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We derive generalizations of the semiclassical trace formula of Gutzwiller [J. Math. Phys. 12, 343
(1971)]and Balian and Bloch [Ann. Phys. 69, 76 (1972)] that are valid for systems exhibiting continuous
symmetries. In particular, we consider symmetries for which the associated set of conserved quantities
Poisson-commute. For these systems, the periodic orbits of a given energy occur in continuous families
and the usual trace formula, which is valid only when the periodic orbits of a given energy are isolated,
does not apply. In the trace formulas we derive, the density of states is determined by a sum over con-
tinuous families of periodic orbits rather than a sum over individual periodic orbits. Like Gutzwiller's
formula for isolated orbits, the sum involves intrinsic, canonically invariant properties of the periodic or-
bits. We illustrate the theory with two important special cases: axial symmetry and integrable systems.

I. INTRODUCTION

Semiclassical trace formulas, as developed by Gutzwill-
er [1], and Balian and Bloch [2], are the only means
presently available of using classical mechanics to investi-
gate the spectra of quantum-mechanical systems when
the classical dynamics is nonintegrable. These formulas
express approximately the density of states p(E) of a
quantum-mechanical Hamiltonian as a sum over the
periodic orbits of the corresponding classical Hamiltoni-
an. For example, the Gutzwiller trace formula approxi-
mates the oscillating part of the density of states as the
following discrete sum over periodic orbits:

1 Tp 1

~& p„,,d;, ~det(M —I)~'
orbits

Here Tp is the period of the primitive periodic orbit and
the stability matrix M is the linearization of a surface of
section mapping at the periodic orbit. S is the action of
the orbit and 0. is the Maslov index of the periodic orbit s
stable and unstable manifolds [3—4].

Equation (1.1) has been applied with considerable suc-
cess to systems whose classical dynamics is completely
chaotic [5—9], in which case the periodic orbits of a given
energy are isolated in phase space and the totality of such
periodic orbits forms a discrete set. More generally, one
could, in principle, use Eq. (1.1) for mixed systems, where
island chains coexist with regions of stochasticity in
phase space, to find that part of the spectrum correspond-
ing to the stochastic regions of phase space [while torus

(or EBK) quantization could be used on the island
chains]. Many important physical systems, however, fall
into neither of these categories, and in such a way that
Eq. (1.1) cannot be applied to them —these are systems
with continuous symmetry.

The discrete sum of Eq. (1.1) does not apply when
periodic orbits occur in continuous families, as is the case
when a continuous symmetry is present. While such situ-
ations are exceptional in a mathematical sense, they are
relatively common in physical applications. For exam-
ple, problems with three-dimensional rotational symme-
try occur quite often, as do problems with just axial sym-
metry. Trace formulas for rotationally symmetric sys-
tems might have important applications to small atomic
systems such as the helium atom, which are nonintegr-
able but have few enough degrees of freedom that they
might be amenable to a periodic orbit analysis. In addi-
tion, the shell structure of nuclei has been interpreted in
terms of Auctuations in the density of states due to
periodic orbits of nucleons in the spherically symmetric
mean field of the nucleus [2,11—13]. Of special interest in
this paper will be systems with axial symmetry, of which
the hydrogen atom in a strong magnetic field is an exam-
ple that has received much attention recently [6,7]. It
would be of considerable interest to be able to apply trace
formulas like Eq. (1.1) in a systematic and coherent way
to the systems outlined above and to other systems with
symmetry. It is to this issue that we will address our-
selves in this paper.

In this paper we will derive generalizations of Eq. (1.1)
that apply to systems for which any two first integrals
Poisson-commute —these first integrals are necessarily
associated with an Abelian symmetry through Noether's
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theorem. These systems include, as special cases, systems
for which there is a single first integral in addition to the
Hamiltonian —such as axial symmetry, for example-
and integrable systems. %'e wi11 treat the more general
ease of non-Abelian symmetry in a subsequent paper.
%'hile trace formulas have been derived for systems with
nonisolated periodic orbits before, such formulas do not
have the power and elegance of the trace formula for iso-
lated orbits, as developed by Gutzwiller —unlike
Gutzwiller's formula, these results have been applicable
only to very specific types of systems and/or have had a
complicated dependence on the classical dynamics.

Balian and Bloch [2] developed trace formulas for bil-
liard systems with arbitrary degrees of symmetry. How-
ever, their results depend in a somewhat complicated way
on the classical dynamics and would be dificult to apply
directly to a concrete example. (An exception is the im-
portant example of a spherical cavity, for which they ob-
tain detailed results. } Strutinski and Magner [11] have
given an extensive analysis of the effects of symmetry on
systems with a smooth potential (with applications to nu-
clear shell structure), but find explicit results only for sys-
tems of three degrees of freedom. Berry and Tabor [14]
have derived a trace formula for integrable systems which
has an intrinsic dependence on the classical dynamics
(through action-angle variables), but their results do not
apply to nonintegrable systems with symmetry. As well
as the calculations above for direct analogs of the
Gutzwiller trace formula, closely related formulas relat-
ing the spectra of certain classes of operators to classical
periodic orbits have been derived by Chazarain [15] and
Duistermaat and Guillemin [16]. They compute the trace
of the propagator (rather than of the energy-dependent
Green's function) for systems for which the classical
Hamiltonian is homogeneous in momentum —for exam-
ple, free-particle motion on a Riemannian manifold-
and give explicit consideration to cases in which periodic
orbits occur in continuous families. Duisterrnaat and
Guillernin, in particular, derive results which are remark-
ably like Gutzwiller's, but they are valid on1y for a re-
stricted class of systems.

In this paper, we wi11 derive direct generalizations of
Eq. (1.1) that are valid under quite general assumptions
and have a relatively simple dependence on the c1assica1
mechanics. The only assumption is that any degeneracy
of periodic orbits is due to the presence of a phase-space
symmetry, which we assume to be Abelian in this paper.
Using this symmetry, we compute trace formulas that de-

pend on simple, intrinsic properties of the periodic orbits
that are easily computed in practice, such as actions,
periods, and surface of section mappings.

Consider the case of a three-degree-of-freedom system
with axial syrnrnetry, like the example of a hydrogen
atom in a strong magnetic field, which we use to illustrate
our results in Sec. IV. The usual way to treat this system
is to use cylindrical polar coordinates (p, 8,z) on
configuration space and to ignore the 0 coordinate. By
applying Eq. (1.1) to this reduced system, one obtains the
density of states corresponding to a given magnetic quan-
tum number m, where m depends on the value of the
momentum p& that is chosen for the reduced system,

through ps=mal'. Past applications have usually been

applied to the case m =0 [6,7]. While this works quite
well for the reduced density of states, there is no analo-
gous procedure for the full density of states, for which it
is important to use full phase-space dynamics. For exam-

ple, orbits that are periodic in the reduced system will not
always be periodic in the full phase space because they
will, in general, not close in the 0 coordinate.

The trace formula that we derive for such a system is a
sum over orbits that are truly periodic and looks much
like Eq. (1.1) [see Eq. (3.14)]. The surface of section ma-
trix M is rep1aced by a surface of section matrix for the
reduced dynamics. The period of the primitive orbit Tp,
which measures the length of the periodic orbit in terms
of a time coordinate t, is replaced by a measure of the
area of the two-dimensional manifold of periodic orbits in
terms of the coordinates (r, 8), where 0 is an angle of ro-
tation about the symmetry axis. This is typically just
2wTp ~ In addition, there is another factor that has no
analog in Eq. (1.1). This factor measures the amount by
which periodic orbits of the reduced system that are close
to the periodic orbit in question fail to close in the angu-
lar coordinate. It is explained in more detail in the main
text. Notice that these quantities are no more difticult to
calculate for axially symmetric systems than the various
contributions to Eq. (1.1) would be for systems without
symmetry.

