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We present the results of a systematic study of the propagation of sound in sodium di-2-ethyl-
hexylsulfosuccinate (AOT) micelles and microemulsions. The dispersion in the sound velocity v is deter-
mined over three and a half decades in frequency by using both ultrasonic and Brillouin-scattering tech-
niques. The dispersion in the sound velocity is also measured as a function of the volume fraction ¢ of
micelles or microemulsions. In addition, we measure the dependence of the sound velocity dispersion on
the linear hydrocarbon chain length of the solvent molecules, and on the size of the microemulsion drop-
lets. A consistent physical picture emerges that accounts for all of the results. The sound velocity in the
micelle or microemulsion phases is greater than that in the solvent, leading to the observed increase of v
with ¢. In addition, due to the overlapping of the surfactant tails, there is a weak, short-range attractive
interaction between the droplets, causing them to form short-lived, extended networks. These networks
can support shear, leading to a further increase in v at higher ¢, provided the frequency of the sound is
sufficiently high that the instantaneous networks remain intact over the period of the sound wave. This
results in the additional frequency dispersion in v at high ¢. The strength of the attractive interaction,
and hence the dispersion in the sound velocity, depends on the chain length of the solvent molecule and
the diameter of the microemulsion droplet. The use of an effective-medium model is critical in
confirming the validity of the physical picture. The effective-medium model includes the contribution of
a shear modulus of one of the phases and can account for the ¢ dependence of v for all the systems. The
shape of the full Rayleigh-Brillouin spectra is shown to be describable by a formalism that includes the
relaxation of the extended networks. Finally, since the micelle or microemulsion networks cannot sup-
port shear unless they extend across the whole system, we show that the additional shear modulus con-
tributed by the droplet phase exhibits scaling behavior when the volume fraction exceeds a critical value
defined by the rigidity percolation threshold. This allows us to measure both the critical volume fraction
and the exponent for rigidity percolation. However, since this additional shear modulus only occurs at
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high frequency, this effect is an example of dynamic rigidity percolation.

PACS number(s): 62.30.+d, 43.35.+d, 62.80.+f

INTRODUCTION

The propagation of sound in a fluid can provide a sen-
sitive probe of its physical properties [1-5]. At low fre-
quencies, the sound velocity provides a measure of the
compressibility, and hence the elastic modulus, of the
fluid, while the sound attenuation provides a measure of
the viscosity of the fluid [3—5]. At higher frequencies,
fluids can become viscoelastic, and measurement of the
sound propagation can provide a probe of the elastic
solidlike properties of the fluid [1,2]. As the frequency of
the sound increases above the relaxation frequency of the
internal motions within the fluid, these processes can no
longer respond to the sound wave, and are “frozen in,”
resulting in an increase in the elastic modulus of the fluid,
and a concomitant increase in the sound velocity. Thus
the frequency dispersion of the sound velocity provides a
direct measure of the additional relaxation processes that
contribute to the viscoelastic behavior of the fluid.

Sound propagation in fluids can be experimentally
measured using ultrasonic techniques, which can probe
the frequency range of ~1-50 MHz. Higher-frequency
measurements can be made using Brillouin scattering,
which probes the frequency range from ~0.5 to 10 GHz.
Both methods have been extensively applied to study
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sound propagation in simple fluids, in molecular liquids,
and in polymer melts. However, considerably less atten-
tion has been devoted to the study of sound propagation
in complex fluids, which possess structures on length
scales larger than the molecules that comprise the fluids.
These larger scale structures will possess additional relax-
ation mechanisms, which can be reflected in the frequen-
cy dispersion of the sound propagation. Thus the study
of sound propagation in complex fluids can provide new
insight into these structures and their dynamics.

In this paper, we present a comprehensive study of the
sound propagation in one complex fluid system, provid-
ing an example of the richness of the physical properties
that can be observed. We study a system of inverted mi-
celles [6] and microemulsions [7] formed with the surfac-
tant, sodium di-2-ethyl-hexylsulfoscuccinate (AOT), wa-
ter and oil. This is a widely studied system whose phase
behavior and structure is well known. In this system, oil
is the continuous phase. In the absence of water, the sur-
factant molecules aggregate together to form spherical in-
verted micelles, with the head groups forming a more rig-
id central core, and the hydrocarbon chains sticking out
into the solvent oil [8,9]. Each micelle is comprised of 22
molecules, and has a radius of 15 A. As more surfactant
is added, the volume fraction of micelles in the solution ¢
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increases, but both the size and the shape remain un-
changed, allowing us to measure the propagation of
sound as a function of ¢. Upon addition of water, a mi-
croemulsion is formed as the micelles are swollen to form
spherical droplets with water in the central core, sur-
rounded by a layer of surfactant molecules, which again
have their head groups facing the water and their tail
groups facing into the solvent oil. The ratio of water to
surfactant determines the diameter of droplets, and, pro-
vided this ratio is held fixed, the volume fraction of drop-
lets can again be varied without changing their shape or
size. Both the micelle and the microemulsion droplets
have a weak, short-range attractive interaction. This can
result in the formation of transient structures with much
larger length scales, which dramatically affect the propa-
gation of sound. The study of sound propagation in this
system provides information which helps elucidate both
the nature of these structures and their dynamics.

We measure the sound velocity using both ultrasonic
techniques and Brillouin scattering. The ultrasonic mea-
surements are used to study the frequency range from 2
to 30 MHz, while the Brillouin-scattering measurements
extend from 0.7 to 10 GHz. This allows us to measure
the dispersion in the sound velocity over a wide range of
frequency. For each system, we measure the velocity and
attenuation of the sound propagation as a function of
both frequency and droplet volume fraction. In addition,
we vary the magnitude of the attractive interaction be-
tween the droplets by changing the chain length of the
linear hydrocarbon of the solvent oil, and by increasing
the diameter of the microemulsion droplets by adding ad-
ditional water. The interpretation of our results depends
critically on the use of an effective-medium model to de-
scribe the dependence of the sound velocity on ¢. Using
this interpretation, we develop a self-consistent picture
which accounts for all of our data and provides new in-
sight into the interactions and dynamics of the droplets
in the micelles and microemulsions.

