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An underlying similarity in the mathematical structure between a problem in the physical sciences and
a problem in the biological sciences is presented. An isomorphism is established between cluster distri-
butions in physics and issues related to genetic diversity in biology as given by the Ewens sampling
theory [Theor. Population Bio. 3, 87 (1972)]. Allelic or genetic diversity, as measured by the number and

frequency of different alleles {gene types), has a correspondence with the size distribution of clusters in

physics. The rate of mutation in genetics is shown to have its parallel in Richardson s thermionic emis-

sion rate in physics. Using methods from combinatorial analysis and from the symmetric group S„,sim-

ple formal connections between these two areas are developed. The logarithmic series of Fisher, Corbet,
and Williams [J. Animal Ecol. 12, 42 (1943)] for species abundance appears in the solution developed as
does a scale-invariant hyperbolic function. Maximum entropy methods are discussed. Even though the
underlying dynamical processes are quite different in these two areas, new insights and the possibility
that methods developed in one area may be used with advantage in the other area may follow from this
correspondence.

PACS number{s): 87.10.+e, 25.70.Np, OS.20.Dd

I. INTRODUCTION

In this paper a formal correspondence is established
between a cluster distribution in the physical sciences and
an allelic distribution in genetics. A cluster-size distribu-
tion function is a relationship between the number of
clusters of a given size versus the size of the cluster. For
example, a collision between two nuclei produces frag-
ments of varying sizes. The size of a cluster is given by
its mass number or the number of nucleons contained in
it (number of protons plus neutrons). The number of
fragments or nuclei n; with a given mass number i pro-
duced in such a fragmentation process is a distribution
function for cluster sizes. As an illustration, three carbon
nuclei may be present, each containing 12 nucleons or six
protons plus six neutrons.

Genetic diversity in the biological sciences is measured
by the number of different alleles (i.e., types of genes or
DNA sequences) which occur at a given gene locus, to-
gether with the frequencies of these alleles. This diversity
can usually only be estimated by taking a sample of genes
from the population, and is described by the number a; of
alleles in the sample which are represented in that sample
by exactly i genes. For example, if a3=6, there are six
different alleles (gene types) each appearing exactly three
times in the sample.

The correspondence that is established in Sec. II is be-
tween the distribution of cluster sizes n; and the genetic
diversity distribution a; as given by the Ewens sampling
theory [1]. Specifically, a one-to-one correspondence is
established between n;clusters of size i and a; difFerent al-
leles each appearing i times. While n; is a measure of
cluster similarity in a cluster distribution (how many
fragments are the same by having the same atomic num-
ber or mass), the a; is a measure of genetic diversity (how

many different alleles each appear i times). The tran-
scription just given relates similarity in the domain of the
physical sciences to diversity in the realm of the biologi-
cal sciences. A quantity that measures allelic similarity,
called the homozygosity, will be shown to be related to
moments of the cluster-size distribution function. How-
ever, it should be emphasized that the formal correspon-
dence between these two areas does not imply some un-
derlying similarities in the basic processes. What may be
achieved in the formal correspondence are new insights
in one area derived from the other area and the possibili-
ty that methods developed in one area may also be used
with advantage in the other area.

The interrelationship discussed above arose out of a re-
cent realization that a particular simple model of frag-
mentation developed in Refs. [2,3] contained a logarith-
mic series for the distribution of clusters. A logarithmic
series was introduced by Fisher [4] in a study of the dis-
tribution of butterflies and moths caught by light traps.
In particular, the number of di6'erent types or species of
butterflies and moths observed when plotted as a function
of frequency of appearance in a sample could be de-
scribed as a logarithmic series. In fact the species diversi-
ty versus frequency of occurrence was very close to being
a hyperbolic function. The model in Refs. [2,3] contained
an exact hyperbolic behavior at a particular point. Fur-
ther investigations showed that the recent simple model
of fragmentation had a formal mathematical structure
very similar to a much earlier genetic sampling theory
pioneered by Ewens [1]. The Ewens theory has been
developed over the years since its introduction —see
Refs. [5—17] and references in these papers. It should be
noted that questions of genetic diversity and the Ewens
sampling formulas are not directly connected with
species diversity.

From the observation of this similarity in mathemati-
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cal structure of these two approaches a direct correspon-
dence can be made between the two areas. This paper ex-
plores some of the results of this direct correspondence
between the Ewens theory and cluster theories. Further-
more, using this correspondence more complex theories
[18—24] of cluster distributions may be useful in an inves-
tigation of genetic diversity. The application of more
complex theories will be developed to some extent in this
paper.

An outline of this paper is as follows. Section II
discusses an interrelationship between cluster distribu-
tions and genetic diversity. In Sec. II A the partitioning
of objects into clusters of various sizes is compared to the
grouping of alleles into classes according to frequency of
occurrence. Then, in Secs. II 8 nd II C, the cluster model
in Refs. [2,3] is compared to the Ewens model [1]. A gen-
eral approach to either problem is developed in Sec. II D
in terms of a generating function or, equivalently, a grand
canonical ensemble. Next, in Sec. II E, a simple solution
for the mean number of clusters of a given size found in
Refs. [2,3] is applied to various issues related to genetic
diversity. The Fisher logarithmic series is shown to be
contained in the simple, exact solution as an approxima-
tion. A maximum entropy approach (Sec. II G) is also
developed and shown to give a solution which is close to
the exact solution. Using the formal correspondence be-
tween the two areas various concepts that appear in clus-
ter theories are used to further investigate genetic diversi-
ty. These include simple and factorial moments of the
distribution which are discussed in Secs. IIF and IIH.
Solutions for more complex weight factors are given in
Sec. III and equilibrium and nonequilibrium distribu-
tions are discussed in Sec. II J.

Section III connects a simple, exact solution for allelic
diversity or cluster distributions to expressions found in
probability theory. Specifically, these distributions have
simple interpretations in terms of Bernoulli trials and in
terms of urn models with replacement. Section IV sum-
marizes this paper.

II. CI.USTER DISTRIBUTION
AND GENETIC DIVERSITY

a=(a„a2, . . . , a;, . . . , a„)
=(1 ', 2 ', . . . , i ', . . . , n "). (2.2)

Figure 1(a) illustrates a specific case. The A or n can be
thought of as blocks and a partition can be represented as
a block diagram as shown in Fig. 1(b). Such partitions
appear in number theory and represent the number of
ways a given integer X can be decomposed into integer
summands such as 5=4+1=3+2=3+1+1=2+2
+ 1 =2+ 1+1+ 1 = 1+1+1+1+1. In the cluster case
the numeral 2 will represent a cluster of size 2, while in
the genetic case the numeral 2 will represent a given gene
which appears twice. The partition 5 =2+2+ 1 corre-
sponds to two different alleles each appearing twice and a
single allele, or two clusters of size 2 and one monomer.
The multiplicity

m= gn;= ga;
k

(2.3)

(a)
I 2 55 6 8 1168

10 p~

egg
o 6+~

v~~ .-
I 2 3 4 5 6 7 8 9 lO It

is either the total number of fragments (clusters) or the
total number of di8'erent varieties of alleles.

A plot of a; versus i is then a representation of the
number of different allelic types observed in the sample as
a function of how often each occurs from singletons to
the most frequently occurring ones. The most frequent
alleles are those with many copies of themselves. A plot
of nk versus k is a representation of the number of clus-
ters of a given size versus their size. The total number of
partitions is just the total number of ways of arranging N
(N= A =n ) blocks into columns and rows, one of which
is shown in Fig. 1(b).