A second special case of the systems that we consider
in this paper is that of integrable systems. We illustrate
this situation in some detail in Sec. IV. In this case, the
periodic orbits correspond precisely to rational tori, and
Eq. (1.1) is replaced by a sum over these tori. We special-
ize our results to these systems by writing them entirely
in terms of action-angle variables. In doing so, we quite
quickly arrive at results that are equivalent to those of
Berry and Tabor [14], who derived an analog of Eq. (1.1)
in two ways. In the first they used the Poisson sum for-
mula to reexpress the torus quantization conditions in
terms of a sum over rational tori. In the second, which is
more like the methods used by us and by Gutzwiller, they
used an angle-variable representation of the Green's func-
tion to evaluate its trace.

Before starting the calculations we give a brief outline
of the structure of the paper. In Sec. II we begin the cal-
culation of the density of states under the assumption
that periodic orbits occur in continuous families. The
calculations in this section are quite general and make no

assumptions about symmetry. In Sec. III we specialize to
the case that there are constants of motion in involution
and use the resultant symmetry to find explicit results for
the calculations of Sec. III. In Sec. IV we illustrate the
results with the two special cases: axial symmetry and in-
tegrable systems.

II. GENERAL THEORY

In this section, while making no explicit assumptions
about the nature of periodic orbit families, we begin to
compute a trace formula analogous to Eq. (1.1). We fol-
low essentially the method of Gutzwiller [1], except
modified to take into account the possibility that periodic
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orbits occur in families. The result we obtain by the end
of this section involves a nontrivial integral over each
periodic orbit family and is therefore not directly useful
in practical situations. However, it will provide a spring-
board for the calculations of later sections, where we
make use of the symmetry properties of the system in
question to compute the integrals.

Rather than dealing directly with the density of states
p(E), we find it convenient to work instead with the trace
of the resolvant 1/E H, —

g(E)=Tr 1 1

n

(2.1)

where E„are the energy levels of the Hamiltonian H.
This trace is related to the density of states through

p(E) = ——Img (E+ie)1

classical approximations we use of eliminating contribu-
tions from long-term dynamics, where the approxima-
tions break down. It has the undesirable e8'ect, however,
of forcing us to consider dynamics for complex energies,
a situation which is difBcult to deal with. For this reason
we will largely ignore the issue of e being nonzero, assum-
ing either that e is small enough that it does not affect the
classical dynamics or that @=0 and some other trunca-
tion procedure is in effect to eliminate the consequences
of long-term dynamics.

We will use a mixed-representation Green's function to
compute the trace in Eq. (2.1):

g (E)= 1

(2~6')" Idx ' J d p exp(i p x'/A') G ( p, x', E),

(2.3)

he.e

for small positive E. If e is allowed to be finite in Eq. (2.2)
the result is a density of states that is averaged over an
energy interval of width e, whereas in the limit e~O the
exact density of states is recovered [2]. In calculations
such as ours it.has often been assumed that e is small but
6nite, because this has the desirable efFect on the semi-

I

G(p, x', E)=(p x') .1
(2.4)

The basis of the calculation is the following semiclassical
approximation for G (p, x', E) in terms of classical trajec-
tories [1]:

e ivy/4 l
G(p, x',E)=, „gD(p, x', E) exp T(p, x', E—) i@~/2—

i~ (2m)'"-"" (2.5)

where the sum is taken over the classical trajectories of energy E that start at position x' and end with momentum p in
positive time. The integer n is the number of degrees of freedom and the phase T(p, x,E) is the action,

T(p, x', E)= —p'. x' — x dp .P (2.6)
X

The Maslov index p is initially 0 and is incremented or decremented at subsequent momentum-space caustics according
to the usual rules [3,4]. In addition, there is an extra phase contribution determined by the integer v= —sgn(M/Bt)„
to be evaluated near t =0. Finally, the amplitude D (p, x', E) can be written as a Jacobian,

1/2

D (p, x', E)= B(p', t)
B(p,E) (2.7)

where the subscript x' indicates that derivatives are taken while x' is held 6xed. Here, and in the future, quantities re-
lated to the initial point of a trajectory are primed and quantities related to the 6nal point of a trajectory are unprimed.

This approximation is derived in a straightforward way from the Van Vleck approximation for the mixed-
representation propagator K(p, x', t), in which E(p, x', t) is expressed approximately as a sum over trajectories from x'
to p of a given time t, much like Eq. (2.5) itself. The propagator IC(p, x', t) is related to the Green's function G(p, x', E)
through a Laplace transform in time, and on computing this transformation by means of the stationary phase approxi-
mation, one obtains Eq. (2.5).

I.et us now begin to compute the trace. Inserting approximation (2.5) into Eq. (2.3), we find

g(E)= . i z dz+D(p, xE)exp S(p, x', E) i—pn/2+ivx—/41 1 l

i& (2m)"-'" (2.&)

BS(p,x', E) P+P ~ (2.9a)

where z=(x', p) and S(p, x', E)= T(p, x', E)+p x'. We
will use the stationary phase approximation to compute
the integral over z. Using the generating function condi-
tions on T(p, x', E), the stationary phase conditions are

BS(p,x', E ) X+X
ap

There are two distinct kinds of trajectory for which this
stationary phase condition holds. The erst is that of the
so-called zero-length orbits, which are limiting cases of
short-time orbits connecting (x', p') to some nearby
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(x,p). Equation (2.5) does not properly represent these
orbits —the end-point corrections from the t =0 limit of
the Laplace transform relating G(p, x', E) to K(p, x', t)
are important for such orbits, but are not included in Eq.
(2.5). However, using improved approximations it is pos-
sible to compute the contribution of zero-length orbits to
the density of states. This calculation has been per-
formed by Berry and Mount [17] and is not affected by
the presence of a continuous symmetry, so their calcula-
tions apply equally well to the systems we want to consid-
er. The result is the Thomas-Fermi density of states
PrF(E)

prF(E)= fdxdp5(E —H(x, p)),1

( 2iriii )" (2.10)

which represents an average of p(E) over an energy scale
that is large compared with O(iri).

The second case of the stationary phase condition
occurs when the trajectory connecting x' to p is a period-
ic orbit, and the contribution from these orbits is pro-
foundly affected by the presence of continuous sym-
metries. The contribution from periodic orbits to the
density of states, p„,(E) say, represents fiuctuations of
p(E) away from the mean behavior of Eq. (2.10) with an
energy scale b,E-O(A/T), where T is the period of a
periodic orbit. We are primarily interested in the contri-
bution of periodic orbits and will therefore largely ignore
prF(E). One should keep in mind, however, that the
Thomas-Fermi contribution should be included in the
trace formulas that we will derive in this paper.

The stationary phase points of Eq. (2.8) that lie on a
periodic orbit are not isolated, because, given any such
point z, a nearby point on the same periodic orbit will
also satisfy the stationary phase condition. Therefore the

stationary phase points occur in families that are at least
one dimensional. In his original derivation [1],Gutzwill-
er considered the most typical case in which each period-
ic orbit is isolated in its energy shell, so that the corre-
sponding family of stationary phase points is precisely
one dimensional. More generally, however, for example,
when there are continuous symmetries present, periodic
orbits may occur in higher-dimensional families, so that
the stationary phase integrals are more degenerate. We
will present a calculation of g(E) that is valid in this
more general case.