The essential physics of our picture can be summarized
by considering the behavior of micelles in decane. We
find that the sound velocity v increases significantly as the
volume fraction of micelles is increased, indicating that
the elastic modulus of the AOT is larger than that of the
decane. However, as the frequency of sound is increased,
there is an additional dispersion in the sound velocity at
larger volume fractions, ¢ =20.16. The key to our inter-
pretation of this behavior is the transient structures that
are formed by the droplets due to the weak attractive in-
teraction between them. Because of this interaction, the
droplets can form extended networks, that will maintain
their integrity for some characteristic time 7, determined
by the strength of the attractive interaction. When the
frequency of the sound is greater than the corresponding
characteristic frequency f,=1/7., the extended net-
works maintain their integrity for the full period of the
sound wave, and have a profound influence on the propa-
gation of sound. By contrast, when the frequency of the
sound is less than f,, the extended networks relax in a
time less than the period of the sound and thus make no
contribution to the sound propagation. The extended
networks can support shear, and thus, at high frequen-
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cies, the additional contribution of this shear modulus re-
sults in an increase in the total elastic modulus of the sys-
tem, and hence an increase in the sound velocity. The
additional, frequency-dependent dispersion is only ob-
served at higher volume fractions because the extended
networks must span the full volume of the system in or-
der to support shear. Thus the volume fraction of mi-
celles must be above a critical value of ¢, =0.16 in order
to observe the increase in the sound velocity. Further-
more, the contribution of the additional shear modulus
depends on the extent of the networks, and exhibits a re-
markable scaling behavior, consistent with percolation of
the micelles. From the data, we are able to experimental-
ly determine the exponent 7 for the elasticity modulus of
a percolating system. We call this behavior dynamic rigi-
dity percolation.

In this paper, we investigate the extent of the applica-
bility of this physical picture as the system is modified.
Thus, we first consider the effects of varying the solvent
oil in the micelle system. We restrict ourselves to linear
chain hydrocarbons, and vary the oil from hexane (CsHy)
to hexadecane (C;4H¢). Increasing the chain length of
the oil is known to increase the strength of the attractive
interaction between the micelles [10]. We find that the
effect of increasing the attractive interaction is to de-
crease f,. We also investigate the effect of swelling the
droplets with water to form microemulsions. This has
two, competing effects. By increasing the radius of the
droplets, and hence the area of their interaction, the at-
tractive interaction between them is increased. Thus, for
small microemulsions, with a low water content, an addi-
tional, frequency-dependent dispersion is again observed,
with the onset frequency of the additional dispersion
dependent on the chain length of the oil solvent. In addi-
tion, we again observe dynamic rigidity percolation, with
the same values of both f, and 7. However, the droplets
are swollen by water, which has a lower elastic modulus
than the AOT, and cannot, by itself, support shear.
Thus, as the size of the droplet is increased still further,
the intrinsic elastic modulus of the droplets themselves is
decreased, and they can no longer support shear, so no
additional, frequency-dependent dispersion is found.
Thus our basic physical picture can describe the behavior
of both the micelles and microemulsions for a variety of
different solvent molecules.

The remainder of this paper is organized as follows. In
the next section we discuss the micelles and microemul-
sions in greater detail. We then present a complete
description of the two effective-medium models [11] that
we employ, one to describe the behavior at very low fre-
quencies when there is no contribution of a shear
modulus of the droplet phase, and the second that in-
cludes this contribution. The following section provides
the details of our experimental techniques. A complete
discussion of the results follows, beginning with the
description of the observations of the dependence of the
frequency dispersion of v on the chain length of the oil
for the micelles followed by the dependence on the size of
the microemulsions. We then compare the observation of
dynamic rigidity percolation in micelles with that in mi-
croemulsions. Next, we discuss the details of the
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Brillouin-scattering spectra that are observed and use a
model [12] that includes the consequences of internal re-
laxations to fit the spectra. The results obtained are in
good accord with our direct observations of the frequen-
cy dependence of v. Finally, we also describe the obser-
vation of an additional dispersion in v at very high fre-
quencies which persists for all systems and which we at-
tribute to the relaxation of the hydrocarbon tail groups of
the AOT molecule itself. A brief summary concludes the

paper.
AOT MICELLES AND MICROEMULSIONS

The surfactant molecule, sodium di-2-ethylhexyl sul-
fosuccinate (AOT), has a hydrophilic head and a hydro-
carbon hydrophobic tail [13]. As a result, the surfactant
molecules are preferentially adsorbed on the interface be-
tween water and oil, forming equilibrium structures that
are larger than the molecular scale. The size and shape
of these structures are determined by the competition be-
tween the minimization of the interfacial energy, the cur-
vature energy due to the bending elasticity of the surfac-
tant tail layer, and the entropy [10]. In the systems stud-
ied here, all of the structures are spherical droplets [8,9],
and the continuous phase is a simple, linear alkane: hex-
ane (C¢Hy,), decane (C,yH,,), or hexadecane (CcHj,).
When there is no water in the mixture, the hydrophilic
heads of the AOT molecules aggregate together to avoid
the oil phase, and the resultant spherical structure con-
tains roughly 22 AOT molecules with radius of 15 A
[8,13]. Since the oil is the continuous phase, this struc-
ture is usually called an inverted micelle. When water is
added to the system, the heads of the surfactant mole-
cules associate with the water molecules and form drop-
lets with water cores. As more water is added, the drop-
lets are further swollen and their radius increases. The
size of the droplets is determined by the molar ratio of
water to surfactant, R =[H,0]/[AOT] [10]. The num-
ber of AOT molecules in each droplet varies with the size
of the droplet and the amount of water added, keeping
the packing density of the AOT on the interface constant.
For example, there are about 509 AOT molecules in each
droplet when the radius is 50 A [14]. The sizes of mi-
croemulsions we have studied are 25, 45, and 75 A in ra-
dius, corresponding to R of 8, 25, and 41, respectively.

