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Orientational order determination in liquid crystals by x-ray diffraction
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The orientational distribution function f relative to the director of elongated molecules of liquid crys-
tals and related materials can be determined, in principle, from the intensity distribution I along equa-
torial arcs in the x-ray-difFraction pattern. The integral equation relating these two quantities is solved
here, yielding an analytic, closed-form expression for f in terms of the measured I. Analytic expressions
for several important related quantities, like the second- and fourth-order order parameters, the average
tilt angle, etc. are also derived. The accuracy obtainable in calculating these quantities from measured
data is discussed, and examples demonstrating the use of the method are given. These examples show
the robustness and accuracy of the solution and its related quantities even for highly noisy and/or sparse
experimental input data I.

PACS number{s): 61.10.Dp, 61.30.Gd

I. INTRODUCTION

Liquid-crystalline phases are characterized by the ex-
istence of long- or quasi-long-range orientational order
for their elongated, rodlike molecules [1]. This is, in fact,
the main feature distinguishing them from isotropic
liquids and providing for their unique properties so im-
portant for basic and applied science as well as for com-
mercial applications. The orientational order is
quantified by the orientational distribution function
(ODF), f (P), of the long molecular axis relative to the
director, and the orientational order parameters (OP), P„,
defined as

P„=I P„(c ops)f (P)d(cos/3), (1)
0

where P„(x) is the nth Legendre polynomial. Although
the order parameters P2 and P4 can be determined by
various resonance and Raman techniques, the more im-
portant f (P) cannot be measured directly. An x-ray
method was developed, however, by Leadbetter, Norris,
and Wrighton [2,3] that allows the determination off (13)
for a large class of thermotropic liquid crystals from the
intensity distribution I along equatorial arcs in the
diffraction pattern. The two quantities are related by an
integral equation, which must be inverted for the experi-
mentally derived I to obtain f. As no analytic inverse is
available for this equation, various numerical and series-
expansion methods were employed in the numerous ap-
plications of the method published so far [2—7]. Al-
though these methods were found to be satisfactory for
the level of accuracy of most measurements to date, an
analytic solution for the integral equation is desirable
both on theoretical grounds and for obtaining higher
computational accuracy and stability, not only for f (P),
but also for derived quantities strongly depending on f,
such as P„. Furthermore, an analytic solution could
benefit several other fields, such as grafted rods [8], viri in
solutions [9,10] and Langmuir-Blodgett films [11],where

closely related methods can be, or have been, applied for
ODF determination.

A closed-form, analytic solution for this integral equa-
tion was developed and is presented here. The
mathematical formulation is given in the next section
along with expressions for a number of physically impor-
tant related quantities. The third section presents numer-
ical results obtained for two examples and discusses some
practical aspects of the calculations.

II. THEORY

A. Formulahon of the problem

A typical liquid crystal can be regarded as being made
of elongated, rodlike molecules of an aspect ratio of ap-
proximately 4 or larger. In the liquid-crystalline phases,
a magnetic Geld can be used to define a direction, called
the director, along which the long axes of the molecules
align. The alignment, however, is not perfect, and there
is a finite probability f (13) for a particular molecule to
have its axis at an angle f3 to the director. f (P) is the
singlet orientational distribution function. A schematic
x-ray-diffraction pattern of such a sample in its nematic
phase is shown in Fig. 1. The meridional peak along the
director q, result from the order represented by the equal
length of the individual molecules. The diffuseness of
these peaks is due to the very-short-range order (a few
molecules) in this direction. Upon transition to a smectic
phase, where the sample develops quasi-long-range or-
dered layers in this direction, these peaks become very
sharp. The equatorial arcs intersecting the q axis are
due to diffraction perpendicular to the long molecular
axis. With perfect alignment of the molecules along the
director and equal intermolecular distances perpendicular
to it, these arcs would condense into sharp peaks on the
q„axis, similar to those along q, in the smectic case.
Leadbetter and Norris [2] and Leadbetter and Wrighton
[3] have shown that if the molecules cluster in small
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B. Analytic solution

To solve the integral equation (2) we make the substitu-
tion

q„

y =tang, r =tanp .

After some algebraic manipulations, and denoting

J(y)=2I(y)/(1+y ), g(r)=f (r)/(1+r ) ~z, (4)

we obtain

J(y) =2f g (r)r (r y)—'~ dr .

This is immediately recognized as the Abel integral equa-
tion [14] for which three analytic solutions have been de-
rived [14—16] was well as efftcient numerical methods for
their computation for experimentally derived data [17].