We assume that the periodic orbits occur in k-
parameter families, so that a given family of periodic or-
bits maps out a (1+k)-dimensional surface in phase
space, which we denote by I. In computing the integral
over z in Eq. (2.8), we will then split the 2n coordinates z
into a group of 1+k coordinates g, and a group of
2n —1 —k coordinates g—for example, we might let iI
consist of the first 1+k components of x' and let g consist
of the remaining x' components, along with all n corn-
ponents of p. For the moment, however, we let g and iI
be quite arbitrary combinations of x' and p components.
We will specify them in more detail later. Integrating
over the g coordinates first, we find that the phase in Eq.
(2.8) becomes rapidly varying away from the discrete set
of g values (at fixed iI) that corresponds to the periodic
orbit family, allowing us to compute this part of integral
by means of the standard stationary phase approxima-
tion. Having done this, we are left with a (1+k)-
dimensional integral over I in the g coordinates, for
which the phase is stationary and which must therefore
be computed without approximation.

Carrying out explicitly the procedure outlined above,
we arrive at the following sum over periodic orbit fami-
lies I:

(E) 1 1
d

B(p', t)
i' (2iriii)" ' „r B(p,E)

1/2

exp
l S(E) i—pir/2+—i vm/4 fd g

.exp
BS

2A' 8 8

1 1 lg exp S(E) ip—m!2+i—vier/, 4
i~ (2~)""

B(p', t)
B(p,E)

1/2
BS

Bg Bg
(2.1 1)

S (E)=f —x d p = tt) p.d x, (2.12)

where v=v+N+ —X, and where N+ and N are, re-
spectively, the number of positive eigenvalues and the
number of negative eigenvalues of the
(2n —1 —k)X(2n —1 —k) symmetric matrix 8 S/BJB(
(derivatives with respect to g are taken while iI is held
fixed). In particular, N++N =2n —1 —k. We have as-
sumed that p —v/2 is constant over I . It is convenient
to rewrite pv/2=&, r—+k/2, where cr =p n+N-
+ (1—v) /2 is an integer.

We denote by S(E) the value of S(p, x', E) on a period-
ic orbit. Because S(p, x,E) is stationary at periodic or-
bits, as in Eq. (2.9), S(E) is the same for all periodic or-
bits in I, which is why it was removed from the integral
in Eq. (2.11). We can express S(E) in a more familiar
form as follows:

g(E)= . g A(I )exp —S(E) ioir/2—1 1 l

i' (2miiri)"

(2.13)

where the amplitude A (I ) is given by
1/2 2

1/2

A(r)= f d~ a(p, t)
B(p, E) (2.14)

Thus each periodic orbit family contributes to p(E) an
oscillatory term whose phase is S(E) and whose ampli-
tude is A (I ). If we think of iI as local coordinates on I,

I

where the integral is taken around any periodic orbit in
r.

We can rewrite Eq. (2.11) as
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the amplitude 2 (I ) can be regarded as the total measure
of I with respect to a certain (1+k)-dimensional volume
element dr, given by the integrand of Eq. (2.14). As it
stands, this expression for A (I ) is rather difficult to in-
terpret. The main object of the calculations from here on
will be to find a more elegant interpretation of A (I ) in
terms of intrinsic properties of I that are easily deter-
mined in practice. The first step in making progress in
this program is to decide on coordinates il and j.

So far, we have not specified in detail how q and g are
to be chosen. An important consideration in doing so is
whether 1+k +n or 1+k) n. For the Abelian sym-
metries we consider in this paper, we necessarily have
1+k ~n, so we treat this case here. We wish to point
out, however, that this is not always the case for more
complicated symmetries —for example, k+1=3+1)n
=3 for a three-degree-of-freedom system with rotational
symmetry —so the case 1+k ) n will also need to be con-
sidered in general. As mentioned previously, one possible
choice is to let g consist of the first 1+k components of
x' and to let g consist of the remaining components of x'
and p. While this choice will be perfectly good, in gen-
eral, it is convenient to be more specific about the
configuration-space coordinates. We use configuration-
space coordinates x=(x~~, xi), constructed so that the
coordinate axes of the 1+k coordinates x~~ are parallel to
the periodic orbit family in configuration space and the
coordinate axes of the remaining n —1 —k coordinates x~
are transverse to it, as shown in Fig. 1. In particular, the
periodic orbit orbit family is at constant x~. Also, denote
the mornenta conjugate to x~~ and x~ by p~~

and p~, respec-

BS
agag

ax,'a

(j2S ()2S

~p ~P ~P

a(p, —p,') a(p, —p,')

Bxg Bp

B(x' —x)
Bxi

B(x' —x)
ap

B(pi pi, x x )

a(x,', p)

B(zi—zi, xi~i, xji, E)

B(z,E)
(2.15)

where we denote zi=(xi, pi) and z~~=(x~~, p~~). In the
third line of the equation, we have used some rules for
manipulating Jacobians that are outlined in more detail
in Appendix A. Also, it may be helpful to note that we
can replace x~~

—
x~~ with x~~ in the numerator of these Jaco-

bians because x~~ is held fixed while the derivatives are
taken. We can use Eq. (2.15) to combine the two factors
in the integrand of Eq. (2.14) as follows:

tively. We then let g =
xt~ and g = (xi,p).

Writing out the matrix 8 5/Bg Bg explicitly in terms of
these coordinates and using the relationships in Eq. (2.9),
we find

a(p, r)

&(p, E)

1/2 —1/2
BS

agog a(z, Z)
—1/2

B(zi—zi, xi~, xiiE)

a(z, t)

a(z, E)

—1/2
~( ', &)

B(zi zi, x~~, E)
B(zi, pj's, t) X))

(2.16)

Finally, we can write for the amplitude A (I )

—1/2
B(zi—zi, xi', E)

(2.17)

FIG. 1. The configuration space coordinates (x~~, x&) are illus-
trated schematically for the case k =1. The x~~ coordinates are
parallel to I and the x~ coordinates transverse to I in
configuration space.

Equation (2.17) is the final result of this section and is
as far as we can take the calculations without making
more detailed assumptions about the dynamics. Once
again, we would like to stress that so far we have made
no assumptions about the symmetries that are present
other than 1+k ~ n. In Sec. III we wi11 assume that the
periodic orbits occur in continuous families because of
the presence of some number of first integrals in involu-
tion and we will use the ensuing symmetry to reduce
A (I ) to a form in which it is easily computed in prac-
tice.
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III. USING THE SYMMETRY

From now on we will suppose that, in addition to the
Hamiltonian H, there are k independent constants of the
motion (J„.. . ,Jk), denoted collectively by J, and that
these constants are in involution. That is, we assume that
any two first integrals J, and Jb Poisson-commute as fol-
lows:

[J.,sb] =0 . (3.1)

hg=hg - hg (3.2)

in which the ordering of the individual ha factors does
a

not matter. Notice that G is a k-dimensional group. One
more consequence of Eq. (3.1) is that J is constant along
hz orbits, that is, G preserves J as well as H. We note in
passing that it will often be possible to choose the J 's in
such a way that the 8 coordinates on G are naturally 2m.

periodic; however, this will not always be the case.
Let us now examine the consequences of this symmetry

for the structure of periodic orbits. From a given period-
ic orbit yo, the group G will generate a k-parameter fami-
ly of periodic orbits, all of the same energy and period.
We can use 8 to parametrize this family of periodic orbits
according to yz(t) =hzyo(t), as illustrated in Fig. 2. Be-
cause we assume that G accounts for all of the sym-
metries of H, there are no other periodic orbits that are
continuously related to a given y& except those generated
by G. Therefore the whole family of periodic orbits I is
described naturally by the coordinates (t, 8). These coor-
dinates give rise to a natural measure on I, defined by the
volume element dt d8. It will turn out, as one might ex-
pect, that the volume element d v, given by the integrand

We also assume that there are no other first integrals be-
sides J, so that the J's account for all of the symmetry
that is present in H. A particular example is that of axial
symmetry, for which we can take J=L„the component
of angular momentum along the symmetry axis. On the
other hand, full three-dimensional rotational symmetry
does not fall into this class, because two di6'erent com-
ponents of angular momentum will not commute as in
Eq. (3.1).