Both the micelle and the microemulsion systems are
thermal equilibrium structures [10]. The fluctuations in
droplet shape and size are small. A key feature of these
systems, which we exploit in all of our measurements, is
the fact that the droplet size is insensitive to the concen-
tration of droplets. Therefore, by adding oil, we can di-
lute the droplet concentration, or volume fraction, ¢,
without changing the size. However, since the micelles
only form when the AOT concentration is above a criti-
cal value, [AOT]=0.225 mM [14,15] we change ¢ by di-
luting with a 0.9-mM solution of AOT in oil. This en-
ables us to study the ¢ dependence of the sound velocity.
For the micelles, we define ¢ as the volume fraction of
micelles and calculate it directly from the volume frac-
tion of surfactant added. For the microemulsions, we
define ¢ as the volume fraction of water and surfactant
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added. Provided R is maintained constant, the droplet
size is independent of ¢. In both cases, there is some am-
biguity about the meaning of the volume fraction. Al-
though we treat the droplets as hard spheres with a well-
defined radius, and hence a well-defined ¢, the droplets
are in fact somewhat “fuzzy” as the solvent oil molecules
can penetrate, to some extent, within the hydrocarbon
tails of the AOT. In addition, the droplets are not rigid,
but can deform. Thus, it is possible to obtain packing
fractions that are higher than those possible with hard
spheres. However, in this work we restrict our attention
to ¢<0.6, and view the droplet as essentially hard
spheres.

There is a weak, short-range, attractive interaction be-
tween the droplets [10,15]. Physically this is due to the
overlapping of the short, branched, hydrophilic surfac-
tant tails of droplets. The range of this overlap is about 3
A. The attractive interaction is an entropic effect. For
the oil solvent molecules to fit in between surfactant tails,
they must adopt certain configurations in their phase
space, thereby decreasing their entropy. By contrast, the
tails of the surfactant molecules in a neighboring droplet
are already optimally oriented by the droplet structure
and are able to interpenetrate without suffering as much
decrease in their entropy. Thus, the total free energy of
the system is lower when the surfactant tails of two drop-
lets interpenetrate than when solvent oil molecules fit in
between the surfactant tail groups of the droplets. This
results in the net attractive interaction. The strength of
this attractive interaction increases as the length of the
solvent oil molecule increases, because the relative entro-
pic cost for oil molecules to fit in between surfactant tails
also increases [14]. In addition, for the microemulsions,
as the droplet size increases, the area of overlapping sur-
factant tails also increases, leading to a larger interaction
energy [8]. This interaction energy determines the
characteristic time scale of the interaction 7,. Therefore,
we can vary 7, either by using different oils or by chang-
ing the droplet size.

EFFECTIVE-MEDIUM THEORY

Effective-medium theory is used to calculate the
effective characteristics of an inhomogeneous system
measured in the long-wavelength limit. The theory is de-
rived from the consideration of an inclusion isolated in an
infinite effective matrix, whose properties reflect the aver-
age effects of other inclusions [11,16]. Each of the con-
stituent phases of the medium is described by parameters
appropriate for the pure phase, and effective-medium
theory is used to determine the parameters that describe
the composite medium as a function of the relative
volume of the constituent phases. Thus, effective-
medium theory can be used to evaluate the elastic modu-
lii for multicomponent composites [16], and to calculate
the ¢ dependence of the average elastic modulus 8. In
this paper we make extensive use of effective-medium
theory to account for the elastic behavior of the micelle
and microemulsion systems, since the relevant acoustic
wavelength is always orders of magnitude larger than the
size of the micelles and microemulsions. In our experi-
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ments, the wavelength of the sound is always greater than
2000 A while the size of droplets is always smaller than
200 A. In fact, the sound wavelengths are usually much
larger, while the droplet sizes are often much smaller. In
our approach, we take one phase to be the continuum
fluid, while the second phase consists of micelle or mi-
croemulsion inclusions randomly embedded in the con-
tinuous phase. We describe each of the constituent com-
ponents, the oil phase and the droplet phase, in terms of
five parameters. Thus the oil is described by the density
po» the complex longitudinal-wave elastic modulus
Bo=Byt+iBy, and the complex shear modulus
Ho=pot+iuny. The droplet phase is described by the same
set of parameters with the subscripts replaced by d. We
then use the effective-medium theory to determine the
average value of complex elastic modulus, B=f'+if" as
a function of ¢. The measured sound velocity v is then
given by

v=VvgB/p, (1a)

where p is the average density, given by
p=d¢p;+(1—¢)p,. The attenuation of the sound is
determined from fB’'. It is related to the measured ul-
trasonic attenuation a by B’'=admv’p/f, and to the
measured full width at half maximum (FWHM) of the
Brillouin peak Aw by B"'=Aw’?%p/f. We can define a
generalized attenuation of the sound velocity through

Av=VB"/p . (1b)

The frequency dependence inherent in the viscoelastic
behavior exhibited by our systems represents an addition-
al complexity in the theory. An effective-medium model
is a static theory, with no inherent frequency dependence
apart from that which is present in the parameters of the
constituent phases. Therefore, to account for our obser-
vations, we allow the parameters which describe each
phase to vary with frequency, and determine their values
from the ¢ dependence of the sound velocity at each fre-
quency independently.

