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Volterra integro-differential equation and the aging effect at a liquid interface
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The aging of a liquid surface is made evident through the surface-mass-density variation with time.
By using the surface-mass conservation law together with the solution of the diffusion equation, we find,
for dilute solutions, that surface-mass changes with time following a Volterra integro-differential equa-
tion of the second kind. The solution of this equation, for a semi-infinite fluid, together with the two-
dimensional equation of state for a dilute gas, allows us to find the surface-tension variation with time.
The result is compared with a recent experimental dynamic measurement of the liquid-vapor interfacial

tension for aqueous solutions of a nonionic detergent.

PACS number(s): 61.20.Lc, 68.10.Cr, 68.10.Jy, 82.65.Dp

I. INTRODUCTION

Very little work has been done lately on understanding
the aging problem of a liquid surface. Among the prob-
lems of surface fluid dynamics, this is an interesting one.
It had been found earlier [1] that surface tension de-
creases with time in a drop formation. Recently, a com-
plicated behavior of surface-tension variations with time
[2] was observed, in complex systems undergoing a
change of pressure. The aging effect has been also no-
ticed in measurements of dynamic surface tension [3].
Different models have been proposed to explain this
surface-tension diminution with time. One of these [4]
was done by solving an ad hoc differential equation,
where empirical formulations for concentration-
dependent interfacial tension were coupled with various
theoretical expressions for the concentration variation
with time. Theories for time-surface mass variation, with
and without a simultaneous loss of solute into the vapor
phase, were also attempted [5,6]. These important ap-
proaches to the problem were developed on the basis of
well-accepted physical laws (Gibbs adsorption equation,
surface and bulk conservation laws, and a two-
dimensional equation of state) that govern the
phenomenon. In the present paper we also use the basic
physical laws that govern this phenomenon. By pursuing
an alternative line of research, we find that surface-mass
changes with time follow a Volterra integro-differential
equation of the second kind. The exact solution of this
equation, for a unit source, shows that surface mass den-
sity or the surface tension depends not only on the initial
amount of solute (e.g., see Ward and Tordai [5] and Han-
sen [6]), but on the position where this solute is placed.
The result obtained by our present theoretical model is
compared with the experiment.

II. SURFACE-TENSION TIME DEPENDENCE

When a solute is injected somewhere into a solvent, the
structure of the interface changes. A surface-tension
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variation with time will be induced via a continous ad-
sorption of solute at the interface. We will approach this
problem by considering a simplified version of the
surface-mass conservation law, the diffusion law, and the
natural connection of both with the Gibbs adsorption
equation. The solution of this set of equations provides
and integro-differential equation for the surface-mass
density. Then, by using a two-dimensional equation of
state, we get the surface-tension variation with time.

On writing the surface-mass balance equation, we sup-
pose that surface mass changes with time due to mass
diffusion of solute (binary mixture) from the bulk to the
adjacent interface. Under these restrictive assumptions,
the surface-mass balance law reads
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where I'= f f‘:p(z)dz is the surface density of solute at
the interface. C=p,/p is the mass fraction of solute, p;
and p are the solute density and total density (mass per
unit volume). D is the binary diffusion coefficient. z =0
indicates the position of the interface, where the concen-
tration gradients must be evaluated. This equation fol-
lows from the conservation-mass law, when the barycen-
tric velocity vanishes. Equation (1) tells us that surface
solute density changes with time as a result of changes
produced in the concentration gradient of the solute at
the interface. In the present problem, the solute is inject-
ed in the liquid phase and it will not have any effect upon
the gas phase. The solute diffusion is governed by
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If the initial concentration is f(z) and the concentration
at the boundary C(z =0, t)=C(¢), the concentration for
a semi-infinite fluid at z > 0 will be [7]
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Let the concentration of solute f(z’) be zero in all
spaces, except for an infinitely thin layer at z'=L, which
is infinite in such a way that the total concentration
f f(z')dz’ is finite. The concentration C,(¢) will change
with time due to the diffusion of solute from the bulk to-
wards the interface. The concentration at any z will be
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where Q is the solute mass per unit area divided by the
mass per unit volume at z'( <0)=L and t=0. With the
help of Eq. (4), Eq. (1) becomes
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Whenever a variation of mass fraction of solute, at the
surface and an initial concentration of solute at L are
given, the integro-differential Equation (5) shows how
surface density changes with time. In order to solve this
equation, an explicit relation between surface density and
solute concentration must be given. For dilute solutions
of an un-ionized solute, the only case that will be con-
sidered here, the surface density and the solute concen-
tration are linked by