An important aspect of the presence of first integrals is
that their existence is equivalent to the presence of a sym-
metry group for the Hamiltonian [18,19]. We can gen-
erate a symmetry of H by letting phase space How along
the Hamiltonian vector field of any one of the constants,
J, say, for an elapsed parameter 0, . Let us denote the
symplectic mapping of phase space obtained in this way
by hz . Because [H,J, ] =0, we see that ha preserves H

a a
and that hz commutes with P„ the fiow of Hamiltonian

a

H for time t. Therefore h0 is a symmetry of H. In this
a

way, each J, generates a one-parameter symmetry group
of H. Because of Eq. (3.1), the symmetries h8 and hs

Q b

generated by two different first integrals will commute
[18]. Therefore the first integrals J will collectively gen-
erate an Abelian symmetry group, G say, which is con-
veniently parametrized in terms of the k vector
8=(8&, . . . , 8k). The vector 8 defines the transformation

FIG. 2. The periodic orbit family I is parametrized by (t, 8)
through yz(t) =hzyo(t), illustrated here for k =1.

of Eq. (2.16), is most naturally expressed in terms of
dt d8. In fact we will show that d~ is proportional to
dt d8, so that the integral for A (1 ) in Eq. (2.16) is pro-
portional to the total measure of I with respect to the
volume element dt d 8.

The coordinates described above are already somewhat
familiar in the special case of integrable systems, for
which 1+k =n. In this case I is a rational torus, on
which natural coordinates are given by the angle vari-
ables (which are not the same as 8). The coordinates
(8, t) are then related to the angle coordinates by a con-
stant linear transformation. In a similar vein we mention
that, just as the invariant surfaces of integrable systems
are topologically equivalent to n tori [18], the periodic or-
bit families I induced by Abelian symmetries are in gen-
eral topologically equivalent to (1+k) tori, provided they
are compact (as must be the case for bound systems).
This follows from the fact that any compact surface on
which there exists a set of vector fields (in our case the
Hamiltonian vector fields of H and J), that span the sur-
face everywhere and that commute in the sense of the Lie
bracket, is topologically a torus [18].

Let us now return to the program of converting Eq.
(2.17) into a more usable form. As it stands, we can think
of the Jacobian in Eq. (2.17) as corresponding to a change
between alternate sets of coordinates, (zi ZJ x~[ XII E}
and (zi, xII, pI'I, t), on extended phase space P=P X IR. (P is
phase space and R corresponds to time. ) Let us extend
this idea a little further to include 8 evolution and consid-
er the generalized extended phase space P=P X R XR".
Dynamics on generalized extended phase space is given
by

(z', r', 8')~(z=h, p, z', r + r', 8+8')

in "time" (t, 8). We will generally take t'=0 and 8'=0.
The obvious coordinates for P are (z, t, 8) defined in the
natural way. However, we will also be interested in coor-
dinates (z', t, 8), where z' is defined through z=hzP, z',
and even coordinate systems that mix functions of z'
(which we will always prime, as in xII, p~~, etc.) and func-
tions of z.

In addition we note that from the extended-phase-
space construction above and in the forthcoming calcula-
tions, it will become apparent that in many ways there is
a symmetry between t and 8 evolutions and between the
Hamiltonian H and the Hamiltonians J. For example, we
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Using the generalized extended-phase-space construc-
tion above, we can reinterpret the integrand of Eq. (2.17)
as a Jacobian on P as follows:

a(zi —zi, xii, E) a(zi —zi, xii, E)

a(zt, pji, t) a(z pjl t)
jl

8
X)( p

have already seen that t and 8 appear symmetrically in
the volume element dt d8. While this holds true for
many aspects of the calculation, the final result must ulti-
mately break the symmetry between t and 8 because we
are calculating the density of states in energy, and this
singles out the Hamiltonian 0 from the other constants
J.

a(zt zt, xii, xii, E,8)

a(zt, zji, t, 8)
(3.3)

where of course we evaluate these Jacobians for the par-
ticular evolution parameters 0=0 and t =T, the period
of the periodic orbit. Notice that the Jacobian of Eq.
(3.3) involves only time evolution. We will now do some
manipulations that lead to derivatives with respect to 8
(evaluated at 8=0), and these will introduce infinitesimal
0 evolutions into the calculation. We use the chain rule
to expand the Jacobian into the following product:

a(z,', xi', , xll, E,J) a(z,', zi, , t, e)

a(z, —z,', 8) a(xll, E,J)
a(zt~ J) "ll, "ll, E a(pll, t, e)

(3.4)
Because h &p, preserves J, the value of J appearing above
can refer either to the initial point z' or the final point z.

Let us concentrate on the second Jacobian in Eq. (3.4).
Using the chain rule we break it up as follows:

FIG. 3. A schematic illustration of the construction of the
reduced surface of section considered in Sec. III, in which some
dimensions have been suppressed. The picture is meant to be
embedded in a surface of constant (H, J). A trajectory starting
on X is first carried around I with P„and subsequently project-
ed back onto X with h~. In this way a mapping g: X~X is ob-
tained. There is no special significance to the curves drawn on
I here. They are just meant to represent folds and tucks, allow-
ing for I to have nontrivial topology.

fact, equal to each other on I . The first is given by a ma-
trix of xll velocities under Hamiltonians (H, J), evaluated
at z. By Hamiltonian s equations, the second is given by
a matrix of x~~ velocities evaluated at z'. When z =z' both
of these Jacobians are equal. Each of the Jacobians,
when evaluated on I, can be thought of as a Jacobian for
the change of coordinates, (t, e) to xll, on I . This is be-
cause the Hamiltonian Bow vectors for the Hamiltonians
(H, J ) are coordinate basis vectors for the coordinates
(t, 8) on I . We can therefore write

a(pjl t 8)
a(t, e,E,J)

'

a(t, e,E,J) *,',
ji a(pjl t 8)

a(xii) a(E J)
a(t, 8) z',

xj~, E,J a(pjl)

'

a(x„,E,J)
d xi'

a(pjl t' 8) zJ xll

—I/2

a(t, e)

a«, e)
a(x )

a(xll) a(E J)
'

a(t 8) . ' a(pjl) *'"jl"8

(3.5)

In the second line of the equation we have used the fact
that fixing (zi, xi'i, E,J) is equivalent to fixing z' (recall that
E =E' and J=J'). By invoking Hamilton's .equations,
we can see that the two final Jacobians in Eq. (3.5) are, in

I

=dt d8 . (3.6)

We have reduced the amplitude 3 ( I ) to the following
form:

~(r)= jdtder
a(z, —z,', 8)

a(z', J) I
X

)/
x X

j)
y E

—1/2

(3.7)

Once again we use the chain rule to break up the remain-
ing Jacobian,

a(zi —zi, e) a(z, —z,', e)
'

a(zi —zi, J)
a(z', J) I

Xffy X//y
E

88 a(zt —zt)
I I

x)),x)),E,ZJ zj
I

xJ[yX//pEy J
(3.&)
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These Jacobians are very conveniently interpreted in
terms of the dynamics on a reduced surface of section,
which arises in the following way. Consider the second
Jacobian, whose derivatives are taken at constant
(x~~, x~~, E,J). To evaluate this we consider trajectories
whose initial conditions are displaced from I at constant
x~~ and constant (H, J) A.fter following one of these tra-
jectories around I we then adjust t and 8 until the trajec-
tory returns to the original value of x~~. Because we have
assumed that 6 preserves J, this trajectory ends up with
the same values of (H, J) that it started with. The process
we have just described, designed so that the derivatives
are taken at constant (x~~, x~~, E,J), describes exactly a sur-
face of section mapping on a reduced surface of section
X=

[ z~x~~, H, J= const ), illustrated in Fig. 3. It is just like
a regular surface of section mapping except that X is
codimension k + 1 in the invariant surface
tz~H, J=const), rather than codimension 1 in the invari-
ant surface [z~H =constj, and we vary k+1 parameters
(t, 8), rather than 1 parameter t, to get trajectories back
to X. (In Appendix B we make a listing of the differences
between the various structures that contribute to the
trace formula and make a comparison between systems
with symmetry and systems without symmetry, so it
might be convenient to refer there at appropriate points
in this section. ) Let us denote the mapping by hatt. Since X
is even dimensional, we can make it into a symplectic
manifold by restricting the full-phase-space symplectic
form 0 to it. It is shown in Appendix C that g is sym-
plectic with respect to this symplectic structure.

