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Stochastic and deterministic analysis of reactions: The fractal case
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The transient diffusion-limited 2+8~0, Ho=80 annihilation on fractals is studied both via deter-
ministic reaction-diffusion equations and via simulations of the stochastic many-particle problem. We
show that the two approaches are not equivalent, yet the deterministic expressions capture the correct
asymptotic behavior. For Sierpinski gaskets our analysis focuses on the overall decay law: t with

a=min(d /4, 1) and on the superimposed hierarchical oscillations.

PACS number(s): 02.50.+s, 05.40.+j, 82.20.—w

There has been a continuous interest in the diffusion-
limited bimolecular reactions A +8—+ inert, where on
regular and fractal structures the time evolution of the
particle densities, of the segregation phenomena, and the
dependence on spatial dimension have been studied [1-9].
In former works we analyzed the problem through sto-
chastic simulations [5,6]. On the other hand, closed-form
analytical descriptions for Euclidean spaces usually start
from [1,2, 10—14]

A (x, t) =DV A (x, t) —IcA (x, t)B(x,t),
B(x,t)=DV' B(x, t) Atc( tx)B( tx)—,

q(x, t) =D V' q(x, t),
s(x, t)=DV s(x, t) —(tc/2)[s (x, t) —

q (x, t)] .

(2)

(3)

where A(x, t) and B(x,t) are the particle densities, D is
the diffusion coe%cient, and ~ denotes the bimolecular re-
action rate. Equations (1) are restricted to first-order
density functions due to the truncation of a hierarchy of
coupled equations, thus the reaction term ttA (x, t)B(x, t)
is approximate [11]. In this paper we consider an equal
initial number of A and 8 particles: A 0 =Bo which im-

plies A (t)=B(t) at all times. The analysis of Eq. (1) is
simplified by setting q(x, t) = A(x, t) —B(x,t) and
s(x, t)= A(x, t)+B(x, t), which leads to

the deterministic approach, Eqs. (1)—(3), by using a
discrete formulation which applies also for fractals. We
will then contrast the solutions of the discrete equations
with the results obtained from simulation calculations of
the stochastic problem. We will show that the overall de-
cay is well represented by t where tz= min(d/4, 1);
here d is the spectral dimension for fractals and d for reg-
ular lattices. The application of the decay laws for frac-
tals has been recently a matter of debate [4,5,9,15,16].

For discrete lattices, Eqs. (2) and (3) are given without
loss of generality by

q(x, t)=I g [q(x, , t) —q(x, t)], (4)

s(x, t)=I g [s(x;,t) —s(xi, t)]

—(Ic/2)[s (xj, t) —
q (x, t)], (5)

where x are the sites, a denotes the nearest neighbors of
site j, and I is the hopping rate between nearest-neighbor
sites. Equations (4) and (5) hold for fractals as well as for
Euclidean lattices. The solution of Eq. (4) can be written
in terms of the Green's function P(xj, t;xo, O), the condi-
tional probability to be at x at time t having started at xo
at time zero. One has

q(x, , t)= yP(x, , t;x, , o)q(x, , O), (6)
We point out that Eq. (2) holds irrespective of the ap-
proximation introduced in Eqs. (1) for the description of
the reaction term [11]. The time evolution of the densi-
ties is obtained from the spatial or ensemble average:
A (t) = ( A (x, t) )„=—,

' (s(x, t ) )„. We will first generalize

where q(x, O) denotes the initial random configuration.
(q(x, t ) )„ is zero at all times and the second moment
averaged over space and over initial configurations is

(q (t))=(q (x, t))„=N 'g QP(x, t;x, , O)q(x;, 0)
J I init. config.
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q(x, O)= —1 with probability qo/2

0 with probability 1 —
qo .

(8)

Inserting Eq. (8) into Eq. (7) the configurational average
is straightforward, since the P(x, t;x, , O) are independent
of the initial configuration:

( q ( t) ) =N ' Q P(xi, t;x;,0)P(xj, t; xk, 0)
j,i, k

X ( q(x;, 0)q(xk, O) );„;,„„s
=qoN ' g P(xj, t;x;,0)P(x~, E;xk, 0)5;k

JiE, k

=qoN ' gP (xj, t;x;,0) .
J, E

(9)

To proceed we consider the Chapman-Kolmogorov equa-
tion:

P(xi, t;x, ,O)= QP(xi, t;x~, t')P(x, t', x;,0),

0& t'& t (10)

which applies for all Markovian processes. Inserting Eq.
(10) into Eq. (9) and considering the symmetry of the
propagator P(x, t; ;x, 0)=P(x;,t;x,O}, wefind [18] that

( q ( t) ) =qoN 'QP(x~, 2t; xJ, O)
J

=qoP(0, 2t),

Here X denotes the number of lattice sites considered in
the model. As initial distributions we take (qo/2 being
the initial occupation probability for A or B particles)

+1 with probability qo/2

ing rate I through ~ '=zt, where z is the coordination
number. For hypercubic lattices, setting D =(2d~)
C& is identical to the results of Ref. [2]. Thus expressions
(12) and (13) derived for the general case including frac-
tals reproduce exactly the results of Euclidean lattices [2].

