7] for details. This procedure

yields up to density square Laplacians the form
Flp(r)]= [dr f(p(r)) where
Sl =folp(r))+1 4(p(r))[Vp(r)]?
—1B(p(r))[Vp(r)])?, (2)

with

Solp(r)=KT |p(r){ n[A3p(r)]—1}

+1p(n? [dre(r;pn) |, (3a)

A(p(r)=LkT [dr't?(r’;p(r)) , (3b)
and

B(p(r))=%kadr’r"‘c(r’;p(r)) . (3c)

In the above expressions A is the Broglie thermal length,
c(r’;p(r)) is the direct correlation function for a uniform
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fluid with density p(r). fo(p(r)) is the free-energy densi-
ty for a uniform fluid of density p(r), and 4 and B are the
second and fourth moments, respectively, of the reference
fluid uniform direct correlation function. That is, the
reference fluid state changes from point to point and f,
A, and B are functions of p. In writing Eq. (2) above we
have neglected boundary terms, the removal of which is
equivalent to having assumed uniformity at the system
boundaries. Higher-order terms in f involve either
higher derivatives of the density or functional derivatives
of the correlation function or both. As we shall see, via a
rather lengthy exercise, the elastic curvature free energy
arises from the Laplacian square term, just as the surface
tension originates from the square gradient term.

In our local approximation the equilibrium density
p(r) follows from the minimization of Q[p]
= [dr{f(p(r))—[u—v(r)]p(r)} with vanishing varia-
tions of derivatives of the density at the boundary, where
w1 is the chemical potential and v(r) an external field.
Variation of Q[p] yields

p—notv(r)+14"(Vp)+ AV +3B'(Vp)?+ 1BV
+B'(Vp-V)Vp+1B"(Vp)?Vp=0, (4)

where the primes stand for differentiation with respect to
p, and p, is the chemical potential of the reference fluid.
Equation (4) can be transformed into that for mechanical
equilibrium for the fluid by multiplying it by Vp, since
then it can be written as V-0 = —pVv, where o can be
identified as the stress tensor of the inhomogeneous fluid.
This tensor is symmetrical and is given by

o=(up—vp—f)1+ AVpVp
+1{VpV(BV?p)—BV?pVVp
+VX[BVpXVVp—1XB(Vp-V)Vpl}, (5)

where 1 is the unit tensor. It is convenient to write Eq.
(5) in the form o =(up—vp—f)1+0?+o* where the
superscripts (2) and (4) denote the terms in o proportion-
al to 4 and B, respectively.

The Euler-Lagrange equation (4) describes a wide
range of equilibrium nonuniformities in a simple fluid,
many of which may extend over the entire volume of the
system [since the choice of external field v(r) is arbi-
trary]. We shall be interested here only in surface-
confined nonuniformities representative of coexisting
two-phase states like a liquid and its vapor. In them the
associated density profile changes abruptly from a region
of high uniform density to a region of low uniform densi-
ty. By abruptly we mean spatial regions with a width of
the order of the correlation length §. We shall assume
that the spatial region over which the density change
occurs, and which is described as a surface at a macro-
scopic scale, is of arbitrary geometry. More precisely,
p(r)=const defines a family of surfaces, denoted by
r,(x,p,2), with unit normal n given by
n=[3,0(r,)] 'Vp(r,), with 3,=n-V. Clearly, the nor-
mal is only defined within the interfacial region since Vp
vanishes outside it. We can introduce now a semiorthog-
onal set of coordinates with the vectors n, t;, and t,,
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where t; and t, are tangential to the surface but t,-t, may
differ from zero. In terms of these coordinates the stress
tensor in Eq. (5) breaks up into three components: (i)
normal (scalar)

oV=n'nlo;=(up—vp—f)+nnicP+n'nicP ,  (6a)

(ii) tangential (2 X2 tensor)

op,=(up—vp—fItitis; , (6b)
(iii) normal-tangential (2 vector)
aﬂlT=thjai-}” , (6¢)

where italic-lettered subscripts denote three-dimensional
Cartesian coordinates and Greek-lettered ones two-
dimensional surface components. Explicit expressions for
the tensor components in Egs. (6) in terms of the surface
metric tensor g,,=t,J8,;, the surface curvature tensor
K,,=t,t,dn;, the first or nmean curvature
J=V-n=TrK,,=c;tc, and the second or Gaussian
curvature K =1[n-V’n+(V-n)+(VXn)*]=detK,,
=c,c, [8], can easily be obtained [9].