Denote the linearization of
hatt

at the periodic orbit by
M. We can use coordinates zj on X, in terms of which
the 2(n —1 —k) X 2(n —1 —k) matrix M can be written

genvalues of the linearization of the full-phase-space dy-
namics and may therefore be obtained without the use of
a reduced surface of section mapping.

The remaining Jacobian (B8/BJ), E can also be
X[[yX[[y yZg Zj

given an invariant meaning in terms of reduced surface of
section mappings. For this it is useful to allow the J at
which the reduced surface of section is constructed to
vary (but we still restrict ourselves to H=E). This
creates a family of reduced surfaces of section Xz,
parametrized by J. Keeping ( x~~, x~~, E,z~ —z~ ) fixed then
amounts to following the fixed points of the maps gz as J
is varied. These fixed points lie on what we call general-
ized periodic orbits: trajectories which close on them-
selves after a generalized time (0, T). We call (B,T) the
generalized period. As with ordinary periodic orbits,
generalized periodic orbits arise in (k+1)-dimensional
families, which we denote I ~. (We will still use the
simpler notation I for the ordinary periodic orbits. )

Near I there is precisely one I z for each J. We can then
interpret (B8/BJ), as the Jacobian for a change

X//yX[jy yZj Zj

from J to 6 as labels of I J,

a8 ae
E

(3.11)

Because 0 is constant on each I &, the Jacobian on the
right is well defined, and in fact is itself constant on I .
The Jacobian Be/BJ is actually quite easily computed
once a linearization of the full-phase-space dynamics is
found. We outline how this is done in Appendix D.

We have shown that the integrand of Eq. (3.7) is con-
stant, so we can write

'BZ JM=
'8Zg

This allows us to write

(3.9)
W (r) = ~det(M —I)

~

-'"
aJ

—1/2 j dtd8. (3.12)

B(z,—z,')

BZj

'BZJ —I=M —I .
I I

Xi), Xii, E,J Cgzi
(3.10)

This is just like the factor that arises in Gutzwiller s for-
mula for isolated orbits, except that here M is the lineari-
zation of a reduced surface of section mapping rather
than a regular surface of section mapping.

An important point is that the quantity of interest for
Eq. (3.7), det(M I), is an invari—ant of I . We can see
this as follows. First, we are free to compute M in terms
of any set of coordinates on X besides z~ (even noncanoni-
cal coordinates). This is because the effect of a change of
coordinates is to conjugate M with the Jacobian matrix of
the coordinate change, which leaves det(M I) invari-—
ant. Second, we find, for similar reasons, that det(M I)—
remains unchanged if we compute it for a different sur-
face of section X', even if X' is located at a different point
of I . To see this let m be the mapping from X to some
nearby X'. Then the surface of section mapping for X' is
g'= wo Q w ', so that M' is related to M by conjugation
and det(M' —l)=det(M I). The term det(M I—) is-
determined solely by the eigenvalues of M. As discussed
in Appendix D, these eigenvalues are simultaneously ei-

All that remains is to compute the volume of I with
respect to dt d8. In the case of isolated orbits, there is
only an integral over t, giving To, the period of the primi-
tive periodic orbit, as in Gutzwiller s formula. More gen-
erally, we are left with a 8 integral after integrating over
t. To examine this we use a construction that is related
to the discussion of Arnol'd in Ref. [18], p. 274, so we
refer the reader there for more details. First we identify
points in 8 space which map yo into itself. In doing so
we get a lattice of points in 8 space, in which we can
identify a unit cell with the k torus that one obtains in a
constant time slice of I . The integral over 8 is then just
the k volume Vo of a unit cell. If (e„.. . , ez) are basis
vectors for the lattice we can write

fd8= Vo=det(e„. . . , e„) . (3.13)

Equation (3.13) reduces the integral of Eq. (3.12) to the
discrete calculation of finding To and (e„.. . , ez), and
then taking a determinant.

We have now fulfilled the task of expressing A (I ) in a
coordinate-free, invariant way. We collect the results in
the following trace formula:
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1 1g(E)=
(2 g)k/2

To Vo exp —S (E) i—on/. 2.

1/2

(3.14)

Expressed in this way, we see that the results are very
much like Gutzwiller's trace formula for isolated orbits.
Instead of a sum over individual orbits we have a sum
over k parameter families, each of whose contributions is
enhanced by a factor of order A over the contribu-
tions of isolated orbits in Gutzwiller's formula. The
period of the primitive periodic orbit Tp is replaced with

Tp Vp 2nd M is obtained from a reduced surface of sec-
tion mapping rather than the regular surface of section
mapping of Gutzwiller's formula. The only remaining
di8'erence is that an extra factor ~BB/BJ~ ' appears
that is not present in the sum for isolated orbits.

S(E)=S(E)+(t)psdO . (4.2)

Assuming that the periodic orbit winds around the axis
of symmetry X times, we have

full density of states, it does give a reduced density of
states, corresponding to a magnetic quantum number of
m =p/A. This is the approach that has been taken with
the system of Eq. (4.1) in the past, and has been quite suc-
cessful [6,7]. However, besides being of academic in-
terest, there are practical reasons for wanting to apply
the trace formula to the full density of states. For exam-
ple, it is the full density of states, not the partial densities
of states, that is important for the shell structure in nu-
clei. Thus the results of this section are of interest for the
shell structure of highly deformed nuclei.

The first step in applying Eq. (3.14) is to evaluate the
action S(E) of the periodic orbit. This is related to the
action S(E)=fp dp+p, dz in the reduced system ac-
cording to

IV. SPECIAL CASES
S (E)=S(E)+2mNL, , (4.3)

In this section we will illustrate the general results of
Sec. III with some important special cases. In IV A we
consider the case of axial symmetry, which is perhaps the
simplest nontrivial example to which our results apply.
In particular, we consider systems of three degrees of
freedom, using as a primary example, the hydrogen atom
in a strong magnetic field. In VB we go on to examine
the case of integrable systems, where we reinterpret Eq.
(3.14) in terms of action-angle variables.

A. Axial symmetry

Let us examine how Eq. (3.14) applies to axially sym-
metric systems of three degrees of freedom. We use cy-
lindrical polar coordinates (p, O, z) on configuration space,
with the conjugate momenta denoted by (p,p&,p, ). In
cases of axial symmetry, the 0 coordinate is ignorable in
the Hamiltonian H(p, z,p,ps, p, ). We take as our model
for such systems the example of a hydrogen atom in a
strong magnetic field, for which the Hamiltonian can be
put in the following dimensionless form [6,7]:

H(P zp&, P&,P ) P + 2+P, + p (41)

where r =p +z and y is proportional to the magnetic-
field strength. This system is of interest because it is an
example of an experimentally realized system that can ex-
hibit global chaos in phase space.