A. Partitions

—(1122kkAA) (2.1)

or

Both cluster and allelic distributions consider the parti-
tioning of a fixed number of objects into groups. For the
cluster situation, A objects (nucleons) are partitioned into
groups specified by the cluster size k and the number of
clusters of that size, called nk %const. raint A =gkknk
is imposed. In the allele case, the partitioning is by the
number of times any allelic type occurs. As noted above,
a quantity a; is defined to be the number of allelic types
represented by i genes in a sample of n genes. Then
n=+, ia; Both t.he n. k's and a s form a partition:

n (n1, n2, . . . , n/, . . . , ng)

~AYi&i
~AY~&z

&AYi&A
SN~A
Yi&Ã~lz
L

k

FIG. 1. Partitions and block diagrams. (a) illustrates an al-
lelic partition 1',2,3,5,6,8', ll', 68'. The partition is from
Singh, Lewontin, and Felton (Ref. [25]). This partition
represents ten singleton genes, three di8'erent allele s each
appearing twice, seven difFerent alleles represented three
times, . . . , and one allele represented 68 times. (b) is a block
diagram for a partition. The vertical axis is k and the horizon-
tal axis is nk or ak.
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The total number of possible arrangements P(n) can
be obtained from a power series generating function [25]

~m
p(n, x)=

n il"'n ~2"'."n ik""" L(x) (2.9)

1
oo= gp(n)x" .

(1—x)(l —x )" (1—x"}". (2.4) with L(x)=x(x+1) (x+A —1). The parameter x
was shown to be [2,3]

The factor (1—x") '=1+x "+x "+ "counts objects of
size k appearing once, x, twice, x, etc. The coefticient
of x", the p(n ) in Eq. (2.4), gives all the possible ways of
obtaining n in terms of integer summands. An example is
the case n =5 given above which has p(S)=7.

The decomposition of n into integer summands with
the total number of parts fixed, called m in Eq. (2.3), is
p(n, m). The p(n, m) satisfies a recurrence relationship
[26] p(n, m )=p(n —l, m —1)+p(n —m, m ) and p(n )

ip(n, m). When n is large, asymptotic expres-
sions for p(n) and p(n, m) are useful. The Hardy-
Ramanujan formulas [26] are for p(n ),

7 &2n/3
p(n)-

n4lr 3
(2.5)

and for p ( n, m ), for n large and m not too large
[m-O(n'/ )],

n m —1

m!(m —1)!
(2.6)

Both p(n ) and p(n, m) increase rapidly with increasing
n.

B. Partition weights

For each partition discussed in Sec. IIA, a weight is
assigned. The Ewens theory [1] has a probability assign-
ment for each partition a= (a „a2, . . . , a„) given by

p(a, 0)= gm

L(0) (2.7)

0=41V, u . (2.8)

Details of the Ewens model can be found in Refs.
[6—17,27].

In one of the fragmentation models considered [2,3], a
similar probability assignment for a partition into clus-
tels n (n 1 n2 ' ' nA } was used:

The L(0)=0(0+1)" (0+n —1).
The Ewens distribution of Eq. (2.7) is based on the

infinitely many alleles model, which arises from the
recognition of the gene as a DNA sequence admitting an
extremely large number of different sequence possibilities.
In the infinitely many alleles model every mutation pro-
duces a new allelic type or DNA sequence not already
present in the existing population. The distribution of
Eq. (2.7}arises, at a steady state, between the force of mu-
tation (creating and increasing genetic diversity) and the
action of random genetic drift (eliminating variations).
The model assumes non-Darwinian behavior, i.e., that
the different allelic types are selectively equivalent. The
parameter 0 was shown [1] to be defined from the
effective population size N, and the mutation rate u (both
unknown) through the formula:

Uo

—a& /k& T —k& TTO /( T+ To ]~0
e e (2.10)

Here V is the volume of the system in which a
quasiequilibrium is established and v o is a quantum
volume associated with a thermal wavelength A, T,

h
Uo=~T

(2lrmkli T )
(2.1 1)

S(n, x)/k&W' n, x =e (2.12)

A quantity o (n, x ) =S(n,x )/kli can be introduced which
is a dimensionless entropy in the cluster case. A normal-
ized probability assignment is then

p(n, x)= W(n, x ) (2.13)

where

D(x)= g 8'(n, x) . (2.14)

The sum is over all partitions n of A =gkknk which is
called lr(n). There are p(n) terms in the sum. Given
Ewens s probability assignment, a dimensionless func-
tional o (a, 0) for a given partition a can be obtained:

gm
a.(a, 0) =f (n )ln

i aI!l

(2.15)

The f ( n ) is an arbitrary function of n =g, ia, .

and is partition independent. A factor D(0)
=0(0+1) . (0 +n —1)expf(n) normalizes the weight
W(a, 0)=expcr(a, 0) to a probability function:

where h is Planck's constant, I the mass of a nucleon or
monomer, and k~ is Boltzmann's constant. The a~ is a
coefficient which appears in the binding energy Ell(k ) of
a cluster of size k. Namely, Eil(k) =all(k —1). The eo is
the level spacing in the density of excited states in a clus-
ter of size k. The To is a cutoff temperature for internal
excitations. Further details can be found in Refs. [2,3].

The probability function of Eq. (2.9) was arrived at us-
ing entropy arguments, where the entropy associated
with a given partition n was developed based on the
Sakur-Tetrode law of thermodynamics [28]. The factori-
als nk! which appear in Eq. (2.9) are Gibbs factorials.
These factorials arose in a prescription developed by
Gibbs to remove problems associated with the entropy of
mixing [28]. Terms such as k " which appear in Eq. (2.9)
arose from internal excitations and such terms are dis-
cussed in more detail in the Appendix.

Once an entropy assignment S(n, x ) is given to a parti-
tion n, a weight factor 8'(n, x) can be assigned to that
partition:
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e o(a, i9)

p(a, 8)= (2.16)

The functionals cr(a, 8) and S(n, x) will be used later
and these results will be generalized. A class of di6'erent
probability assignments will be shown to be calculable
and also maximum entropy principles will be used to ob-
tain a solution for generalized weight assignments.

This section ends with the formal correspondence ob-
tained by comparing Eqs. (2.7) and (2.9):

A~n,
71k ~ak

x~0 .

(2.17)

Later, it will be shown that this equivalence can be inter-
preted as an isomorphism within the framework of the
symmetric group S„.