At high frequencies, a random network is formed by
the surfactant phase, and we must account for the possi-
bility that this network supports shear. Thus, we model
the system with a symmetric model for the two phases,
and the relevant effective-medium equations are [8]

1 _ ¢ 1—¢
== + , 2
B Byt+4/3u—py)  Bot4/3(p—ug) @)
1 __ ¢ 1—-¢
utH p,+H + wot+H '’ (@b
where
= B4
‘u6ﬁ’+4,u . (2¢)

It should be noted that these equation reflect the fact that
the longitudinal elastic modulus is modified by the shear
modulus, because the droplet phase of the system reacts
elastically in response to an applied strain.

At low frequencies, the micelles do not support shear
because any applied shear will be relaxed, since the net-
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works do not persist for a full period of the sound wave.
We thus use a model which treats the micelles as in-
dependent droplets. The effective elastic modulus S is
calculated using Wood’s approximation [17], which
weights the inverses of B, and B; with their volume frac-
tions,

¢ 1-¢ 3)
ﬁ By Bo

This simple equation may be deduced from Eq. (2) by set-
ting po=p, =0.

In order to calculate the effective complex elastic
modulus S, the elastic properties for the two constituent
phases must be known. In our systems, all the required
parameters for the oil are known either from the litera-
ture values [18] or from measurements of the sound ve-
locities, viscosities, and indices of refraction. The elastic
modulus of the pure oil B, is determined from the mea-
sured sound velocity and the density By,=v3p, The
imaginary part of the elastic modulus of the oil Bj is
determined from the measured damping of sound in the
pure oils, using either o or Aw. The low-frequency shear
viscosity 1), measured using a viscometer, is used to
determine the imaginary shear modulus pg =iwn,. Since
a fluid cannot support shear, we set u,=0.

A pure phase of AOT configured as droplets does not
exist, so most of the parameters describing the surfactant
phase cannot be determined experimentally. The only
parameter that is known is the density, p; =1.13 g/cm?.
Thus, we have four unknown parameters describing the
AOT phase which must be obtained from a fit to the
data. These are the complex elastic modulus B, and the
complex shear modulus p,;. At low frequencies, the re-
laxed droplet network cannot support shear, and we use
Wood’s approximation to calculate B, with u; =0. How-
ever, at high frequency, where the extended network of
droplets can support shear, we use both u; and u; as
fitting parameters.

The effective elastic modulus 3 in Eq. (2) is calculated
by recasting the equations into a polynomial equation in
w, 2ut+MiuP+Mp*+Mu+M,=0, where M, are
coefficients determined by ¢, B;, and u, and the fitting pa-
rameters 3; and uy;. The roots of the polynomial equa-
tion are determined, and the proper root is chosen by
ensuring that both u’ and u’’ are positive. We then calcu-
late 8 from Eq. (2a), and finally determine v and Aw.

We use a nonlinear least-squares routine to find the op-
timal values of the fitting parameters to describe the
volume fraction dependence of the data, v(¢) and Av(¢).
Since the measurements of the sound velocity are much
more reliable than those of the sound damping, we give a
larger weight, by a factor of 5, to v(¢) than to Av(¢).
We find that the fitting procedure is robust, and is rela-
tively insensitive to the choice of initial values for the
fitting parameters. Finally, since the effective-medium
theory assumes that both components in the system are
space filling, while hard spheres cannot fill space, we ad-
just ¢ by multiplying by 0.64, corresponding to the
volume fraction for random close packing of spheres [19].
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EXPERIMENT

We use the AOT surfactant from Fluka without fur-
ther purification, while the solvents, decane, hexane, and
hexadecane, are all Gold label from Aldrich. The droplet
volume fraction is determined from the composition of
each component. Each material is added by weight and
then converted to volume fraction using the bulk densi-
ties. Because there is some penetration of the oil into sur-
factant tails, the actual values of ¢ are slightly less well
defined.

In the Brillouin-scattering experiments, the sound ve-
locity is determined from the measurement of the fre-
quency shift of the peak of the Brillouin doublet » by
v=w/q. Here the scattering wave vector is given by
q=(4mn /A)sin(6/2), where 0 is the scattering angle, n is
the index of refraction of the system, and A is the wave-
length of the light in vacuum. The scattering angle is
determined approximately from the geometry of the op-
tics, and then is determined more precisely through a
calibration procedure using simple liquids with known
sound velocities. The index of refraction is measured by
a refractometer for each sample to an accuracy of
+0.001. The measurement result of the ¢ dependence of
n for AOT micelles in decane is shown in Fig. 1. We find
that the experimental data are well described by
n(¢)=(1—¢)ny+¢n,;, where ny;=1.4113 is the mea-
sured index of refraction for pure oil solvent, and
n,;=1.448 is the fitting parameter, representing the phase
consisting of AOT micelles. We also find that this value
of n; can fit the results of n (¢) for all other samples.