The obvious way to deal with a Hamiltonian like that
in Eq. (4.1) is to ignore the 0 coordinate and treat
H'(p, z,p,ps, p, ) as a system of two-degree-of-freedom
Hamiltonians, parametrized by p&. This reduced physi-
cal system misses crucial information, however, which is
required for the trace formula discussed in this paper.
For example, periodic orbits of the reduced system will,
in general, not close in the 0 coordinate and so will not be
periodic in the full system. While applying the trace for-
mula to the reduced classical system does not lead to the

where we use L, to denote the particular value of p& on
the periodic orbit family.

Turning to the amplitude„ it turns out that a regular
surface of section mapping about the periodic orbit in re-
duced phase space can be used to evaluate the term
det(M I). Let u—s illustrate this for the particular exam-
ple of a surface of section X(z =0), formed in the reduced
phase space by fixing z =0 and H =E (while the process
of reduction fixes p&=L, ). Let itj denote the mapping on
X. We will compare this with a mapping g on a reduced
surface of section X, constructed in the manner discussed
in Sec. III. According to the theory presented there, X is
formed by fixing H =E, p& =L, along with two addition-
al parameters. In order to have X correspond to X, one
of the additional conditions must obviously be z =0. Let
us choose the other condition to be 0=0. We can use
(p,p ) as coordinates on both X and X—we will show
that P and P are identical when written in these coordi-
nates.

The surface of section mapping on X is illustrated in
Fig. 4. A trajectory is started at z =0 with z &0 and is
iterated forward until it passes through z=0 once again
with z )0. Denote this by (p', p' )~(p,P~). To map the
corresponding point on X using g, we start the same tra-
jectory in full phase space, but with the additional initial
condition 8'=0. We must now use both time evolution
and rotation to bring this trajectory back to z=0 and
0=0. To do this we first follow the trajectory forward in
time until it passes through z=0 with (p,pz) =(p,pz) and
0=0. Then this point is returned to 0=0 by a rotation
through angle —9, completing the mapping g. Since
(p,p~) is constant under rotation (the Hamiltonian is ps),
we see that the mapping P takes (p',pz) into (p,P&), so
the mapping f and f are identical in these coordinates as
claimed. Finally, we note that none of the arguments
above were particular to the z =0 surface of section, so
we assert that the mappings are equivalent in general.

We now consider the Tp Vp factor. We expect that a
generic periodic orbit will be mapped into itself by a rota-
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tion of angle 2m, but by no smaller rotation. Therefore
we generally find that TOVp=27TTp ~ Exceptional cases
can occur, however, in which the periodic orbit is sym-
metric under a smaller rotation, 2'/Nr say. Nr counts
the number of distinct rotations that map the periodic or-
bit into itself. Including these exceptional cases, we
therefore have TpVp=(2~/Nl)Tp. We mention in pass-
ing that there might be periodic orbits that are even more
degenerate in that they are invariant under all rotations.
These correspond to equilibria of the reduced system.
Periodic orbits such as these will be isolated in the full-
phase-space energy shell and will contribute to the densi-
ty of states at a lower order in fi (their contribution is
smaller by a factor of order A' ) than regular orbits.

z

v(p, p, )

(p,pp)

The last remaining factor that needs to be dealt with is
the Be/BJ term, in which e consists of a single com-
ponent 6 and J=p for axial symmetry. e is the amount
by which periodic orbits of the reduced system fail to
close in the coordinate 0, as a function of p&. That is,
given a point on a periodic orbit of the reduced system, a
corresponding point in the full phase space will close on
itself after some time evolution and a rotation through
angle e. We then have the following specialization for
these systems:

ae de
BJ dp0

(4.4)

2& lT exp —S (E)—i cr m/2

Notice that this represents information that is missing in
the reduced system, so full-phase-space dynamics is
necessary to determine it. As discussed in Appendix D, it
is not actually necessary to know directly about the gen-
eralized periodic orbits in order to evaluate Eq. (4.4). For
that purpose a linearization of the full-phase-space dy-
namics about the genuinely periodic orbit will su%ce.

We can now write a specialized trace formula for axial-
ly symmetric systems as follows:

g(E)= 1 1

iA (2rrifi)'~

periodic
orbits

1/2

det(M I) 'i-
dpo

giving the complete density of states. Besides the fact
that it sums over periodic orbits of the full phase space
dynamics, Eq. (4.5) differs from the application of Eq.
(1.1) to the reduced system (for the reduced dynamics) in
the presence the term d6/dps, which has no analog in
Eq. (1.1). In addition, the phase S (E) is slightly different,
as indicated by Eq. (4.3).

Finally, we would like to point out that the considera-
tions of this section are easily adjusted to apply to any
system in which the symmetry manifests itself as the
presence of ignorable coordinates.

B. Integrable systems

plane z=O

FICx. 4. A configuration-space picture of the surfaces of sec-
tion f and li described in Sec. IV. In (a) the mapping p is con-
structed in the reduced coordinates (p, z) in the usual way. This
is to be contrasted with (b), where we present the corresponding
picture for the mapping li in the full set of coordinates (p, 9,z).
We first follow a trajectory starting at z =0 and 0=0 (phase
space point w') until it passes through z =0 with z )0 (at S) and
then rotate back to 9=0 [giving g(w')] to complete the map-
ping.

Integrable systems form an important special case of
the calculations presented in this paper, and the results
for such systems are most naturally expressed in terms of
action-angle variables (I,P). It is therefore of interest to
discuss how action-angle variables may be used to com-
pute Eq. (3.14), as we do in this section. Our calculations
will quickly converge to those of Berry and Tabor [14],
who show (in reverse) how the trace formula may be
summed for integrable systems to yield the torus quanti-
zation conditions.

Integrable systems correspond to the case k + 1 =n, in
which there is a complete set of commuting observables.
Using a standard procedure [18j, one can use the n first
integrals (H, J) to compute action-angle coordinates (I,P)
on phase space, which are canonical coordinates with the
property that the Hamiltonian H =H(I) is a function of
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NT=2~N, (4.6)

where T is the period and co(I) =BH(I)/BI is the vector
of angular frequencies corresponding to action-angle
variables (I,P). The phase S(E) entering into Eq. (3.14)
can be expressed in terms of the actions as follows:

I alone, independent of P. The first integrals J=J(I) can
also be expressed as functions of I alone. The level sets of
I are the invariant tori, which are invariant under t and 0
evolution. In fact, each invariant torus is the orbit under
(t, 8) evolution of any point on that torus.

The periodic orbit families for integrable systems are
precisely the rational tori, which we can label with n vec-
tors of integers, N, according to

=(2m )"„Be
BI

a(T, e)
B(H,J)

As should be expected, dt de~a(T, e)/B(H, J)~ '~ is in-
variant under a redefinition of the first integrals (H, J),
and, in particular, it is invariant if we replace (H, J) with
the action variables I. In this case the conjugate vari-
ables (t, e) are replaced with P. The generalized period
(T,e) is replaced by @(I), which is the angle displace-
ment of an initial condition on the rational torus from its
trajectory after a propagation for time T—this is just
2~N —co(I)T. In this expression, T is fixed at the value it
takes on the particular rational torus at the energy of in-
terest. The volume element dt d8 is replaced by dP,
which integrates to (2m )". We find therefore that

—1/2 —1/2

S(E)=2mN I, (4.7) —1/2

(4.8)

where this follows immediately from the deAning rela-
tionships for I or from direct computation of Eq. (2.12) in
action-angle coordinates. Turning to the amplitude of
Eq. (3.14), we note that the reduced surfaces considered
in Sec. III are vacuous for integrable systems, so the fac-
tor det(M I) is a—bsent [as when Eq. (1.1) is applied to
systems of one degree of freedom].