C. Corresyondence between x and 0

The fragmentation parameter x is given by Eq. (2.10)
and this parameter will now be recast into a form that in-
volves an evaporation rate. The diversity parameter 0 of
Eq. (2.8) involves a mutation rate u. To rewrite x into a
form involving a rate, a characteristic speed U, can be in-
troduced which is associated with the temperature T and
is u, =i/akT/m. When u, is taken as the root-mean-
square speed of a Maxwell-Boltzmann velocity distribu-
tion, then a=3 since (mu /2) =3k&T/2 by equip«ti-
tion. For the most probable speed o.=2, and for the
mean speed a=8/m. . Taking the volume V=SD /6,
where S is the surface area associated with V and D its di-
ameter, a characteristic transit time across a distance D is
t =D /u, . Then x is

—k~ TTD/{ t+ To )Eox =tS Je (2.18)

A factor &2m a/6- 1 has been omitted. The quantity I,
2~m (kti T)J= B B

A
(2.19)

D. Isomoryhisms and generalized weight factors
based on the permutation or symmetric group S„

The combinatorial prefactor which appears in both
Eqs. (2.7) and (2.9) appears in permutation problems [30]
and in the group structure of S„[31].This observation
will be used Grst to establish a simple isomorphism be-
tween genetic diversity and cluster distributions, and

which appears in the square brackets of Eq. (2.18), is
Richardson's formulas [29] (excluding a spin factor) for
the evaporation rate per unit area of particles from a
heated metal. The work function 8'& which normally ap-
pears in the Richardson formula is here a~. The work
function or separation energy for a binding, energy ex-
pression Es(k)=aii(k —1) turns out to be just aii. At
low T, the quantity exp[ — kiiTT/O( T+T) o]socan be
neglected compared to exp( —aii/kii T). For high T, the
metal vaporizes.

second to generalize the weight factor of Sec. II 8. The
connection between the combinatorial prefactor and per-
mutation problems was also noted in Watterson [7] and
Kingman [32] for the Ewens theory. References [2,3]
used this connection to obtain simple expressions for the
cluster-size distribution function. Also, Ref. [24] uses the
connection with S„ to obtain general expressions for the
distribution of cluster sizes.

For n objects, nf possible permutations are possible.
The set of all permutations forms a non-Abelian group
S„. The group S„can be divided into conjugacy classes
according to cycle structure. These classes are specified
by the length of a cycle j and the number of such cycles.
For example, the permutation

1 2 3 4 5 1 2 3 4 5

21354 21,'3 54 (2.20)

has two cycles of length 2 and one cycle of length 1. In
general there will be n, cycles of length 1, nz cycles of
length 2, . . . , n cycles of length j, . . . . A quantity

(2.21)

W„(x,a) = 7/1 Ql 0~ Q.
x i x2 'xJ.

IIaJ8
J

(2.22)

The unnormalized weight W„(x,a) involves n variables,
the xJ's which tag the length of the cycle or size of the

which is called a Cauchy number, counts how many
group elements have this cycle class structure. Since
every permutation belongs to one and only one cycle
class, the sum of the Cauchy number Mz over aH parti-
tions is n~. The block diagram of Fig. 1 when rotated ap-
pears in Young tableaus for S„. The sum of M2 over all
partitions with fixed m =n, +n2+ . +n„ is a Stirling
number S„of the first kind, (

—1)" S„=g ~„~Mz,
where the sum is over all n s constrained by both n and
m. The p(n) of Eq. (2.4) counts the number of cycle
classes for the group S„.

Since Mz appears in the weight factor of Eqs. (2.7) and
(2.9) a simple isomorphism can be established between cy-
cle classes, aHelic variations, and cluster distributions.
For example, n. cycles of length j are equivalent to a
difterent alleles, each appearing j times, or n clusters of
size j. The Mz of Eq. (2.21) are combinatoric factors un-

derlying the division into clusters, alleles, or cycle classes.
In the group S„,Mz permutations have the cycle struc-
ture given by the partition formed by the n 's. Figure 2
illustrates the correspondence stated for the case n =5.
Permutation distributions are given by Eq. (2.7) for the
particular choice 0= 1.

General weight functions, which contain M2 as their
combinatoric factor, can be developed as follows. Since
there are n diff'erent length cycles (j= 1,2, . . . , n ), a vari-
able x can be assigned to tag each cycle. Let
x=(x„x2, . . . , x„), and for a particular partition
a = (a „az, . . . , a„), in the a notation above, define a
function



CLUSTER DISTRIBUTIONS IN PHYSICS AND GENETIC. . . 8365

cluster or number of times an allele occurs.
Next consider the function

Q„(x)= g W„(x,a),
m(n )

(2.23)

1 (x+n )Q„(x)= x( x+1)".(x+n —1)= r(x )
(2.24)

where I (x+n) is a gamma function; 1 (m )=(I—1)!
when m is an integer. Let

Q„(x)= g W~(x, a),
n.(n, m )

(2.25)

where the sum is over all partitions of n with I=g;a;
also fixed. When allx 's = x

Q„(x ) =( —1)" S„x
The generating function for Q„(x) is [2]

ux |+ u (x2/2)+ u (x3/3)+
u, x =e

=g Q„(x)
n

(2.26)

(2.27)

where the sum is over all partitions of n, called m(n) F.or
example, when x& =x =" =x =x and I-- =x, then

Again when all the x 's = x then the left-hand side (lhs)
is simply 1/(1 —u ) and Q„(x ) is determined by expand-
ing this expression and equating similar powers of u. The
result is Eq. (2.24).

The Q„(x) can be considered a canonical partition
function of statistical mechanics while

(ai) = ga P„(a,x)
Qa)

(2.28)

X(u, x) = Q„Q„(x)u"/n!

is its corresponding grand canonical partition function.
The Q„(x) of Eq. (2.25) is a more restricted partition
function. Writing u =e~" where p is a chemical poten-
tial, each canonical partition at fixed n, the Q„(x), is
given a Boltzmann weight e "~". The n! in Eq. (2.27) is a
combinatoric factor. The quantities in X which have the

Ppfactor u j=e~~"=e ', where p =jp, contain the chemi-
cal potentials p for each species j. The condition p =jp
is a chemical equilibrium constraint. This last point will
be returned to in Sec. II J.

Once a partition function is established, ensemble-
averaged quantities follow by difFerentiating. Here, the
results obtained in Refs. [23,24] will be listed using the
transcription of notation given above. The mean number
of alleles or clusters in the canonical ensemble (fixed n) is

PA RT I TION C&C L ES OF
I"1 2"~... k"..W S

A LLE LIC CLUSTER
DISTRIBUTION 0 I STRI BUTION

AAAAA

AAAA

which can be shown to be

x, „( Q„(x)
a j (n —j )! Q„(x)

The correlation (a;a ) reduces to

xx „! Q„; (x)
a;a

ij ( n i —j )! Q„—(x)

(2.29)

(2.30)

2 3

2+ 2+I
2 2

5+ i+I +Q)+
2+ I+ I+I

I5

AAA

8 8

A A

BB
C

AAA
8
C

AA
8
C
0

Ooo
Qoo
OOO

The fluctuation (a ) —(a ) can be obtained from

x „! Q„2 (x)
(a (a —1) j~ (n —2j)! Q„(x)

(2.31)

Q„ (x)
(2.32)

and the (a ). Note the values of i+j (n and 2i (n in

(a;a~ ) and (a; ), otherwise the expectation values are
zero since the sample size is exceeded. The results can
easily be generalized to higher correlation functions.
Similar results also hold for restricted partitions as in
Q„(x):

I + I+ I+ I

I5

A

8
C

0
E

0~ OO
0 0

for the fluctuations

(a, (ai i) )„„)=
2

pg I Q„—p. (x)
(n —2j)) Q (x)

(2.33)

FIG. 2. Correspondence between cycles, alleles, clusters, and
the decomposition of an integer. The case shown is for n =5. A
cycle of length k is represented by k dots on a circumference.
DifFerent alleles are given the symbols A, B, C, D, and E. An al-
lele which occurs twice is represented by A A, etc. A cluster of
size k has k dots inside a circle.

and for the correlations

i j (n i )!(n —j )!—Q„(x)
(2.34)
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where the above averages are over all partitions of
n =g, ia, with fixed rn =g,.a, , which are symbolically
identified by the notation ~(n, m). The results of Eqs.
(2.33) and (2.34) are also easily generalized.