Our Brillouin-scattering experiments are performed us-
ing either an Ar™ laser at 5145 A or a Kr' laser at 6471
A. An etalon in the cavity ensures that the laser operates
at a single longitudinal mode, providing a single frequen-
cy. The laser power we use is typically about 100 mW
measured at the sample. The laser beam is focused by a
100-mm-focal-length lens to a spot of about 100 um in di-
ameter in the sample cell. Scattering angles between 15°
and 175° are used, allowing us to vary the measured
sound frequency f from 0.7 to 9 GHz. The sample con-
tainer is a 10X 10-mm? square glass cuvette. The scat-
tered light is collected with a camera lens with focal
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¢

FIG. 1. Index of refraction of the AOT-decane micelle sys-
tem as a function of drople volume fraction. The solid line is a
fit using n =(1—¢)ny+dn, with ny;=1.448 and ny=1.4113.
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length of 75 mm. The excited volume is at the focal
plane of the lens, ensuring that the collected light is col-
limated into the Fabry-Pérot device. The collimated
beam then passes through a piezoelectrically driven,
scanning, Fabry-Pérot interferometer with stabilization
controls. The signal from the Fabry-Pérot device is fo-
cused into a photomultiplier operating in the photon-
counting mode. The data are collected with a multichan-
nel analyzer.

The mirror set of the Fabry-Pérot device has a diame-
ter of 2 in. and 88% reflectivity at the wavelengths used.
All the measurements reported here are obtained with
the Fabry-Pérot device operated in a five-pass
configuration. This is achieved by using two corner cube
retroreflectors on either side of the mirrors. These dis-
place the transmitted beams laterally and pass them
through the mirror set five times. The aperture of the
five-pass operation is 7 mm in diameter. The five-pass
operation offers high resolution and high contrast. The
finesse in one pass is about 20, while in five-pass opera-
tion it is about 50. Thus the resolution is about 2% of
the free spectral range (wggg) of the Fabry-Pérot device,
where wggg =c /2d, with ¢ the speed of light and d the
spacing of the mirrors. The resolution is determined
from the ratio of the free spectral range, to the full width
at half maximum in intensity (FWHM) of the Rayleigh
peak. The contrast in one pass is approximately 10
while in five-pass it can be as high as 10'°. Both the mea-
sured finesse and contrast are lower than the theoretical
expectations of 62 and 6 X 10'!, respectively. This may be
due to dust on the mirror surfaces, which produces extra
scattering, and hence lowers the contrast.

The most significant source of error in the Brillouin
measurements arises from the uncertainty in the deter-
mination of the scattering angle 6. An additional possi-
ble source of error arises in the determination of the
®psr> Which involves the precise knowledge of the spac-
ing d. This latter error can be significant when d is small.
To minimize our experimental error, we calibrate the sys-
tem by measuring v using some simple liquids for which
the sound velocities are well known. These liquids in-
clude acetone, methanol, and distilled water. The cali-
bration procedure is used to determine both the plate
spacing d and the scattering angle 6. To determine d, we
first measure the velocity of the calibration fluids with 6
near 180°, where g is insensitive to 6. Once the wggg is
determined, we then align the optics with the desired
scattering angle, and measure the sound velocities from
the three simple liquids again. This enables the scattering
angle to be determined. With both the wggg and 6 cali-
brated using this procedure, the remaining uncertainty is
from the determination of the peak positions in the spec-
tra. Even with this calibration procedure, the systematic
relative error in determining v can be as high as =~0.07.
However, the relative error for measurements of v as a
function of ¢ at a fixed angle is substantially less because
all the calibration remains unchanged. We estimate that
the relative error is about 0.01, primarily due to the un-
certainty in determining the positions of the Brillouin
peaks.

The damping of sound Av is measured from the full
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width at half maximum Aw,, of the Brillouin peak after
accounting for the system resolution Awg,. The simplest
way to deconvolute the system resolution is to use the ap-
proximate relation AwfneaSZAwgys-i—sz, which assumes
that both the Brillouin peak and the system resolution
function are Gaussian in shape. When the width is
significantly broader than the system resolution, this ap-
proximation gives reliable results. However, when the
measured width is comparable to the resolution, the re-
sults are less reliable.

We have also carried out more precise fitting of the
spectra for some experiments, where theory is available.
This requires a convolution of the theoretical spectrum
with the instrumental response to calculate the measured
spectrum

Ipf0)=4 [ L (o) f(o—o)do' . (4a)

Here, I (w) is the measured spectrum. A is an overall
intensity normalization, f(w) is the theoretical form for
the spectrum, and

P
w)= 1

1 = :
1+ (wpsg /TAO)sin(Tw /wpsg)

(4b)

ins(

is the instrumental response function [2]. The instrumen-
tal response is obtained experimentally by using an ex-
tended source obtained from scattering from a piece of
paper. We fit the measured response to Eq. (4b) to obtain
both the width of the Rayleigh peak Aw,, and the ex-
ponent that is determined by the number of passes p.
While we should have p =5, we typically obtain better
fits using p =~3.8. This then provides a functional form to
describe the instrumental response. Our measured finesse
is typically =50, which is less than the theoretical
reflectivity finesse of 62. The discrepancy is due in part
to other effects which degrade the finesse, including the
mirror flatness and the pinhole size.

To determine the frequency dispersion of the sound ve-
locity, we use an ultrasonic technique to obtain low-
frequency measurements. In this technique, a transducer
is used to excite a pulse of the sound waves in the
megahertz range, and the velocity is determined by the
measurement of the time ?, required for the pulse of
sound to travel through a cell of length L. These mea-
surements are done either by measuring the time period
between two echoes or by using a delay line technique.