Now, the free energy associated with a stress tensor is
0;;du;; where u;; is the strain tensor. Thus, from Eq. (5),
the identity dr=39§,;du;;=du;, and Egs. (6), we obtain
fdr=(,u,p——crN+aN‘2)+aN(4))dr, which, when integrat-
ed over the whole volume, with dr=dr dS and neglect-
ing boundary terms, yields

F= [drlup—o™+ [dr,dS 4(r,)@,p)
+ [ dr,dS B(r,)(8,0P[K —(J +8,In3,0] . (7

For the interfacial profile (3,0)? is a sharply peaked func-
tion centered around some r, and with a width of the or-
der of the fluid correlation length £. Therefore, when we
consider scale lengths larger than £, the locus of the r,
defines a coexistence surface at which the integrals on dS
in Eq. (7) become evaluated. This property makes the in-
tegrals over dr, independent of those over dS, and we ob-
tain the familiar expression [S—7] for the surface tension
as well as the sought-after expressions for «, ¥, and c,.
These are, respectively,

y=[dr,A(r,)(3,0), (8a)

k=—k=— [dr,B(r,)3,p)?, (8b)
and

¢o=—9,1nd,p(r,) . (8¢c)

Thus, the last term in the free energy in Eq. (7) has
indeed the form assumed by Helfrich, but both k and K
depend in the same way on the fourth moment of the
direct correlation function and on (3,0)%. The fact that
these quantities differ only in sign indicates that the inter-
facial region behaves as a two-dimensional elastic medi-
um with Poisson ratio of 1, i.e., it cannot support shear
stress [10] and is therefore fluid as expected. The expres-
sion found for ¢y in Eq. (8c) can be interpreted to be a
measure of the asymmetry of the profile. It is worth not-
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icing that the square-Laplacian term in the density func-
tional in Eq. (2) leads only to elastic-curvature terms in
Eq. (7), i.e., different moments of the correlation in Egs.
(3) contribute terms to the interfacial free energy with
different physical content. Of course, y —kc3 is the
change in free energy due to a change in area. We note
that the employment of a gradient expansion implies that
long-ranged (algebraically decaying) molecular interac-
tions cannot be treated properly, and that the bending
moduli may not be well defined. This is because for such
interactions after a finite number all moments of c(r;p)
do not exist. Below we consider expressions for them in
terms of the moments of the inhomogeneous fluid direct
correlation function.

Having now validated the form of the Helfrich term
[y with the methods of statistical mechanics, we deter-
mine a correction term, brought about by the presence of
fu» to the well-known Laplace equation that relates the
pressure difference Ao across a curved interface with its
tension y. This follows readily from the evaluation of the
work 8W done in a normal displacement 6§ of a curved
interface. This work is

§W=—8[dtds oN+ys [dS+«8 [dS(J —c,)?
+x8 [dSK , )

which, when taking 8f to be arbitrary, together with
8J =(J?—2K)8¢ and 8K = —JK 8¢, leads to

AoN=yJ —k(J —co)(J*—4K +Jc;) . (10)

We note that the pressure difference does not depend on
the saddle-splay constant k, and that equal pressures do
not necessarily imply J =0. In fact, in the limit when y
goes to zero, Ac" vanishes if J =c, or J2—4K +Jc,=0.
The first case J =c, may be taken to be an operational
definition for the spontaneous curvature cy. If in addi-
tion to y and Ao”, ¢, is also zero, the solutions of Eq.
(10) correspond to principal curvatures ¢; and c, that
may vary across the surface provided they satisfy any of
the conditions ¢, =c, or ¢; = —c,.

We determine now the critical behavior associated
with k, K, and c¢,. First we recall the dependence of the
moments of the direct correlation function on the corre-
lation length. For a uniform fluid the (classical) small-
wave-number k expression for the structure factor S in
Fourier space can be written as

_ 1, 1d?*(0) 1 d*(0)
S lk. = 1 4 .
(ksp)=x""+~ dkzk TRPTTRL
=y M1+E&k2 Gk ), (11)

|

9,

,9p
AQ——Zﬁffdd 808’

+( 4')

1 [dRIR2C?(R;z,2") [ dx dyix,y)

[ dRIRI*CP(R;z,2") [ dx dy&(x,p)
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where Y is the isothermal compressibility. Since in our
problem the only length scale is given by &, we have
£ =E&,=E, also y and & diverge as ¢t~ 7 and ¢~ with

v =(2—mn)v at the critical point where ¢ is the reduced
temperature. On the other hand, the integrations over r,
and the square derivatives (3,0)* in Eqs. (8a) and (8b)
behave in the critical region as &~z~Y and
(Ap& T2~ 2ABEY) respectively, where Ap is the density
difference between the two bulk phases. Therefore the in-
terfacial free energy per unit area f—f,=vy+fy
behaves as £(Ap)*x~1(1+&2/R?) where R is a typical ra-
dius of curvature which must vanish as fast as £ diverges
when the critical point is approached. This is in order to
maintain the independence of the integrations over dr,
from those over dS in Eq. (7), and still have meaningful
definitions for ¥, k, K, and c,, as in Egs. (8). Thus
we find that all the terms in fj share the same critical in-
dex as the surface tension y, ie., u=—v+28—y
=2—a—v. The spontaneous curvature c¢,= —03, Ind,p
=(3p/dz) (d%*p/dz%) behaves as E(Ap) 'ApETi=¢£7!
and we have that co~t”