The remaining contributions to the trace formula need
more consideration. It is convenient, rather than dealing
with Be/BJ directly in Eq. (3.14), to consider instead
B(T,e)/B(H, J), which is related to ae/aJ through

a(T, e) a(T, e) a(H, e) dT(E) ae
B(H J) B(H e) B(H J) dE BJ

—(2~)~T —~»
BI

(4.10)

It remains to express dT(E) /dE of Eq. (4.8) directly in
terms of action-angle variables. To do this we first
difFerentiate Eq. (4.6) with respect to E while holding N
Axed, that is, we follow the rational torus labelled by N as
a function of energy. This yields

Bc@(I ) BI d T
BI BE dE

(4.11)

DifFerentiating H (I ) =E in the same way gives
1 =r0 BI/BE, which can be used to eliminate BI/BE from
Eq. (4.11). The result is

B(T,e)
B(H, J)

—1/2

=fd der B(H, J)

—1/2

(4.9)

where T(E) is the period of the rational torus as a func-
tion of E. We can identify (BT/BE)e=dT/dE because
holding e fixed (at 0) is equivalent to fixing the winding
number of a rational torus. Let us now consider the term

—1ND 'N
(4.12)

where D is the n Xn symmetric matrix Boo/BI=a H/
BI BI, assumed to be nonsingular.

This completes the calculation of the various terms
contributing to Eq. (3.14). Collecting these results to-
gether, we arrive at the following trace formula for in-
tegrable systems:

n/2 exp
2~iN I l ORAT

T —'»~detD '» r0.D
—'.~~'» ' (4.13)

rational
tori

Everything here is easily calculated once the action angle variables are known. From here one can follow directly the
calculations of Berry and Tabor to recover the torus quantization rules. We refer the reader to their work [14] for fur-
ther details.

V. CONCLUSION

We can summarize the results of this paper with the following explicit formula for the oscillatory part of the density
of states:

1 1
I osc g (2 g)k»(E)=

orbit
families

Be
BJ

[det(M I)('—5 ereT V cos
2

1/2 (5.1)
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This is a direct generalization of Eq. (1.1) and is obtained
from the trace formula of Eq. (3.14) by a straightforward
application of Eq. (2.2). Just like Gutzwiller's formula
for isolated orbits, this trace formula depends on intrinsic
properties of the periodic orbit families that are clearly
independent of the coordinates used to compute them.

It remains to be seen that the Maslov index o. occur-
ring in the trace formula in this paper has an invariant
geometrical interpretation. In the case of isolated period-
ic orbits, it has been shown [3,4] that the Maslov index is
equal to the number of times that stable and unstable
manifolds wind around the periodic orbit over one traver-
sal of it. There should obviously be a similar interpreta-
tion for the index of Eq. (5.1), involving the invariant
manifolds of the whole family I (which are Lagrangian),
though we have not shown that in this paper. Such an in-
terpretation would be useful in a practical implementa-
tion of Eq. (6.1).

The calculations presented in this paper have generali-
zations to the case where there is a non-Abelian symme-
try, the most important example of which is rotational
symmetry. This more general calculation is important
because it has applications to important physical prob-
lems like atoms and nuclear shell structure. We will
present the calculation for non-Abelian symmetry in a fu-
ture paper.

An issue that we have largely bypassed in this paper,
but hope to address in future publications, is the connec-
tion with symmetry-reduced dynamics. Equation (5.1)
makes use of the full dynamics of the system in question.
In practice, however, if one needed to deal with a system
with symmetry, a useful practice would be to use that
symmetry to reduce the Hamiltonian. In quantum
mechanics this would mean decomposing the Hamiltoni-
an into its irreducible components, corresponding to the
irreducible representations of the symmetry group.
There is an analogous procedure in classical mechanics
whereby one uses the symmetry to achieve a reduction in
the number of degrees of freedom. An obvious question
is whether one can relate the spectrum of an irreducible
component of the Hamiltonian, determined by energy
levels of a given symmetry class, to the reduced classical
dynamics.

This question has been answered in the af5rmative by
Robbins [20] for the case of discrete symmetry. He
shows that the density of states of an irreducible com-
ponent of the Hamiltonian is given by a trace formula in-
volving the periodic orbits of the classically reduced sys-
tem. It seems clear that a similar relationship should ex-
ist in the case of continuous symmetries, so that the trace
formulas we have derived could be decomposed into indi-
vidual sums for the density of states of each irreducible
component, with each sum involving periodic orbits of
the reduced system. Indeed, for axial symmetry this is al-
ready known to be the case [6,7j. It needs to be under-
stood in a more general context, however, and is some-
thing we hope to report on in the future.
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APPENDIX A

%"hile manipulating Jacobians in this paper, we use
certain tricks repeatedly. It is therefore worthwhile stat-
ing them explicitly, as we do in this appendix.

Let (p, q), (r, s), and (u, v) be alternative sets of in-
dependent variables (p, q, etc., may be multidimensional).
We make frequent use of the chain rule

B(p, q) B(p, q) B(r,s)
B(u, v) B(r,s) B(u, v)

(A 1)

both to combine Jacobians and also to break up existing
Jacobians into Jacobians that depend on more desirable
arguments. A less obvious identity that we use is the fol-
lowing:

B(u, v)

B(r,v)
(A2)

where the Jacobians are enclosed by bars to emphasize
that the determinants are being taken. Here, as in the
rest of the paper, a subscript on a Jacobian indicates that
the variable is held fixed while derivatives are taken.
This identity is found by explicitly writing out
B(u, v)/B(u, r) in components and expanding the deter-
minant by means of Cramer's rule. The first use of (A2)
occurs in Eq. (2.15), where it is used to bring x~'~ and E
into the argument of the Jacobian there.

APPENDIX B

In this appendix we will collect together the various
structures that arise in the trace formula for systems with
symmetry and compare them with their counterparts in
the usual trace formula. The major difference is that the
trace formula for systems with symmetry involves a sum
over (1+k)-dimensional families I of periodic orbits
rather than individual orbits. The parametrization of I
with the 1+k coordinates (t, 8) contrasts the parametriz-
ation of a single orbit with the coordinate t. The natural
measure of I is in terms of the volume element dt d8
rather than the measure dt of a single orbit. This mani-
fests itself in the final result in that the period of a primi-
tive orbit To, appearing in Eq. (1.1), is replaced by To Vo,
where Vo comes from a 8 integral over I .

Surface of section mappings also arise in a different
way. In systems with symmetry one can restrict the dy-
namics to a (2n —1 —k)-dimensional level surface of
(H, J) rather than the (2n —1)-dimensional energy shell
H=E. One then chooses a surface of section to be of
codimension 1+k in a level surface of (H, J) rather than
codimension 1 in a level surface of H. The dimension of
one of these reduced surfaces of section is then
2(n —1 —k), as compared to 2(n —1) in the case of a sys-
tern without symmetry. To generate the reduced surface
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of section mapping, (1+k) parameters (t, 8) are varied
instead of the single parameter t. Finally, the surface of
section mapping enters into the trace formula through
the term det(M I),—where M is of size 2(n —1 —k) rath-
er than 2(n —1).

Finally, we find that for systems with symmetry, gen-
eralized periodic orbits as well as ordinary periodic or-
bits, are of interest. These arise through the factor
Be/BJ. Just as ordinary periodic orbits exist at each
value of the energy, with varying period T, generalized
periodic orbits occur at each value of (H, J), with
different values of the generalized period (T,e). Collec-
tively, the generalized periodic orbits define a 2(1+k)-
dimensional manifold A (Appendix D), for which the
analog in systems without symmetry is a two-dimensional
orbit cylinder. A is generally transversal to the reduced
surface of section in phase space and corresponds to ei-
genvalue 1 in a linearization of the full-phase-space dy-
namics (Appendix D).