'=a~C, (6)

where a is a constant. By substitution of Eq. (6) into Eq.
(5) we have
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The solution of this Volterra integro-differential equation
of the second kind is solved by a Laplace transform, and
is written as

(t)= EZQe —(pa/fr)Le —(pa/vr)th
Xerfc[L /(2V'Dt )—(pa/7w)V'Dt | . (8)

This equation predicts the growth of the solute at the in-
terface with time. This growth depends on the solvent-
solute nature, via the diffusion constant D, on the initial
quantity of solute per unit area pQ, and on the position L
where the solute is placed.

We assume that surface density and surface tension are
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solution and the pure solvent, respectively. This equation
is analogous to the three-dimensional equation of state of
a perfect gas. If the effect of cohesive forces in the film is
taken into account, the following two-dimensional equa-
tion of state holds:

o0—0¢g=—EIn(I'/Ty), (10)

where E is the modulus of surface elasticity and [ is the
surface density when the surface tension is 0. As 1/E is
the compressibility of the film, we could call the above
equation the compressibility equation of state. It must be
pointed out that, by writing Eq. (10) in the differential
form (do=—EdT /T") and considering the surface elasti-
city (Marangoni elasticity) E to be linearly related to sur-
face density I', Eq. (10) becomes structurally similar to
Eq. 9).

By substitution of Eq. (8) into Egs. (9) and (10), we find
that the surface-tension variation with time is

E(t)=Ey(t =0)—(RT /o ®)[(1) (11)
and

Et)=E&,—(E /a®)In[T(2)/T,] , (12)

where of is the equilibrium interfacial tension,

E(t)=0(t)/0%, and £y=0,/0% In order to test the
present approach we compare (see Fig. 1) Egs. (11) and
(12) with data of dynamic measurements of interfacial
tension of aqueous solutions of a nonionic detergent
(Tween-80) [4].

To compute £ from Eq. (11), we use the following
values of the parameters oy(water)=73 dyn/cm,
oE(solution)=57 dyn/cm, T=303.2 K, D=10"3
cm?/sec, a=1/10 cm?® mol, L=1/10 cm, and pQO=3
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FIG. 1. Dimensionless liquid-vapor interfacial tension £(z) as
a function of time ¢, for a saline solution of a nonionic detergent
(Tween-80). The circles indicate the experimental points. The
solid and dashed lines represent Egs. (11) and (12), respectively.
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X 10~° mol/cm®. The constants used for evaluating &
from Eq. (12) are oy(t =290 sec)=67.6 dyn/cm, E=2
dyn/cm, and Ty(t=290 sec)=7.7X10"° mol/cm>.
Equation (12) cannot be used at ¢ =0 because adsorption
is null.

III. CONCLUSIONS

We present in this article a description of the aging of a
liquid surface. The evolution in time of solute surface
density is given by an integro-differential equation. When
a crude linear relation between surface density and bulk
mass fraction of solute [Eq. (6)] is assumed, this integro-
differential equation [Eq. (5)] reduces to a Volterra-type
equation of the second kind [Eq. (7)]. Under this restric-
tive hypothesis, low concentration, we find the surface
density variation with time [Eq. (8)] by solving Eq. (7).
The surface-tension variation with time [Eqgs. (11) and
(12)] is found with the help of two different equations of
state [Egs. (9) and (10)]. The two former equations and
the experimental data of dynamic measurements of inter-
facial tension of aqueous solutions of a nonionic deter-
gent (Tween-80) [4] are represented in Fig. 1. Equation
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(10) and consequently Eq. (12) seem to be more represen-
tative of the present experimental situation than Egs. (9)
and (11). It must be kept in mind that the solution of the
aging problem given by Egs. (11) and (12) corresponds to
a seminfinite fluid system, while the symmetry associated
with the experimental technique (pendant drop tech-
nique) [4] corresponds to a spherical symmetry.

The solution of the aging problem by a Volterra
integro-differential equation is of importance because, at
a low concentration of solute, an exact solution can be
simply found. Furthermore, we show how the solution
depends not only on the initial solute concentration[5,6]
but also on where this solute is placed. When the initial
solute concentration is far away from the interface, the
aging process will be slow. This geometrical aspect of the
problem, not considered before to the author’s
knowledge, is as important as the solute-solvent relation
of the system (the diffuseness of the medium).
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