We now concentrate on setting s(t) =q (t) in Eq. (12)
and analyze Eq. (5} by taking the average over all lattice
sites which leads to

(s(t) ) = —(ic/2)[(s'(r) ) —(q'(t) ) ] . (14)

2.0

Here, it is of interest, if and how fast the ratio
(s (t) ) /(q (t) ) tends towards the value of 1. Further-
more, we check to which extent s(x, t) and q(x, t) are ap-
proximately Gaussian distributed. A measure for this is
how fast the ratios (q (t))' /(~q(t)~) and
(s (t) ) '/ /(s (t) ) reach the asymptotic value (m /2)'/ .

For d )4 Eq. (12) would lead to a decay t / which is
faster than t '. In this case we argue that (q (t) ) can be
neglected in Eq. (14) as compared to (s (t) ); thus assum-
ing that (s (t))'/ —(s(t)), it follows that (s(t)) obeys
classical kinetics, i.e., (s(t) ) t'-. This imposes an
upper marginal dimension of d =4 and the corresponding
limitation for the validity range of Eqs. (12) and (13).
Furthermore, the ratio (s (t))/(q (t)) should diverge
for d )4 [7,12].

We studied these points by solving numerically Eqs. (4)
and (5). For the numerical treatment the ratio a/v ' has
to be fixed; for comparison to former approaches [11]we
took a as being equal to 2/v.

In Fig. 1 various quantities are shown for d=1. To
clearly demonstrate the region of long-time behavior, the

where P (0, t) is the probability to be at the origin after
time t, averaged over all starting sites. Equation (11) re-
lates ( q ( t) ) to the well-understood autocorrelation
function P(O, t), whose leading behavior .follows asymp-
totically [7] the power law P(O, t)-a&t / . The prefac-
tor a& depends on the details of the lattice.

From Eq. (6) one can view q at long times as a large
sum of terms + 1 or 0, weighted with the corresponding
P factors; thus, for large t the central-limit theorem ap-
plies so that q(x, t) becomes Cxaussian distributed [2,13].
Therefore q(t)= (~q(x, t)~ )„=[(—2/m)(q (t))]' holds in
general. If one can now approximate s (t) = (s(x, t) )„
through q (r), then by using Eq. (11) it follows that

1.5

1.0

(a)

A (r) =( A(x, t) )„=—,'s(t) ~ ,'q(E)—
= [qoP(0, 2t)/2n. ]'/ (12)

0.5
10 10 10 104

which, considering the power-law description for P (0, t),
leads to

A(t)» C„-A,' 't (13)

with the constant being Cz=m '/ (d~/4m)"/ for Eu-
clidean lattices and C&=(a&/m. )'/ (v/2) for fractals.
Here, ~ is the hopping time, which is related to the jump-

FIG. 1. Results from Monte Carlo (MC) simulations and
from the deterministic approach for d =1. Curve (a), MC re-
sult: AMc(t)t'"IC, . Deterministic result of the reaction-
difFusion equations: Curve (b), ( (t))st'~ /(2C, ), curve (c),
( ~q(t) ~ ) t '~ /(2C, ), curve (d), (s (t) ) /(q (t) ), curve (e),
(s(t))/(s (t))'~, curve (f), (~q(t}~)/(q (t))'~ . The dash-
dotted lines indicate the values 1 and (m/2)' . The initial con-
centration is Ap =80=0.05.
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quantities were multiplied by their expected asymptotic
forms, such that the asymptotic patterns appear as hor-
izontal lines. A lattice of 4X10 sites was used. Plotted
are & ~q(t)~ &t'/4/(2C, ) and &s(t) &t'/4/(2C, ). The
displayed curves demonstrate that & q(t)~ & reaches
quickly the asymptotic regime, whereas &s(t)& relaxes
considerably more slowly. In the region of moderate
times & ~q(t) ~

& and &s(t) & differ significantly, and &s(t) &,

as presented in Fig. 1, shows a characteristic hump.
These patterns are compared with results taken from