0 n! I (0+n —i)(~;)= —.
i (n i )! —I (0+n )

(2.35)

The expectation of the product a;a is

0 0 n! I (0+n i —j—)
&a, a &= —.—.

i
'

(n i ——')! I (0+n)J
and correlations can be obtained from (a;a. )
—(a;)(aj ) =—C(a;, aj. ). The factorial product a,.(a, —1)
has an expectation

2
n!

(n 2i )!—I (0+n 2i )—
I"(0+n )

(2.37)

and this result, along with Eq. (2.35), can be used to ob-
tain the Iluctuation (a; ) —(a;) . The same procedure
can be repeated for the restricted partition averages,

specifically

E. Simpli6ed model

This section gives an application of the results of the
preceding section for a simple case, namely, when all the
x s or t9,.'s are equal. Only one variable will be
used which is called 0. Then Q„(x)=Q„(0) is sim-

ply Q„(0)=L(0)=0(0+1) . (0 +n —1) and Q„(x)
=Q„(0)= (

—1)" S„0 as already noted. All
ensemble-averaged quantities then follow straightfor-
wardly using the results of Eq. (2.29) through Eq. (2.34).
For example, the mean number (a;) has a very simple
form:

Detailed properties of the behavior of ( a; ) with 0 can
be found in Refs. [2,3]. Here, a brief summary will be
stated which will be used later.

1. Solution at 8=0

At 0=0, the mutation rate or temperature (0~x) is
zero. Only one type of gene is present and it appears n

times or has n —1 copies of itself. Also one cluster exists
of size k =n.

2. Region 8((1
At low mutation rates or low temperatures T

(~;)=
i (n i )— (2.41)

(2.42)

When the result of Eq. (2.10) for x =0 is substituted into
Eq. (2.41), the resulting equation for ( a, ), with
n ))i =1, is Fermi's [33] result for the evaporation of a
particle into a cavity of volume V from a heated metal.

3. Power-law behavior at 8=1

for i =1 to n —1, and (a„)=1—0(y+1nn) where

y =0.57722 is Euler's constant. The diversity or cluster
distribution is a U-shaped distribution in i, centered
around i —n/2, except for the point i =n As. 0 is in-
creased (a„) decreases and the back part of the U shape,
representing frequently occurring alleles, or large clus-
ters, also decreases. A good approximation to the behav-
ior of (a; ) for 0 (8(1 is simply

n!
i (n —i)! (2.38)

At 0= 1, the diversity function and cluster distribution
fall as a power law and, in fact, inversely with i as

a result first obtained by Ewens [1] and Watterson [8].
The S„and S„,. ' are Stirling numbers introduced above
[after Eq. (2.21)]. Moreover, using the procedure of the
preceding section, fluctuations and correlations are also
easily obtained from

(2.39)

(2.43)

Power-law behavior appears in many areas, some of
which are summarized in Mandelbrot [34]. A power-law
distribution such as that of Eq. (2.43) has no length scale
except for the simple requirement i & n. By contrast, a
distribution

&a &-e (2.44)
and

(2.40)

The (a; ) distribution of Eq. (2.35) contains a hyperbolic
behavior at 0=1, specifically (a, ) =1/i at 0=1. The be-
havior of (a, ) with i is also similar to Fisher s logarith-
mic expression for species numbers as discussed below.
Equation (2.38) has no hyperbolic point. A discussion of
Fisher's distribution can be found in Watterson [8].
Again, it is emphasized that (a,- ) refers to genetic or al-
lelic diversity while Fisher's logarithmic series was
developed for species diversity. Genetic diversity is not
directly connected with species diversity.

has a length scale determined by the exponential part
and, in particular, the i 0. A way of generating a behavior

1/i from e is to have a distribution of length scales
present given by some function f(ii, ). Then

—=I f(io)e 'dio, (2.45)

where f(io)=1/io for a hyperbolic behavior. All length
scales are present since the integral over io is from 0 to
00 ~

Power laws in physics signal a critical point [35].
Droplet sizes near a critical point of a liquid-gas phase
transition are characterized by a distribution in size
which is written as
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D(k)- 1

k
(2.46)

ter of size i. The coefficient in this alternate form of Eq.
(2.51) is a coalescence probability and this factor appears
as 1/0'

~ is a critical exponent [35], k the size of the drop given
by the number of atoms in it, and D(k) the number of
drops of size k. Droplet sizes near a critical point are be-
lieved to fall with size k with a w) 2 [x=2+ ( I /5), where
6 is another critical exponent]. For a harmonic series
~=1. Away from the critical point, droplet distributions
are postulated to have a behavior given by a sealing rela-
tionship [36]

F. Moments of cluster distribution and homoxygosity

Moments of a distribution of (a;) for i =1,2, . . . , n

are obtained by multiplying each (a; ) by i~,p = 1,2, . . . ,
and taking a sum. The first moment p =1 is g;i(a, ) =n
which follows from the constraint condition. The second
moment p =2, is [37]

D(k)= f(e'i k) .
1

(2.47) .p( )
n(n+0)
(0+1) (2.53)

f(e'~ k ) is a scaling function depending on a variable e
that is zero at the critical point and is a measure of how
far a parameter is away from the critical point. The o. is
another critical exponent [36]. The f(e' k) is usually
taken to be of the form

and the third moment p =3 turns out to be

n(n+0)(2n+0)
(0+1)(0+2) (2.54)

f(E'~ k)=exp( —e'~ k)=[z(E)]
1/a

where z(e) =e
(2.48)

The result of Eq. (2.53) leads to the simple result

i(i —1) 1

n(n —1) ' 0+1 (2.55)

4. Region 1 & 0( 00 and R. A. Eisher's logarithmic series

The region above 0=1 has a distribution which fa1ls
faster than a power. Details can be found in Refs. [2,3].
As an example consider 0 an integer, then

0 n(n+ I)" (n+i .—1)
i ( 0+n —1)(0+ n —2)" (0+n i)—

For i « n, ( a; ) behaves approximately as

8 n

i n —1+0 (2.50)

Defining y =n /(n —1+0), the diversity or cluster distri-
bution falls as

&a, & y(a;&=

This behavior of (a; ) is Fisher s logarithmic series [4]. A
discussion of this logarithmic series based on Eq. (2.38)
and other situations can also be found in Ref. [8] and
references therein. The coefficient (a, ) /y in this series is
called the coefficient of diversity. In the Fisher analysis
[4] of the data of Corbet and Williams, y =0.997428 1

and therefore (a, ) is nearly hyperbolic and almos'
without any length scale.

The result of Eq. (2.51) can also be rewritten as

(2.52)

which in cluster descriptions [0=x, with x given by Eq.
(2.10)] has a simple interpretation. The result of Eq.
(2.52) is of the form of the law of mass action in chemis-
try or the Saha equation in astrophysics, as discussed in
Refs. [2,3], and is derived under the assumption of chemi-
cal equilibrium: p, =ip.