As mentioned above, the rigidity « can also be evalu-
ated via the calculation of the change in grand potential
for a planar interface at z =0 due to the increase in mean
curvature caused by a small fluctuation in density. We
follow the parallel treatment for the surface tension [11].
The change in (zero field) grand potential
Q[p]=F —p [drp due to a change in density 8p(r) at
fixed chemical potential u is

AQ=Q[po+5p]—Q[po]

=1 [ [drar ,_8Flp]

’ + . e
Bp(0)5p(r) | P HOPT) ’

(12)

where p, is the equilibrium density distribution. To
lowest order AQ is quadratic in §p and depends on

Po

2
C(Z)(r,r')=LM&]—

kT 8p(r)8p(r’) |pg
=8t _ oy p) (13)
po(r) ’
where ¢?)(r,r') is the inhomogeneous fluid direct correla-

tion function. For a planar interface p,=py(z) and
CP=C?(|R|;z,z') with R=(x —x',y —y'), and small
and rigid surface deviations {(x,y) with respect to z =0
yield density fluctuations of the form §8p(r)
=polz —&(x,y))—po(z)=§(x,y)3py/3z. Consideration of
these forms into Eq. (12) and expansion of §{(x',y’) to
fourth order with respect to £(x,y) leads to

L _£
8x2 dy?

g, 3%

+ , (14)
ax 23y% 9yt

_5;
ax
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where the zeroth-, first-, and third-order terms have van-
ished [the former because p,(z) satisfies the equilibrium
condition, and the latter because of symmetry]. The fa-
miliar [5,6] expression for ¥ and that for k in terms of
C'?(R;z,z') and 3p,/dz follow from Eq. (14) by integra-
tion by parts, with the condition that derivatives of §
vanish at the boundaries, and with the recognition of the
forms for the changes in area and mean curvature intro-
duced by the deformation §(x,y). We find

L 3P0 9o 202N Ry
v 4kafd2dz 9z oz’ de|R| C(R;z,2’)
(15a)
and
K=_l—ffdz dZI% aPo de|R|4c(2)(R.z z')
(3)(4DkT 3z oz’ ;2,2') .
(15b)

Finally, we note that in the local limit of the inhomogene-
ous C», its moments contain higher-order local mo-
ments. That is, Eq. (15a) reduces to ¥y —kc3, with v, «,
and ¢, given by Egs. (8). Thus Egs. (15) capture in fact
the total change in free energy due to changes in area and
mean curvature.

The density-functional approach to inhomogeneous
fluids has proven to be extremely fruitful in the descrip-
tion of the liquid-vapor interface [S—-7]. It has pointed
out the central role of the Ornstein-Zernike direct corre-
lation function in providing a general picture of this
problem. This function appears (as the kernel) in an in-
tegral equation for the density profile and renders a route
for calculating the surface tension. Here we have extend-
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ed the analysis of the long-wavelength behavior of the
direct correlation function and clarified its relationship
with the properties of the interfacial shape fluctuations.
We found these fluctuations associated with a free-energy
expression with the phenomenological form proposed by
Helfrich to study shapes of surfactant membranes. For a
simple one-component fluid the curvature free energy
corresponds to that for two-dimensional shearless elastic
media, and its magnitude is of the order of £2/R?<<1
with respect to that of the surface tension contribution.
Whether « and K appear related in a different manner for
other types (e.g., multicomponent) of interfaces is a
matter of further study. We already know [12] that for
simple models of the electrical double layer the relation-
ship between « and K depends on the conducting proper-
ties of the electrode. An important feature in the analysis
presented here is the clarification of the fact that the in-
terfacial quantities ¥, «, K, and ¢, are actually functionals
of the surface S defined by the interface [see the deriva-
tion of Eq. (7)]. This implies corrections to these quanti-
ties when S departs from a planar shape [13]. Also, when
the spatial extent, or width, of the inhomogeneity exceeds
the value of the fluid’s correlation length it is no longer
meaningful to associate the above interfacial quantities
with it. For instance, the capillary-wave broadening of
the interfacial width, as described by long-range trans-
verse correlations developing in the interface [11], implies
such loss of definition for the surface tension.
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