The analytic solution can be obtained now by using the
Abel inversion formulas

FIG. 1. A schematic x-ray-diffraction pattern of a liquid
crystal. The director is along q, . The inset shows the molecular
orientation geometry, P being the molecular tilt angle away
from the director. and

g, (r)= vr 'f —[dJ(y)/dy](y r) '~ dy— (6a)

domains of the order of approximately ten molecules or
more, within which the orientations are well correlated
but the domains have a distribution of orientations f&(p),
the equatorial peaks smear into arcs, the intensity distri-
bution along which is given by

I(p)= f fz(p)sec p(tan p —tan p)(sinp)dp . (2)

Note that, in general, f&(p) is different from the singlet
ODF f (P). It has, however, been shown in a number of
studies [2—7, 12] that the ordering conditions under
which the equation above is valid are well obeyed by ther-
motropic liquid crystals in general, and that fz(P) closely
approximates the singlet ODF f (p). We will therefore
identify fz(p) with f (p) in the following and drop the
subscript d.

In order to obtain the ODF f (p), the integral equation
Eq. (2) has to be solved using the discrete, measured I(P)
values as input. Haase and co-workers [4] have shown
recently that I(P) should be taken as the intensity in-
tegrated radially across the arc for a given P rather than
the peak intensity at that P. As the measured points in-
clude experimental errors and their number is necessarily
finite and sometimes small, a numerical inversion of Eq.
(2) is bound to increase the errors. For this reason, in
most studies an analytic model is adopted for f (p) and
substituted in Eq. (2), which is then integrated analytical-
ly and the resultant expression is fitted to the measured
I(P) to obtain the best values for the parameters defining
the model f (P). This approach, while avoiding some of
the difticulties of numerical inversion, has the disadvan-
tage of biasing the solution by the particular choice of the
model. For example, while some of the early studies
adopted the Maier-Saupe model [13], more recent ones
show that a truncated series of Legendre polynomials
[12] or circular functions [4] yields a better agreement
with the measured I data. To avoid these pitfalls, an ex-
act analytic solution was derived and is presented below.

gz(R) = —(~r) ' f J(y)y (y r) '~ dy—6
dr

f, (P)= (N cos P) ' f— Id [I(P)cos P]/dP]

X(tan p —tan p) '~ dp

(7a)

and

f2(P) = (N sinP)—
X f I(p)t ann(t nap

—tan p)
P

(7b)

The normalizing constant N is given by

N= f f (p)(sinp)dp= f I(p)dp, (&)

where a factor of (2/~) common to Eqs. (7) and (g) was
eliminated.

Equations (7) are the requested analytic solutions of the
integral equation, Eq. (2).

(6b)

g& and g2 are two different forms of the same solution
and are related by a single integration by parts. Howev-
er, error amplification for experimentally derived I is
considerably reduced [16,17] when using g2. Note also
that I(P) is measured in a diffraction experiment. As ab
solute diffracted intensities are notoriously difFicult to
measure accurately, I ( P ) will almost always be un-
normalized, i.e., it will include an arbitrary multiplicative
constant that is commonly eliminated by normalizing
f (p) Using now. Eqs. (6), back subtituting from Eq. (4),
and normalizing, we finally obtain
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fMs(P)= A exp(a cos P) . (9)

Using Eq. (2) the intensity distribution along the equa-
torial arcs is

IMs(P)=(Am' /2U)exp(U )erf(U), (10)

where A is a normalizing constant, erf(x) is the usual er-
ror function, and U =a'~ cosP. By substituting Eq. (10)
into the analytic solution Eq. (7b) and using cosP=u and
cosp=t, we obtain

f (P) =( A /~' ')(did&)
1/28

t exp v erfv v at —v dv
0

Using a table of integrals [18] and a minimum amount of

C. An analytic example

To illustrate the solution obtained above, consider the
case of the Maier-Saupe ODF:

algebra one obtains

f(P)=(Am' /2)d[erf(z)]/dz, (12)

where z= i—a' eosp. Straightforward calculation [19]
recovers Eq. (9), as required.

D. Derived quantities

The layer spacing in the smectic phases can be ob-
tained from the molecular length and the average cosine
of the molecular tilt relative to the normal [20]. Higher-
order even moments of cosp are also of interest in optical
studies of liquid crystals [11,21]. These averages are
weighted, as in the case of P„ in Eq. (1), by the ODF. We
need to calculate, then,

—1 F cos d cos (13)
0

where F denotes the function averaged upon. Substitut-
ing now Eq. (7b) for f and integrating by parts one ob-
tains

F=X ' f I(p)dp f sinp—[dF(cosp)/d(eosp)] f I(p)tang(tan p
—tan p) '~ dp

0 0 P
(14)

Interchanging the order of the two integrals in the second term, changing the variable x =eosp in the inner integral,
and using Eq. (8) yields

F= 1 —~ ' f (sing)I(P)dg f [dF(x)/dx]x(x2 —cos~P) '~2dx .
0 cosy

(15)

This equation can now be used to calculate ODF-averaged quantities directly from the measured intensity I(P) without
having to calculate f (p) first. This is particularly advantageous in cases when error amplification proves to be a serious
problem in calculating f due to large experimental errors in, or sparsity of, the I data.