APPENDIX C

In this appendix, we will show that the reduced surface
of section mapping P: X~X is symplectic with respect to
the symplectic structure induced on X from full phase
space. We consider the symplectic form Q~z obtained by
restricting the full-phase-space symplectic form Q to X.

The mapping g is symplectic with respect to 0
~ x if, for

any two vectors u and U tangent to X at some point z,

Q(g, u, g, v ) =Q(u, v), (Cl)

where f,u denotes the linearized propagation if u by the
map P. To check this condition let us relate the vectors
f~u and P~v to the constant-(t, 8) mapping P« =—h&P, ap-
propriate to the point z, which we know to be symplectic.
While gz =P,ez, a point on X that is infinitesimally dis-
placed from z will require propagation by a slightly
different t and 8. Let dt(w) and d8, (w) be the additional
propagation increments for a point displaced from z by
the vector w. Then we find

g, w =P,e w+dt(w)XH+d8, (w)Xz (C2)

where we use the summation convention on the a index,
and where X~ and X& are the vector fields associated

a
with Hamiltonians H and J„respectively (see Fig. 5).
From this we find that

A(g„u, g, v )=Q(u, v)+ I J„JbId8, (u)d8b(v)

+d8, (u)dJ, (g, e v)

—d8, (v)dJ, (g, e u), (C3)

where we make use of the fact that P« is symplectic, as
well as the identities Q(X+,XG ) = I F, G I and
Q(Xb-, w)=dF(w) for arbitrary functions F and G, and
vector w. Energy conservation is already taken into ac-
count in (C3). Using in addition the fact that X is at con-
stant J and t J„Jb I =0, we automatically find that condi-
tion (Cl) is satisfied and g is symplectic, as asserted.

APPENDIX D

The reduced surface of section map P: X~X plays an
important role in the derivation of the semiclassical trace
formula, entering into the final result through the term
det(M I—) A. s constructed in Sec. III, the map g is a
very useful conceptual tool in interpreting the trace for-
mula. However, when using the trace formula in practi-
cal calculations, it may not always be convenient to com-
pute det(M I) t—hrough g in the manner described in
Sec. III. In this appendix we will present a method by
which it is possible to extract the necessary information
from a linearization of the dynamics on full phase space,
eliminating the need for an explicit calculation of g in

computing the trace formula. While this in itself may not
be a compelling reason to use the full-phase-space
dynamics —we saw in Sec. IV that det(M I) can b—e
found just as easily from a regular surface of section map-
ping in the symmetry-reduced dynamics —the use of a
linearized full-phase-space dynamics has the added ad-
vantage that it yields the term Be/BJ in a very con-
venient way. We will show that Be/BJ can be interpret-
ed as a submatrix of the full-phase-space monodromy ma-
trix.

As discussed in Sec. III, the quantity det(M I), —
through which the reduced surface of section enters into
the final results of this paper, is an invariant of I . That
is, it depends neither on the coordinates used on X nor on
X itself. Since f is a symplectic map (Appendix C) the ei-
genvalues of M occur in reciprocal pairs (A, , 1/A, ), allow-
ing us to write

det(M I)= —+ (A, —1) ——1
1

reciprocal
pairs

(D 1)

If m is the linearization of the equal-time mapping PT in
the full phase space, evaluated at any point on I, it turns
out that these A, 's are eigenvalues of m also. We can
therefore determine det(M I) from the —appropriate ei-
genvalues of m, eliminating the need for the construction
of reduced surface of section mappings. The eigenvalues
of M determine 2(n —1 —k) eigenvalues of m. We will
show that the remaining 2(k+1) eigenvalues of m are
equal to 1, that is the eigenvalue 1 occurs with multiplici-
ty 2(k+1). Therefore the eigenvalues of m entering into
(Dl) are precisely those eigenvalues that are not equal to
1.

First we note that the k +1 vectors X~,XJ are eigen-
a

vectors of m with eigenvalue 1. This is obvious since
these vectors all point along I and are therefore carried
into themselves under a single iteration of PT. The sub-
space corresponding to eigenvalue 1, V say, includes
more than just these vectors, however; it is the tangent
space to the 2(k + 1)-dimensional surface A, where A is a
manifold consisting of all generalized periodic orbits near
I". We can write A= U JHI tII, where each I Jtt is the
family of generalized periodic orbits at a given value of J
and H (denoted by I in the particular case of a regular
periodic family). Consider any k+1 vectors (ez, eH)

a

tangent to A in such a way that,
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dH(eH)=1, dJ, (eH)=0,

dH(eJ )=0, dJ, (eJ )=5,b . (D2)

Each of these vectors points to a particular generalized
periodic orbit family I JH and therefore evolution under
(()z. brings the tip of each one to within an infinitesimal
( t, 8) evolution of itself (see Fig. 5). More precisely,

BT
PleH =eH XH XJ

BT Be.
me =e X X

(D3)

where (T,e) is the generalized period of I JH. Therefore
the action of m on the subspace Vis described by the fol-
lowing 2(1+k) X2(1+k) matrix:

BT BT
BE BJ
Be Be
BE BJ

0 I (D4)

all of whose eigenvalues are equal to 1. This subspace V,
spanned by (XH,Xz, eH, ez ), is a tangent to A and in fact

a b

we can think of the vectors (X~,Xz, eH, ez ) as coordi-
a b

nate basis vectors for coordinates ( t, 8,H, J) on A.
The remaining eigenvalues of m, which are not equal

to 1, define another subspace W that is transverse to A in
phase space. It is easy to see that this subspace is skew-
orthogonal to V, since these subspaces correspond to
different eigenvalues of m. In particular, Q(X~, u )

=dH(u)=0 and Q(XJ, u)=dJ, (u)=0 for any vector u

in W so Wis along constant H and J. The subspace W
along with the vectors (X~,Xz ), spans the level surface

a

of (J,H) at I . Under projection onto a reduced surface
of section X, the vectors (XH, XJ ) are mapped to a single

a

point in X and the space W is mapped surjectively onto
X, with an eigensubspace of m being mapped onto the
eigensubspace of M corresponding to the same eigenval-
ue. In other words, the linearized dynamics on the re-
duced surface of section is equivalent to the dynamics of
m restricted to W.

We have seen that the factor det(M I) can be deter--

mined from a linearization of the full-phase-space dynarn-
ics by picking out the appropriate eigenvalues of m. Us-
ing (D3) and (D4) we can also use the full-phase-space dy-

surface of
constant H, J

FIG. 5. A highly schematic representation of the dynamics
on A, in which many dimensions have been suppressed. The
picture is reasonably faithful in the special case k =0. Each in-

dividual family I JH is invariant under (t, 8) evolution, so a
point on some I JH near I is mapped to a nearby point on the
same I JH by the time evolution Pr, where T is the period of I .
The resulting small displacement on I J~ can be expressed as a
linear combination of the vectors (XH,XJ ). In particular, the

a

vectors (eH, eJ ), which point along A, are mapped by Pr into
b

vectors that are displaced from the original vectors by linear
combinations of X~ and Xz .

a

namics to determine Be/BJ, and in a way that would be
straightforward to implement in a numerical calculation.
We do this by computing m& of (D4). Given the matrix
n, it is straightforward to decompose phase space into
the eigensubspaces of m, giving V and W. Corresponding
to the subspace V, one can then extract from m a
2(1+k) X2(1+k) matrix that is similar to m&, and in
fact this matrix is equal to m& when computed in the
basis (X~,xj,e~, ej ) for V. The vectors X& and XJ are

a b a

easily computed from Hamilton's equations and for eH
and eJ one can take any 1+k vectors in V that satisfy

b

the conditions of (D2). In this way m, is computed from
m. One can then extract Be/BJ as a submatrix of m &, as
shown in (D4).
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