In our experiment, the cw signal obtained from a fre-
quency synthesizer is divided into two parts by a power
divider. One part is fed into a gate amplifier where a
pulse of length ~0.03 usec is formed. This is used to
drive a transducer at its resonant frequency to generate
the ultrasonic sound waves in the fluid in the sample cell,
which is about 10 mm in length. A second transducer,
mounted on the other side of the cell, serves as the re-
ceiver. The time of flight of the sound can be measured
directly using the receiver to determine the transit time ¢,
of the pulse. Alternatively, small changes in the velocity
can be determined very accurately using a delay line tech-
nique. The second part of the cw signal is fed into anoth-
er gate amplifier, forming a second pulse. This pulse is
delayed by a known amount and is combined with the

L. YE, D. A. WEITZ, PING SHENG, AND J. S. HUANG 4

signal from the receiver. Small changes in v will cause a
phase shift in the delayed pulse compared with the
transmitted pulse. This phase shift is determined by ad-
justing the delay line to match the phase of two pulses, so
that they null each other in the detector. By measuring
the time difference required for matching, the change in
the transit time At can be determined with a relative ac-
curacy as high as 1073,

We first use the time-of-flight measurement to deter-
mine ¢, for the solvent. Then the volume fraction of mi-
celle or microemulsion droplets is varied in steps of about
0.025, and the change in the transit time At is measured
using the delay line. The velocity is then calculated from

o(g)=—2L

=—. 5
to+ At ®)

To measure the low-frequency dispersion in the velocity,
we use transducers of 2, 3, 10, and 15 MHz. Data at 6
MHz are also obtained using the third overtone of the 2-
MHz transducer. We also tried to measure the signal at
45 MHz using the third overtone of the 15-MHz trans-
ducer, but the damping of the sound is too strong to
detect the signal for ¢ > 0.3 with our cell.

The length of the sample cell L is calibrated by measur-
ing v for simple liquids, including acetone, methanol, and
distilled water, where the velocity of sound is well known.
The main experimental error in the absolute value of v,
therefore, arises from the measurement of ¢, and is typi-
cally 6t,/ty5=0.01. However, the relative error in
measuring the ¢ dependence of v at each frequency is at
least an order of magnitude lower, as the phase matching
technique is used.

The damping of sound is measured by the decay in the
amplitude of the first or second echo of the pulse in the
cell, A(p)=Age “PL where a is the attenuation
coefficient of sound, and A4, is the amplitude of the initial
pulse. We also calibrate A4, using simple liquids. How-
ever, due to the uncertainty in the amplitude measure-
ments, the reliability in the value of « is reduced.

RESULTS AND DISCUSSION

The experimental results will be presented and dis-
cussed in this section. We summarize our main results in
Table I, where the systems and their elastic properties are
listed. We first discuss the results of the velocity mea-
surements for micelles. By varying the carbon number of
solvent oils, the frequency dispersion of the sound veloci-
ty is changed due to the change in the magnitude of the
attractive interaction. Next, we discuss the results for
microemulsions, where we vary the droplet sizes as well
as the solvents. The competition between the effects of
the interaction energy and the intrinsic stiffness of the
droplet phase determines the observed behavior in these
systems. We then discuss the dynamic rigidity percola-
tion, which accounts for the pronounced viscoelastic be-
havior observed for both the micelle and microemulsion
systems. Results for the calculation of the Brillouin spec-
tra are then discussed in conjunction with the theoretical
model used to fit the spectra. Finally, we end this section
by discussing an additional high-frequency dispersion of
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TABLE I. Summary of properties of AOT micelle and microemulsion systems.
System Inverted Micelles Microemulsions
Properties Hexane Decane Hexadecane Hexane Decane
Size (r) 15 A 25 A 25 A 45 A 75 A
¢ dispersion yes yes yes yes yes yes yes
f dispersion no yes yes no no no no
fe ~108 <10° ~108 <10° <10°%
v (m/s) (¢=0.5) 1180 1245 1116
Ve (m/s) (¢=0.5) 1300 1138 1285 1280
1,(N/m?) ~ 108 ~2X108 1.8X10° 1.5X 108 1.0X 10®

the sound velocity observed for both the micelle and mi-
croemulsion systems, which we interpret as a relaxation
of the tails of the surfactant molecules themselves.

Micelles

In inverted micelles, the solid core formed by the
close-packed head groups of the AOT molecules is more
rigid than the suspending fluid. Thus, with increasing
volume fraction of micelles, the sound velocity increases
[6]. We illustrate this behavior in Fig. 2, which shows
the ¢ dependence of v measured at different frequencies
for micelles in different solvents: hexane (C¢H,,), decane
(CypHy,), and hexadecane (C;¢H,,). The results shown
were obtained using both ultrasonic measurements and
Brillouin scattering. These measurements allow us to
probe the effects of the different interaction energies be-
tween the droplets on the frequency dependence of the
elastic properties.

There is a great deal of information contained in Fig. 2.
The sound velocity exhibits a strong dependence on the
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FIG. 2. Velocity of sound in AOT inverted micelles as a
function of volume fraction for several different solvents: hexane
(Ce), decane (C,y), and hexadecane (C,s). Ultrasonic measure-
ments were used to obtain the 2- and 15-MHz data; Brillouin
scattering was used to obtain the high-frequency data. The
solid lines are the fits with the effective-medium theory.

solvent molecule, increasing as the alkane number in-
creases. The sound velocity also increases substantially
as a function of ¢ for all cases. The amount of dispersion
in frequency also changes substantially as the chain
length of the solvent is increased. For hexane, there is no
frequency dispersion of the sound velocity within the fre-
quency range measured for all ¢. For decane, there is a
pronounced dispersion with frequency at higher volume
fractions. For hexadecane, there is frequency dispersion
at all ¢.

The solid line through the hexane data is the fit using
Eq. (3), the simple model which does not include any
shear modulus. Excellent agreement is obtained. From
the fit, we obtain the elastic constants of the droplet
phase, B;~1.33X10° N/m? and B ~33.58 X 10® N/m>.
The absence of a shear modulus implies that the relaxa-
tion time is very fast due to the smaller interaction energy
between droplets. Therefore, the critical frequency f, for
the system is too high to be seen in our experimentally
accessible range, and must be greater than 10 GHz.