The average cosine of the tilt angle is obtained by taking F (cosp) =cosp in Eq. (15). This yields

cosP=N ' f I(P)(cos P)dP . (16)
0

The higher-order inoments of cosp are obtained by choosing F(cosp) =cos"p. Noting that only even moments are of in-

terest and using a table of integrals [22] we obtain

m/2 n/2
eos"P=X ' f I(P) 1 n(sin —P) g D„(cosg)" " nsinP(cosP—)"in[(1+sing)/cosP] dP,

0 r=l

where D„=r!(r—1)!/(2r)!
The order parameters P„are obtained by taking F(cosp) =P„(eosp). The explicit expression for the Legendre poly-

nomials [23] is inserted into Eq. (15). Since only even orders, n =21, are of interest, we obtain

I —1

Pal=1 —(4X) ' g C~k f (IP)(sing) Pdf x "(x —cosP) '~dx,
k=0

' 0 cosg

where CI z are constants. The inner integral can now be evaluated [22] and we finally obtain

(18)

I —1 I —k I —1

P2~=1 —X 'f I(p) sin p g g A~k„(cosp)" " '+(sing)»[(1+sing)/cosp] g B~k(cosp)z" "' dp,
0 k=0 i =1 k=0

(19)

e ~ I, k, i and +I,k are the following constants:
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A
i!(i —1)!(4l—2k)!( —1)"(2l—2k)

(2i)![(l—k)~] k~(21 —k)~2 ' '

+l, k
(4l —2k)!(—1)"(2l —2k)

4 ' [(l —k)'] k!(2l —k)!

(20a)

(20b)

From the general expressions Eqs. (19) and (20) one can obtain easily the two lowest and most important order parame-
ters

P2=1 —X '
—,
' J I(P)[sin P+(sing)(cos P)in[(1+sing)Icos/]]dg (21a)

and

P4=1 —X ' J I(P)[sin P( —",,'cos P+ —,", )+(sing)in[(1+sing)Icos/]( —",,'cos P —", cos P—)JdP . (21b)

In these expressions the order parameters are obtained
from an integral over the measured intensity I(P). Al-
though the integrands are quite different, such use of I
resembles Vainshtein's [7,24] method, where f (/3) is sim-

ply replaced by I (P) in calculating P„ in Eq. (1). It is im-

portant to note, however, that Vainshtein's method is an
empirical approximation. It is found to work well mostly
for Maier-Saupe type ODF's having relatively small
widths. By contrast, Eqs. (20) and (21) above are exact
and are thus applicable to any ODF, regardless of width
or shape. The accuracy achievable in calculating the
various quantities discussed above is limited only by the
quality and density of the measured I(P) data, assuming,
of course, that sufficiently accurate numerical methods of
integration, interpolation, etc. are employed. This point
is discussed further in the next section.

III. RESULTS AND DISCUSSIQN

The expressions derived above were subjected to exten-
sive numerical tests by simulating "experimental" I(P)
data from a given analytic ODF and inverting it to obtain
the "experimental" ODF and quantities derived from it.
The results were then compared with those calculated
directly from the analytic ODF. A number of ODF's
were investigated, ranging from the conventional Maier-
Saupe type (denoted MS in the following) through a dis-
tribution peaking at /30%0, i.e., tilted molecules (denoted
r), to a less realistic, simple square-window ODF. The re-
sults obtained for the first two of these are presented in
the following.

For the examples presented here, the "measured"
IMs(P) data were generated from Eq. (10) using a=8,
while the data of I, (P) were calculated by numerically in-

tegrating Eq. (2) for an ODF given by

f, (/3) = A [exp[a cos (/1 —/30)]+exp[a cos2(p+po)]]

(22)

using a= 8 and /3o=40. One hundred equidistant points
were calculated in each case, and Gauss-distributed ran-
dom errors of a specified magnitude were then added to I
to simulate statistical measurement errors. Using this
data as input, the integral equation, Eq. (2), was inverted
by employing the analytic solution Eq. (7). The integra-

tion routine used in the inversion used a least-squares-
Atted spline function to interpolate the integrand. The
code used was a slightly modified version of the Abel in-
version program of Beniaminy and Deutsch [17]. In ad-
dition to the inverted f, we also calculated in each run
the second- and fourth-order OP and the normalized and
weighted Legendre polynomials Pz(P) and P4(/3) defined
by [4]