The above expression can also be thought of as the
coalescence [18] of i monomers or singletons into a clus-

i(i —1)(i—2)
& &

2
ii ( ii —1)(ii —2) ' (0+ 1)(0+2)

(2.56)

The lhs of Eq. (2.56) represents the probability that three
genes in the sample are of the same allelic type. Using
diffusion theory results Ewens [17] has shown that the
stationary probability that the first i genes are of the same
allelic type is given by (i —I )!0/s,.(0)=p(i, 0) wh—ere
s;(0)=0(1+0)(2+0)" (i —1+0). For i =2, p(2, 0)
= 1/0+ 1 and for i =3, p(3, 0)=2/(0+ 1)(0+2). Simi-
larly p(4, 0)=6/(0+ 1)(0+2)(0+3) and

i(i —1)(i—2)(i —3) 6
n(n —1)(n —2)(n —3) ' (0+1)(0+2)(0+3)(a, )=

(2.57)

The expression of Eq. (2.55) has an important interpreta-
tion in genetics. Many populations (including humans)
are diploid, which means that each individual has two
genes at a locus, one from each parent. These two genes
will either be of the same allelic type (in which case the
individual is said to be a homozygote) or of different allel-
ic types (in which case the individual is a heterozygote).
It is well known [27] that in the infinitely many allele
model, the mean population homozygosity is 1/0+ 1. In
the context of the samples of n genes, homozygosity can
be regarded as the event that two genes taken at random
are of the same allelic type. Equation (2.55) shows that
the sample probability that this occurs is 1/(0+1). In
other words, the sample statistic g; i(i —1)a;/n(n —1) is
an unbiased estimator of population homozygosity.
Clearly, as 0—+0, the mean homozygosity goes to 1. (9

small corresponds to very low mutation rates u, and for
small u it becomes increasingly likely that all genes in the
sample, and the population, are of the same allelic type.
As 0~ ~, the result of Eq. (2.55) goes to zero and at
0= 1, this equation gives —,'.

The result of Eqs. (2.53), (2.54), and (2.55) leads to
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Sum rules for (a~ak) are [24]

0
1+61

(a,a„)=kj

j k

(2.58)

q. 2( ) 8n(n+8)[n(n+8) —(8+1)]
(8+ 1)(8+2)( 8+ 3)

(2.59)

G. Maximum entropy methods

The choice of the a s which maximize the functional
of Eq. (2.15) or the logarithm of the weight function of
Eqs. (2.7) or (2.9) subject to the constraint g, ia, =. n can
be obtained by the method of Lagrange multipliers. Us-
ing Stirling s approximation for the factorials a;., the re-
sulting a s called & s are

&;=—e
l

(2.60)

The 1, is a Lagrange multiplier determined by g, ia; =n,
which gives

8z(1 —z")n=
1 —z

(2.61)

where z=e . When 8=1, the solution of Eq. (2.61) is
z = 1 and 8, =1/i, as before. When 8) 1, z ( 1 and z"—+0
for large n. Thus z =n/n+0 and

0 n

i n+0 (2.62)

a; =—e ~e '= —e ~z',0 g; 8
l l

(2.63)

where z=e . The two Lagrange multipliers (A, ,p) are
to be determined by the two constraint equations

n pz(1 —z") p z
0 1 —z 1 —z

(2.64)

m z=e ~ g —.——e ~ln(1 —z) .t9, , i
(2.65)

The last approximations in these equations are valid
when n ))1, 8) 1, and z ( 1. Eliminating p gives

which again is the same as the Fisher form of Eq. (2.50)
for large n. The solution for 0 & 1, and therefore z ) 1, is
not as easily obtained. Since z & 1, 1 —z"- —z" and z is
to be determined by z "/(z —1)=n/8. Numerical solu-
tions [37] give results for a,. that are reasonably good ap-
proximations to the exact solutions for (a,. ).

When additional constraints are imposed additional

La grange multiplier s have to be included, with one
Lagrange multiplier for each constraint. For example,
constraining both n =g;ia; and m =g;a, leads to a solu-

tion of the form

n z(1 —z") —z(1 —e-"-'")=f(z)- . (2.66)
(1—z) gz'/i (1—z)ln(1 —z)

The z can be determined by plotting f(z) against z, for
z & 1, and finding that z which gives n/m. The condition
z &1 corresponds to m ) inn, since m -@+inn at 0=1
and for large n. As an example, for Keith's data given in
Ref. [38] the value of n =89 and m =15. The z which
gives n/m =89/15 is z=0.9458. For m -inn and n

large the Stirling numbers, which appear in Eq. (2.38),
can be approximated by [26] S„=( n —1 )!( y
+inn ) '/(m —1)!. The result of Eq. (2.38) can be writ-
ten in the following way for i « n:

1 m —1
' ~"™l @+inn

m —2 1
exp +-

n(y+ inn ) n

(2.67)

For n =200, m =10, the result of the rhs of Eq. (2.66)
gives z =0.9915. Equation (2.67) would give a z =0.9982
[from the square brackets in Eq. (2.67)] in good agree-
ment with z=0.9915, considering that a sum was re-
placed by a logarithm in obtaining z =0.9915. However
at large i the small discrepancy in z begins to show in

( a, ) since z is raised to the ith power in ( a; ). For z = 1

z'= e" " which is, for i =50, equal to 0.654 at
z=0.9915 and 0.914 for z=0.9982. The z"s are still
reasonably close.

The maximum entropy approach is seen to be very use-
ful in easily producing the results of the exact expression.
The usefulness of this method in other areas can be found
in Ref. [39]. The application of this method to cluster
distributions for complex weight factors is discussed in
Ref. [22].

H. Cumulative mass distribution, fluctuations,
and factorial moments

In Ref. [3], the cumulative mass distribution of cluster
sizes and its possible importance was discussed. In the
genetic case the quantity a j is the total number of genes
that occur j times. The cumulative distribution

[k]+1
M(k)= g ja.

j=1
(2.68)

is a staircase function starting at k =0 with M(1)=a,
and ending at k=n with M(n)=n The [k] is. the
greatest integer in k which is taken to be continuous in
M(k). The M(k) for the data of Singh, Lewontin, and
Felton [25] is shown in Fig. 3. Every partition has a
unique set of steps all ending at k=n, M(n)=n There.
are p(n) possible staircases spanning all different rises
and runs, where p(n) is given by Eq. (2.4). Figure 3
shows a long intermission followed by a very large sud-
den jurnp.

The ensemble-averaged value of M(k ) at 8= 1 is a uni-
form staircase function since (a ) =1/j. For other 8's,
the resulting M(k) can be found. Some examples are in
Ref. [3]. The 8 hammers the M(k) into various rather
smooth homogeneous shapes. When ja. is characterized
by a form ja.=8e ~ and when the sum in Eq. (2.74) is
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I50 I. Solutions for more complex weight factors

IO

IO l46

FIG. 3. The cumulative distribution of a partition. The hor-
izontal axis is k and the vertical axis is M(k) defined by Eq.
{2.68). The staircase function drawn is for the allelic partition
of Fig. 1. The total number of alleles is 146.

changed to an integral, a smoothed cumulative mass dis-
tribution called M, (k ) results:

M (k)= —(1—e ") . (2.69)

The difference Mo(k ) —M, (k), where Mo is the observed
M(k), expresses the departure from M, (k) and
[Mo(k) —M, (k)] is its fluctuation.