As we increase the alkane number of the solvent by us-
ing decane, the data exhibit a pronounced frequency
dispersion for ¢ >0.16. We are able to use the isolated
droplet model to describe the ¢ dependence of the veloci-
ty for the low-frequency measurements, as shown by the
solid line through the 2-MHz data. The excellent fit indi-
cates that the system does not support shear at low fre-
quencies. However, if we apply the same model to the
higher-frequency data, we are unable to fit the data, since
the velocity increases so much more rapidly at higher ¢.
Therefore, we must use Eq. (2), which includes a contri-
bution from the shear modulus of the surfactant phase to
the elastic properties of the system. The solid lines
through the 15-MHz and 4-GHz decane data in Fig. 2
are the results of the fit using the symmetric model. The
fit gives u'~10® N/m? for the composite system at 5
GHz. The fitting parameters of the surfactant micelle
phase are B;~1.62X10° N/m? at 2 MHz, increasing to
~1.98X10° N/m? at 5 GHz, and 8 ~6.0X 10° N/m? at
2 MHz, increasing to ~7.0X 10" N/m? at 5 GHz. We
note that the fits are very sensitive to the value of 3, ena-
bling a precise determination of its value. By contrast, B
cannot be determined as accurately because of the greater
error involved in our measurements of the damping of
the sound velocity. The frequency dependence of the real -
part of the shear modulus of the surfactant phase u; has
a Debye relaxation form, with a characteristic frequency
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of f,~10® Hz [6]. The imaginary part of the shear
modulus p, varies from 10° to 107 N/m? within the mea-
sured frequency range. The increase of B,; with frequen-
cy indicates that the stiffness of the droplet phase in-
creases due to the formation of random networks, which
contribute an additional shear modulus p,.

When we further increase the alkane number of the
solvent by using hexadecane, an even larger velocity
dispersion in frequency is seen, as shown in Fig. 2. In
this case, however, the dispersion exists for all volume
fractions. Indeed, even the hexadecane itself (¢ =0) ex-
hibits a slight frequency dispersion. To fit these data, we
must use Eq. (2) at all frequencies, implying that for hexa-
decane, f. has decreased to below 1 MHz. We find that
uy increases slightly from ~2X10® N/m? at 2 MHz to
2.2X 108 N/m? at 5 GHz, which means that the droplets
form networks which support shear even at the lowest
frequencies that we measure. The fitting parameters 3
increases from 1.97X10° to 2.02X 10° N/m? as the fre-
quency increases from 2 MHz to 5 GHz, and the imagi-
nary part of the shear modulus y/; increases from 1X 10°
N/m? at 2 MHz to 3X 10 N/m? at 5 GHz.

The observed variation of the characteristic frequency
shows that the viscoelastic behavior of the micelles is
directly related to the characteristics of the oil used as
the solvent. The decrease in f, with the carbon chain
length of the solvents results from the increase in the
magnitude of the attractive interaction between the drop-
lets [10]. As the carbon chain length increases, it be-
comes increasingly favorable for the surfactant tails of
two neighboring droplets to interpenetrate as compared
to solvent molecules, filling the spacing between the tail
groups. As a consequence, the energy of the attractive
interaction increases, with a concomitant decrease in f..
The change in f, does not simply reflect the change in
the viscosity of the oil, which might be expected if f,
were determined by Brownian motion of the micelles,
since the diffusion coefficient is inversely proportional to
the viscosity. The viscosities for hexane, decane, and
hexadecane are 0.7, 1.3, and 3.1 cp, respectively [13], so
the diffusion coefficients of the micelles change by
significantly less than a decade on going from hexane to
decane to hexadecane. By contrast, f. changes by several
orders of magnitude on going from hexane to decane and
to hexadecane. Thus the interaction time, and hence f,,
must be determined by the attractive interaction energies
rather than the Brownian diffusion times of the micelles.

Microemulsions

Another way to vary the interaction energy, and hence
fe» is to change the size of droplets by swelling them with
water to form microemulsions. This increases the radius
of curvature, and thereby increases the area of overlap-
ping tails for two interacting droplets, leading to an in-
crease in the interaction energy. To investigate these
effects, we show, in Fig. 3, the results of v as a function of
¢ for microemulsions in decane, using droplets in three
different radii, 25, 45, and 75 A. The data were obtained
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FIG. 3. The velocity of sound for AOT-decane-water mi-
croemulsions of three sizes as a function of volume fraction.
The solid lines represent fits to the effective-medium theory.

at a frequency of 5 GHz using Brillouin scattering. The
velocities for each of the three systems increase with in-
creasing ¢. The lines through the data represent the re-
sults of fits using the effective-medium theory. For the
two microemulsions with smaller sizes, the data must be
fit using Eq. (2), which includes a contribution from the
shear modulus due to the networks formed by the mi-
croemulsion phase. The values of u from fits are
~1.5X10% and 1.0X 10® N/m? for the 25-and 45-A ra-
dius samples, respectively. By contrast, for the mi-
croemulsions with 75-A radius, the data are fit using the
simpler model, without shear. These results suggest that
the interaction between microemulsions due to the over-
lapping of the tails again leads to the formation of net-
works at 5 GHz. For microemulsions with small size, the
shear modulus due to the network results in an increase
of the longitudinal elastic modulus at high ¢. However,
as the microemulsion droplets grow in diameter, the in-
creasing volume of water compared to surfactant reduces
the intrinsic rigidity of droplets themselves. Thus the
shear modulus of the droplet phase decreases again as the
droplet size grows.