Monte Carlo (MC) calculations which were performed on
Euclidean lattices and Sierpinski gaskets. Typically
10 —10 particles were used. The simulation results plot-
ted as AMC(t)t' /C, curve (a) in Fig. 1, show the same
characteristic behavior as &s(t)&, curve (b), however,
AMC(t) relaxes significantly more slowly to its asymptot-
ic value than &s(t) &. We view these diff'erences between
MC and deterministic data as resulting from the approxi-
mations introduced in the the diffusion-reaction Eqs.
(1)—(3) which are thus limited in their ability to describe
processes as complicated as particle annihilation. To
complete the analysis we display in Fig. 1 also the ratio
&s (t) &/&q (t)&, curve (d), which shows a slow conver-
gence to the value 1. Finally, plotted are the two ratios
&q'(t) &'"/& ~q(t) ~

& and &s'(t) &'"/&s(t) &. Both ratios
converge to the asymptotic value of (m/2)'/ which is
consistent with q and s as being Gaussian distributed at
long times. Again the sum variable relaxes more slowly
than the difference variable to its limiting value.

In Fig. 2 we compare the results obtained in one di-
mension (1D) with those obtained for a 2D Sierpinski
gasket. Equations (4) and (5) were solved on a gasket at

the 11th iteration stage. The MC simulation was per-
formed on a gasket at the 14th iteration stage. We re-
mark the resemblance in the behavior of all quantities
considered on the 20 Sierpinski gasket with those report-
ed for the 10 lattice. Both the MC and the numerical
method behave in similar fashion on regular lattices and
on fractals; we conclude that the same limitations of the
diffusion-equation method also apply to fractals.

To emphasize this analysis further we focus now on de-
tails typical for hierarchically built structures. For these
the autocorrelation function P (0, t) shows an oscillatory
behavior which is superimposed on the asymptotic
power-law decay [17,18]. The periods of these oscilla-
tions are related to the typical residence time of diffusing
particles on hierarchial substructures and the oscillations'
amplitudes are larger for higher dimensions d. From Eq.
(11) it is clear that &q (t) & should also follow the oscilla-
tory behavior. Furthermore, the oscillations should also
be visible in A (t). This is in fact the case and is demon-
strated in Fig. 3, where the decay is displayed for Sierpin-
ski gaskets embedded in Euclidean lattices of dimensions
d =2, 6, and 13. In order to highlight the oscillatory be-
havior the simulation results are plotted as AMC(t)t
They are compared with Eq. (12)„[AoP(0, 2t)/~)'/ t
where P(O, t) was obtained from independent numerical
calculations [18].

For a Sierpinski gasket in d =2 the oscillations are
hardly detectable and the MC calculation tends smoothly
to the P (0, t)-type expression, however, the relaxation to
the asymptotic behavior occurs at times t/~~10 . For
Sierpinski gaskets in d =6 and 13 dimensional spaces the
oscillations are clearly visible: also the periods and the

P. O

Siel pinski gasket, d

0.PQ

0.15

0.10

0.05

10 10 10 10 10 10 10 10ty

FIG. 2. As in Fig. l but for a 20 Sierpinski gasket. From
MC calculations: curve (a), AMc(t)t" /Cd, and from the solu-

tion of the reaction-difFusion equations: curve E,

'

b),
(s(t) )t" /(2Cd ), curve (c), ( ~q{t)~ )t /(2Cd ), curve (d),
(s'(t) &/&q (t) &, curve {e), &s(t) &/(s (t) )'~, curve (f),
(lq(t)l )/(q'(t))' '. The dash-dotted lines indicate the values 1

and (m/2)' . The initial concentration is Ao =Bo=0.05.

FICr. 3. Time evolution of the particle densities on Sierpinski
gaskets. The Mc simulations are displayed as 3 (t)t" and are
given as solid lines. The theoretical predictions
[AOP(0, 2t)/m]' t are given by dashed lines. The embed-
ding Euclidean dimension d is as indicated and the initial con-
centration was in all cases Ao =Bo=0.2.
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phases are in qualitative agreement with the P (0, I)-type
forms. For d =6, the deviations between simulation and
P(0, t) evaluation are of the order of 10% at long times.
For d =13 the oscillatory behavior is again very well
reproduced; on the other hand, care ha~ to be used for t
values larger than r/~) 10, where finite-size effects begin
to be felt.

Finally, we calculated numerically (s (t) ) /(q (t) ) for
regular lattices of the dimensions d =1—5. We found
that this ratio relaxes towards the value 1 for d~3,
reaches a plateau for d =4, and increases steadily for
d =5. These findings are in accordance with the margin-
al dimension d =4.

Concluding, our analysis has shown that the deter-
ministic approach based on reaction-diffusion equations
can provide an asymptotic description of the reaction
process and that Eq. (12) represents a lower bound for the
density decay. Furthermore, both the deterministic and
the stochastic approach support the exponent
a=min(d/4, 1) for the A(t) —t decay.
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