One method used to study intermittent behavior is
based on scaled factorial moments of a distribution [40].
The relevant distribution here is a. versus j. The j axis
(0, n ) is divided into bins, not of unit size, but of varying
sizes. The largest bin would be the whole interval (O, n ).
Subsequent division into 2, 3, 4, etc. parts can be made.
Let M equal the number of bins giving a bin size
5s = n IM. For example, all alleles in Fig. 1 in a given bin
are counted and lumped together to form a quantity
AJ= sum of a s in bin J. The ith factorial moment is
then formed [41] to give

( AJ( AJ —1) . .
( AJ i +1)—)

(F, ) ='='
(2.70)

y (w, )'

More complex equilibrium models that go beyond the
simple model discussed in Sec. II E can be considered us-
ing methods outlined in Sec. II D. The main quantity that
has to be determined is Q„(x) of Eq. (2.23). A solution
for the case x=(x„xz, . . . , x„)=(xy,x,x, . . . , x) or

6,. lx;=xy " has already been given in Ref. [23]. Here, the
~k

procedure used will just be stated. If x; =xy '", so that k
is given a different weight than the other x s which are
all equal, then Q„(x) is to be determined by projection
from a generating function:

e
—x(y —1)u /k

(1—u )'
= QQ„(x) n!

n

(2.72)

a.
n g i

cr„(8)=f(n )ln
I=1a;!i '

(2.73)

The maximum entropy solution is

0;
a,. = e

l

when the only constraint is g;ia; = n

(2.74)

J. Equilibrium and nonequilibnum distributions

In several previous sections, mention has been made of
chemical potentials and equilibrium constraints. This
section is concerned with these quantities. The relations
between a; or n; and the Lagrange multiplier X given for
example in Eq. (2.60) bear the same formal correspon-
dence between numbers of particles of type k and chemi-
cal potentials pk that is found in thermodynamics books
[28,29,33]:

If two x s are different, say, k and j, so that xk =xy and
x =xz, then the exponential part of (2.72) becomes
—[x(y —1)u /k] —x(z —1)u Jlj. Introducing different
x's or 0's would, for example, correspond to having
different mutation rates or factors 4N1u1, 4%2u 2, " .
Solutions in general are not easily obtained and max-
imum entropy solutions may again be useful. For exam-
ple, a simple generalization of Eq. (2.15) to the case of
different 6 s might be

The ( Az) and (F~ ) are quantities averaged over the pos-
sible partitions. A power-law behavior

V ppknk= e
Uo

(2.75)

n

5s
(2.71)

may be present in the variation of (F; ) with bin size
5s=n/M. The 5; is called an intermittency exponent
and 6, varies with increasing factorial moment i. The 6;
gives the slope of ln(F; ) versus ln5s.

It would be interesting to look for intermittent behav-
ior in allelic distributions. Large Auctuations which seem
not to be statistical have been reported in distributions
arising from high-energy collisions [41,42]. Turbulent
Row patterns may also show intermittency [34].

The P= 1/k~ T and Uo is given by Eq. (2.11). Spin, mass,
binding energy effects, and internal excitation have been
neglected to keep the expression simple.

Constraint equations related to particle number conser-
vation in statistical mechanics have a correspondence in
thermodynamics with chemical potentials. This relation-
ship is A, k =Ppk for particles of type k. Chemical equilib-
rium between various species is expressed by a condition
on chemical potentials. Specifically, for a species made of
k monomers, the equilibrium condition is pk =k p1,
where p, is the chemical potential of the monomer. The
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exponential part of Eq. (2.75) is then e "=e ' =e —
A, k

with A, = —Pp, . The factor e " appears in Eq. (2.60)
and was obtained by maximizing the entropy with respect
to variations of the nk 's (or ak 's). Thus a generalization

of Eq. (2.74) is to allow a;=(8;/i)e ' where A, WiAin,
general. If equilibrium is present, then k, =i A, .

The entropy S, Gibbs potential G, internal energy U,
and Helmholtz free energy I' each contain parts [28] that
involve pk and nk as gkpknk and variations that contain
gkpk5nk, so that 5S-gk Pp—k5nk as an example. In
fact 6 is exactly gk pk nk. Since n =gk knk, variations in
the nk's are not independent, but must satisfy the con-
straint 0=+kk5nk A.gain P —=S, U, F, or 6 is stationary
with respect to changes in the nk's when the pk's satisfy

pk =kp, . The constraint can be incorporated into P by
forming a function h: h =I' —

A, '( 1 —gk knk ). This h is
stationary with regard to variations of the 5nk's when
6h /5nk =0 for each k, which gives pk =k'k; since

p&
=A, ', pk =kp as before.
Away from an equilibrium point, S is not a maximum;

also G, U, and F are not at their minima. The nk's will

change in such a way as to increase S or decrease G, U,
and F. As a very simple example, consider a two-
component system with X=n, +nb. G=p, n, +pbnb.
Since 5n, = 5n&, 5—G is given by 56=(p, —pb)5n, . If
p, )pb, then n, 's must decrease or 5n, (0 to lower G.
The a's are changed into b's. If p, (pb, the same type of
argument shows b's~a's to lower G. Equilibrium is
reached when p, =pb. The p's act as generalized forces
or pressures which lead to transformations between
species.

As another example, consider the simple reaction
which transforms k monomers into one cluster of size k.
The k 5n

&

= —16nk, where k and 1 are the coefficients of
the reaction called stochiometric coef6cients in chemistry
and are given the symbol v. In general 5n.; =v;5x with 5x
an arbitrary change. The v s can be positive, for reac-
tants, or negative, for products. The variation for 6 for
the simple case k5n, = —6nk is

56 =(p„—kp, )5n„. (2.76)

In the above reaction, the stoichiometric coefBcients are
taken as unity for simplicity. Simple kinetic theory argu-
ments [33] will be used to investigate the transformations
of A+B into C+D and vice versa. The formation of C,
for example, is proportional to the number of A's and

An equilibrium equality between chemical potentials
also appears in phase transitions such as from a liquid to
a gas. At equilibrium pL =pG where pL, pG are the
liquid and gas chemical potentials, respectively. The
Gibbs criteria for phase equilibria are equality of the tem-
peratures, TL =TG, equality of the pressures, I'I =PG,
and equality of the chemical potentials, pL =pg.

The role of the Pp's as "generalized forces or pres-
sures" will now be considered. A process involving two
clusters A, B which interact to make two other clusters
C,D is

(2.77)

B's. From left to right in the above equation, the increase
in C Per unit time is ric '=K+ nznB. K+ is the ProPor-
tionality constant. However, the back process from right
to left decreases C and this decrease is proportional to the
number of C's and D's. Specifically, ric '=K ncnD
where K is the proportionality constant for the back
process. The total change in C is then
nc K+ +3 nB K—ncnD At equilibrium nc 0 and
K /K =ncn~/n~n~ where the n's are the equilibrium
numbers of A, 8, C and D. Using the results of Eq. (2.75)
the following equation is obtained:

—PAric=K+ngng(1 e )

where the chemical activity A, is

A, =(S ~+I a) (~c+—S D) .

(2.78)

(2.79)

When pz +pB =pc+p~, nc 0 and nc is in equilibri-
um. The constraint p~+pB =pc+pa is just the state-
ment of chemical equilibrium for Eq. (2.77).