P„(P)=X 'P„(cos/3)f (/3)sin/3 . (23)

The "measured" I data, including random errors of a
Gaussian distribution with a half-width of 1%, and the f,
P2, and P4 obtained thereof are plotted in Figs. 2 and 3
for the Maier-Saupe and tilted ODF's, respectively, along
with the exact results for each quantity. Note the excel-
lent agreement between the exact and calculated results
for all calculated quantities in both examples. The slight
deviations observable at /3-90' reAect the poorer fit of
the spline function used in the integration routine to in-
terpolate I near the high-angle termination of the "exper-
imental" data. Both a decrease in the total number of
values spanning the angular range and an increase in the
random errors in I tend to increase the deviations in the
calculated quantities from their exact values, particularly
near their endpoints. Note, however, that the deviations
of the calculated quantities from their exact values were
invariably found to be smaller than the input errors even
when those were as large as +20%. This is due, in part,
to the ability of the spline routine to follow trends in the
data while smoothing local scatter, which is shown by
statistical tests to be random [17].

The robustness of the formulas given above and the nu-
merical procedures employed is further reflected in the
values obtained for the two order parameters P2 and P4.
The Op calculated for "experimental" errors of varying
magnitude are given in Table I for the MS example. The
values were calculated using several different procedures.

(a) Numerical integration of Eq. (1) using the analytic f
of Eq. (9) without restrictions on the number of integrand
values used. An alternative procedure using the analytic
I of Eqs. (10) and (21) yielded identical values. Note that
in this case random errors are not included in the calcula-
tions.

(b) Numerical integration of Eq. (1) using a spline func-
tion to interpolate 100 values off calculated from Eq. (9).
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TABLE I. Order parameters for a Maier-Saupe-type orientational distribution function. The values were calculated using four
different methods, as discussed in the text. The simulated experimental data used as input in c and d includes Gauss-distributed ran-
dom errors of a percentage specifIed in the header. Each 5 is the deviation, in percent, of the preceding value from the exact one
given in a.

c

0%

0.7931
0.7933
0.7932
0.7933

0.03
0.02
0.03

10%

0.7924
0.7930

Pz

0.09
0.02

20%

0.7910
0.8028

0.26
1.22

0%

0.4801
0.4801
0.4801
0.4801

0.01
0.01
0.01

0.4792
0.4792

P4

0.19
0.18

0.4780
0.4794

0.43
0.13

Here, again, no random errors are included.
(c) Numerical integration of Eq. (21) using a spline to

interpolated 100 I values, calculated from Eq. (10), with
random errors added as discussed above.

(d) Numerical integration of Eq. (1) using spline inter-
poiation of 100 f values. These were calculated, in turn,
from Eq. (7b) using 100 I values including random errors.

The accuracy of the first method is limited only by the

convergence limits set for the numerical integration rou-
tine, 10 in our case. Thus, the values listed under a in
Table I can be considered exact. Note that the restriction
of using 100 f values, method b, introduces only negligi-
ble errors of approximately 0.01%. Methods e and d
show remarkably good results even for input error values
as high as 20%. In most cases listed, the error is roughly
that of b, i.e., the numerical integration error only.
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F)G. 2. Simulated data for a Maier-Saupe —type orientational distribution function with (a) 1% Gauss-distributed random errors
added, (b) the inverted ODF and (c) the calculated weighted Legendre polynomials Pz and (d) P4. For details see text. Note the ex-
cellent agreement between the exact results ( — — ) and those calculated from the ODF obtained using the present method (0).
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FIG. 3. Same as Fig. 2 but for a tilted orientational distribution function, given in Eq. (22).

While the accuracy of the calculated OP for methods c
and d deteriorates when increasing the input random er-
rors above 20% and up to 60%%, the deviations of the cal-
culated OP from their exact values remain smaller than
the input errors by at least one order of magnitude. In all
ODF studied, more accurate results were obtained by cal-
culating the derived quantities, including the OP, directly
from I by method c, as compared to calculating f first
and using it to calculate the derived quantities as in
method d. This holds particularly true for large random
errors in I and/or for sparse I data, which are the most
demanding cases.

From the extensive number of examples studied, some
of which were presented above, we conclude that the
present method allows an accurate determination of the
ODF and the quantities derived from it even when the
measured intensity data contain fairly large random er-

rors and/or are sparse. This, along with the advantages
of having a closed-form analytic solution and the ability
to calculate a number of physically significant quantities
directly from the measured intensity, important for data
analysis as well as theory, are bound to render the analyt-
ic solution presented here a useful tool for the study of
liquid crystals and related materials.
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