The relationship in Eq. (2.78) between ric and A, is—PA
nonlinear. When A, is small 1 —e '=1—(1—PA, )

=PA, and

ric =K+ n g tl F13Aq (2.80)

To this result a term is added which arises from the
creation of an interfacial surface between the drop and
the vapor:

bG=(pL pv)NI +4mAI o—, (2.82)

where o. is a surface tension and RL the radius of the
liquid drop. The radius RL and XL are related by the
number density pl =NL /(4mRI /3) in the liquid drop.
The evaporation, metastability, and growth of a drop are
governed by Eq. (2.82). A drop is metastable when
d AG/dRL =0. The RI which satisfies this condition is

Then a linear relationship results in this approximation.
Thus, in both cases changes in nc result from a driving
term or generalized force term involving the activity A, .
I pc+pa (pA +pB then A, is positive nc s pos t e

and C increases since C+D has the lower chemical po-
tential. If pc+ p~ )p ~ +pB, then A, is negative, ri c is
negative, and C decreases since A+8 has the lower
chemical potential.

The simple linear relationship of Eq. (2.80) is of the
form of Ohm's law J=o E, where J is the current density,
o. the conductivity, and E the applied electric force field.

Another classic situation is a droplet in a vapor. A
nonequilibrium situation arises when a vapor is supersa-
turated. Classical nucleation theory is based on the fol-
lowing picture [43,21]. A drop is treated as a liquid with
chemical potential pL while a vapor has a chemical po-
tential pv. I.et XL be the number of atoms in a drop and
Nv be the number of atoms in a vapor. Then, to lowest
order, the difference in Gibbs's potentials with and
without the drop is

~6=vI.NL, +vvNv vv(NI. +Nv)=—(c I. vv)NI. ~—
(2.81)
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20
RL*=—

(Vv —Vi)pi
(2.83)

Smaller drops RI (RL evaporate atoms while larger
drops RL & RL*, grow by accumulation of vapor atoms to
form still larger drops. In both cases, growth and eva-
poration, AG is lowered by the processes. Without the
extra surface term in Eq. (2.82), b, G =(JMI —p, v)NL and a
drop grows for any RL if pL

—pz (0 or evaporates for
any Rl if pl &pv. The runaway over critical drop
threatens the existence of the vapor phase. The end
product of a supersaturated system with an overcritical
drop is a liquid-vapor phase separation. Below a temper-
ature T„called a critical temperature, a liquid and vapor
can coexist.

The evolution of a. charged drop in a supersaturated
system appears in the theory of cloud chambers. In the
case of charged drops, even small drops can grow when
A„=p&—pl exceeds a certain threshold. For uncharged
d".p th"h-g -~G-thX, g-nby

e
I

Il

Cl

threshoId

CHARGED CASE

d AG 20.—p p +
L PI. L

(2.84)

The metastable line is determined by d b, G/dNL =0,
which gives Eq. (2.83). Regions of droplet growth corre-
spond to db, G/dNL (0 and droplet evaporation corre-
sponds to db, G/dNI )0. For a charge drop [44], Eq.
(2.84) acquires an additional term:

FIG. 4. Regions of growth and evaporation for uncharged
and charged drops. The vertical axis is bp=pz —

pL and the
horizontal axis is the radius of the drop RI. The metastable
line is determined by Eq. (2.83) for the uncharged case and by
Eq. (2.84) for the charged case. For a given hp, growing drops
are characterized by a line pointing to the right while evaporat-
ing drops are characterized by a line pointing to the left.

d AG 20. ~—1 1 Me

dNL
' '

PLRL K 8~ PLRL
PI. P v+

where ~ is the dielectric constant of the liquid drop and
q, is the charge on the drop. The metastability line is
determined by dhG/I'LL =0. Figure 4 illustrates the
charged and uncharged cases.

Allelic distributions are stationary (Hardy-Weinberg
equilibrium) in the absence of mutation, random drift,
migration, and natural selection [27]. When these forces
are absent, random mating leaves the frequency of oc-
currence of different alleles unchanged, a result which is
called the Hardy-%'einberg law. However, if one allele
has, for example, a selective advantage over others, then
random mating produces allelic frequency changes. Such
differential fitnesses between alleles results in nonequili-
brium situations which break this Hardy-Weinberg equi-
librium. These differential fitnesses act as pressures or
generalized forces acting in a manner similar to chemical
potentials in cluster changes. Differential fitnesses lead to
the growth in frequency of occurrence of some alleles and
the disappearance of others. As an illustration consider a
case of two alleles A and a with diploids A A, Aa, and aa
having fitnesses (1+s), 1+s, and 1, and probabilities of
occurrence p, 2pq, and q respectively. After one ran-
dom mating the initial frequency f„(0)of 2 changes to
fz(1) given by [27]

f~ (0)(1+ )s
f„(0)(1+s)+ 1 f„(0)—

After t generations, f~ ( t ) is

III. PROBABILITY CONCEPTS IN CLUSTER AND
GENETIC DIVERSITY DISTRIBUTIONS

This section is concerned with probability concepts as-
sociated with the distribution &ak ) given by Eq. (2.35).
Since gk & ak ) =n, a quantity

k

p„(k,0)= k&a„)
(3.1)

defines the fraction of the mass in clusters of size k or a
fraction of alleles occurring k times. The p„(k, 8) satisfy
gkp„(k, O)=l, 1 ~p„(k,8)~0, and therefore p„(k, O) can

f„(0)(1+s)'
g(t)= f„(0)(1+s)'+ 1 f„(0)—

For s) 1, f„(t)~l and f, (t)=l f„(t)~0 as t~— oo.
For s (1,f~(t)~0 and f, (t)=1 f„(t)~1as t~ —oo.

When fitnesses are (1—s~ ) for A A, 1 for Aa, and
(1—s, ) for aa, equilibrium points exist at f„=0,1 and
s, /(s~ +s, ). When s, and s„are negative, the heterozy-
gote Aa has the lowest fitnesses and is underdominant.
The value s, /(s~ +s, ) corresponds to an unstable equi-
librium point. For f„(0))s,/(s~+s, ), f„(t)~1 as
tab oo and for f„(0)(s,/(s„+s, ), f~(t)—&0 and t~0.
This behavior in f~ is similar to a drop in a supersaturat-
ed vapor. By contrast, the overdominant case has s„s&
positive. The s, /(s„+s, ) is a stable equilibrium point
and this situation has no correspondence with a drop in a
supersaturated vapor.
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be considered a probability function. Using Eq. (2.35)

n —1
p„(k,0)= k 1

08(0+n —k, k), (3.2)

where the B(0+n —k, k) is a beta function:
8(w, z)=I (w)l"(z)/I (w+z) where I (w) is a gamma
function.

A. Allelic or cluster distribution k(ak ) /n
and Bernoulli trials; R. A. Fisher's law

The p„(k, 0) of Eq. (3.2) can be rewritten as

7l 1
p„(k, 0)= J k 1 p '(1 —p)" u(0, p)dp

0
(3.3)

using an integral representation of the beta function.
u(x, p) is

u(0,p)=0(1 —p) (3.4)

n

p(n)=e
yz T

was randomized with a Eulerian or y density distribu-
tion:

(3.5)

1
u(mp, k)dm = p 'm" 'e '&dm . -

(k —1)!
(3.6)

Here m is the expected number of species and p(n) the
probability of observing n as determined by a Poisson dis-
tribution. The value of m is then treated as a variable
with a density u(m, k,p) where k and p are parameters.
The p is proportional to the size of the sample and k mea-
sures the variations in m and gives a mean value for
m =pk. The resulting integral is

(k+n —1)!p
1)tn! (1+p )k+n (3.7)

and is related to a negative binomial. A logarithmic

The part (k i)p" '(1 —p)" "corresponds to Bernoulli
trials with probability p of heads. The shift by one arises
because, success varies as 0, 1,2, . . . while k=1,2, 3, . . .
The J u(0,p)dp= 1 and u(0,p) is a probability density

. 0
function. When 0=0, u(0,p)=5(1 —p) where 5(1—p) is
a Dirac delta function at p = 1. Then p„(k, 0=0)= 1 for
k =n, otherwise 0. When 0=1, u(0,p ) =1 and u(0,p) is
a uniform distribution giving p„(k,0=1)=1/n for k =1
to n. When 0~ ~, u (0,p ) =5(p ) and is a delta function
at p =0 or zero probability for heads. Consequently
p„(k,0=~)=1 for k=1, otherwise zero. The uniform
case also follows from the Hayes argument as given in
Feller [45].

The p„(k,0) is a randomized Bernoulli distribution ob-
tained from a mixed population of coins with a distribu-
tion of p's given by the u(0, p) of Eq. (3.4). The resulting
(ak ) =np„(k, 0)/k is Eq. (2.35). Section II E contains a
discussion of the properties of (ak ) and, in particular,
Sec. II E 4 gives a logarithmic series form for (ak ).

R. A. Fisher developed the logarithmic series for
species diversity by a different procedure, namely, a Pois-
son distribution

series follows upon further approximations (neglecting
zeros and for small k parameter).

It should be noted that the weight function of Eqs. (2.7)
or (2.9) can be recast into a form that looks like multiple
Poisson distributions. Writing y =e ~= n /(n —1+0)
and using the approximate form of Eq. (2.50) for ( a; ),

ei'"e' 'n~
p(a 0)- II, e

a;! I. 0
(3.&)

The (m ) =(ai+az+" +a„) is the mean number of al-
leles or mean multiplicity of clusters. The ( m ) is

1 1 1

0 8+1 0+n —1
(3.9)

as was found by Ewens in the allele case [1] and the same
result was found in the cluster case [3].

B. Allelic or cluster distribution k ( ak ) /n
as the Polya-Eggenberger distribution

The p„(k,0) can be obtained by replacement sampling
from an urn. Consider an urn with y red balls and cu

white balls. With each drawing of a ball, s balls, of the
same color drawn, plus the original ba11, are returned.
The probability of m successful red drawings in n,

' trials
is the Polya-Eggenberger distribution [45,46]:

B(a+m, p+n' —m )

m Ii(a P)
p(m, a,p)=

where a =r /s, p= w/s, and the 8's are beta functions al-
ready defined. The result of Eq. (3.2) is obtained when
n'=n —1, m =k —1, a= 1, and P=0. When a= 1, r=s,
and 0=w/r At 0=. 1, w=r=s, and i(a ) =1,
p„(i,0=1)=1/n Adi.fferent urn was considered by
Hoppe [15] and Donnelly [16) for the Ewens sampling
theory.

In the Polya-Eggenberger distribution the occurrence
of something (drawing red) increases the chance of its oc-
currence on the next trial. For example, if the first m
balls drawn are red the chance of drawing a red ball on
the next trial is

m

m+0
when r =s or a = 1 and 0=w /r. After m drawings of
red, the urn contains r+(m —1)r=mr red balls and w

white balls and the above result easily follows. The prob-
ability of drawing a white ball is then

0 (3.12)

It should be noted that the probability of a given se-
quence, s3y, rrrrtom, is the same as any other rearrange-
ment of the r's and w's as can easily be verified. The bi-
nomial factor of Eq. (3.10) just counts all the possible ar-
rangements of mr's and (n ' —m )w's.

The maximum entropy solution of Eq. (2.60) turns out
to be Jayne's dice model [47]. A die is rolled and the only
information known after a large number of rolls is the
mean number of dots. Given the value for the mean, how
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should the probability for each side p(k) be determined'?
Jayne's model maximizes —gkp(k)lnp(k) subject to the
constraint imposed by a specification of the mean number
of dots.

IV. SUMMARY

In this paper a parallel is drawn between theories of
cluster distributions in physics and issues related to ge-
netic diversity in biology. Specifically, a recent simple
model for cluster distributions is shown to have a formal
mathematical structure very similar to the Ewens sam-
pling theory of genetic diversity. In fact, a simple tran-
scription of terms connects these two areas. This tran-
scription related the number of clusters nI, of size k to the
number of different alleles ak each appearing k times.
The mutation rate in genetics has its analog in
Richardson s thermionic emission rate in this correspon-
dence. Properties of the distribution of cluster sizes are
related to various quantities which appear in genetic
diversity. For example, the second moment of the cluster
distribution is related to a quantity called the homozygos-
ity in genetics. The homozygosity is a measure of genetic
similarity in an allelic distribution.

Because of this possible connection, methods from sta-
tistical mechanics and kinetic theory which have been
used in theories of cluster distributions may also be car-
ried over into a discussion of genetic diversity. Max-
imum "entropy" methods are shown to give very good
approximate solutions for exactly soluble models for both
cluster and allelic distributions. Moreover, such methods
may then be useful in discussing more complex models
which are not exactly soluble. A larger class of approxi-
mate solutions can then be obtained from these more
complex models.

A solution to a simple model discussed in this paper is
also shown to contain R. A. Fisher s logarithmic distribu-
tion as an approximation. This distribution expresses the
biological diversity of different species as a logarithmic
power series. Cluster distribution based on chemical
equilibrium laws are also discussed and nonequilibrium
features are mentioned in an attempt to go beyond equi-
librium distributions. Examples of some nonequilibrium
situations are given. In the cluster case, these examples
are drops in a supersaturated vapor and reactions driven
by chemical potential differences. A supersaturated va-

por also has a chemical potential difference between a va-
por and a drop. These chemical potential differences act
as generalized forces or pressures changing the cluster
distributions. An analogous situation for allelic distribu-
tion arises when one type of allele has a selective advan-
tage over other alleles. Then this allele can grow in fre-
quency of occurrence in random matings based on Men-
delian laws.

Finally, it should be emphasized that the formal
correspondence between cluster and allelic distribution
does not imply some similarity in the basic underlying
processes. The dynamical processes which lead to the
biological diversity and to the fragmentation distribu-
tions are not simply related to one another. However,
drawing this parallel may lead to new insights into each
field derived from the other field. Moreover, the recogni-
tion that similar mathematical descriptions can be em-
ployed in fragmentation physics and genetics does create
the possibility that methods developed in one area may
also be used with some advantage in the other area.
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APPENDIX

A heuristic argument for why Eq. (2.9) contains k "

and not (k!) " is as follows. The internal partition func-
tion of a cluster of size k is proportional to Vk /k! with k!
arising because particles in Vk are identical. The Vk is
the volume of the cluster which is taken to be proportion-
al to the number of particles contained in the volume:
Vk -Uok. The resulting k from Vk removes the factorial
dependence in favor of a simple power k, where a is a
number of the order of 1. When nk clusters of size k are
present, this result is raised to the nkth power. A more
general weight would involve hark(k ) "nk! in the denomi-
nator of Eq. (2.9) and 1.(x) would be different. The case

Elka= 1 is easily solved. The factor hark(k!) "nk! would arise
in situations in which Vk is independent of k.
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