We also investigated the frequency dispersion of the
sound velocity in the microemulsions by measuring the
dependence of v on ¢ using ultrasonics from 2 to 30
MHz. Virtually no additional frequency dispersion was
observed for all volume fractions for any of these mi-
croemulsion samples. These observations suggest that
the increased contact area, resulting from the larger ra-
dius of curvature of microemulsions, causes the interac-
tion energy to increase. Thus f. is decreased, so that
f >>f, for all the frequencies used here.

To confirm this picture, we can exploit the behavior
observed for the micelles, and change the interaction en-
ergy by varying the chain length of the hydrocarbon sol-
vent. In order to bring the characteristic frequency into
an experimentally accessible region, we must decrease the
interaction energy between droplets, which requires the
use of a solvent with a shorter chain length. Thus we re-
peat the measurements for the 25-A-radius microemul-
sions using hexane as the solvent. As expected, consider-
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FIG. 4. Velocity of sound in AOT-hexane-water microemul-
sions as a function of volume fraction for different frequencies.
The droplet sizes are 25 A in radius. The solid lines represent
fits to effective-medium theory.

able additional frequency dispersion is indeed observed.
This is illustrated in Fig. 4, where we show the sound ve-
locity as a function of droplet volume fraction measured
at three different frequencies. These results exhibit a
striking similarity to those obtained for the micelles in
decane. The effective-medium theory fit to the 2-MHz
data requires a shear modulus near zero for the mi-
croemulsion phase. By contract, the fits to the data at
the highest frequency yield a much larger shear modulus,
iy ~1.8X10® N/m?% In Fig. 5 we plot the velocity as a
function of frequency for several different volume frac-
tions. The behavior is again similar to that observed for
the micelles in decane [6]; an additional increase in v as
the frequency increases, with the amount of the increase
becoming larger at higher ¢. In all cases, however, the
asymptotic values of v are approached at both high and

 1.10 | $=0.3 1
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FIG. 5. Frequency dispersion of the sound velocity of 25-A
microemulsions in hexane at three volume fractions: ¢=0.3,
0.5, and 0.6. The solid lines are single Debye relaxation with
7=>~1X107% sec. The additional increase of v at high frequency
is a function of ¢, which implies an increase in the elastic
modulus due to the droplet networks.
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low frequencies. The solid line represents fits to a Debye
model with a single relaxation frequency, f. ~ 10® Hz.

The observed viscoelastic behavior in microemulsion
systems is consistent with our physical picture: the at-
tractive interaction between the droplets leads to the for-
mation of extended networks. Provided the water cores
of the droplets are sufficiently small to ensure the neces-
sary rigidity for the droplet phase, the networks can sup-
port shear at high frequencies, f > f.. Therefore, we see
a transition in the behavior of the system from a viscous
liquid at low frequencies to an elastic solid at high fre-
quency due to the random networks formed by the drop-
let phase.

Dynamic rigidity percolation

The dynamics of the inverted micelles or microemul-
sions lead to their unique behavior. At low frequencies
their diffusive motion ensures that the droplets behave as
independent, isolated spheres even at high ¢. By con-
trast, at higher frequencies, the attractive interaction be-
tween the droplets ensures that random, extended net-
works are formed for times long compared to the period
of the sound. The shear moduli of networks thus supply
the added rigidity to the system, which leads to an in-
crease in sound velocity. The fact that they behave as
fluids at low frequencies ensures a truly random disper-
sion of the droplets. The fact that we can measure the
speed of sound at both low and high frequencies means
that we can distinguish the additional contribution of the
rigidity of the extended networks. Thus, these are ideal
systems to use to measure the elastic properties of ran-
dom inhomogeneous mixtures. Here we will show that,
for both the inverted micelles in decane and the mi-
croemulsions in hexane, the contribution of the shear
modulus to the elastic modulus of the system displays a
scaling behavior indicative of dynamic rigidity percola-
tion [7].

The difference between the high- and low-frequency
moduli A’ is, to lowest order, linear in the change in u’',
and thus provides a direct measure of the rigidity of the
micelle network at each ¢. We can determine A’ direct-
ly from the velocity measurements by measuring the
asymptotic values of B’ at high and at low frequencies,
and taking the difference. For the inverted micelles in de-
cane, we are able to discern a change in v only at volume
fractions above ¢~0.16. Thus we plot A’ as a function
of ¢ —¢,., with ¢.=0.16, as the open circles in the loga-
rithmic plot in Fig. 6. The resolution of the Brillouin
peaks precludes measurements closer to ¢.. We observe
a clear power-law behavior, with a rigidity exponent of
7==2.5. This scaling extends over a rather large range in
¢—¢., and is consistent with a random percolating net-
work. We emphasize that this observation is based solely
on the experimental data, independent of any model.
However, this is a dynamic rather than a static measure-
ment. This limits the spatial extent of the sensitivity of
this measurement of the rigidity to roughly the wave-
length of the sound, which is nonetheless at least 100
times larger than the single droplet diameter, even at the
highest frequency. Finally, this rigidity transition occurs
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FIG. 6. The additional elastic modulus A’ at high frequen-
cies as a function of the volume fraction of droplets for both mi-
celles in decane and microemulsions in hexane, showing the
critical behavior of the contribution of the shear modulus at
high frequencies. The solid lines are calculations of (¢—é¢.)*
with #=~2.5, and ¢, =0.16 for micelles and 0.15 for microemul-
sions.
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only for the surfactant micelle phase, which forms the
random connected network. The surrounding oil phase
ensures that the mixture maintains a finite bulk modulus
at all ¢ and does not exhibit a percolation threshold.

Since the behavior of 25-A-radius microemulsion in
hexane is very similar to that seen for micelles in decane,
we can also look for a scaling behavior indicative of dy-
namic rigidity percolation. In Fig. 6, we also plot the
ApB', for the 25-A microemulsion in hexane as a function
of ¢—¢.. Scaling behavior is again observed. The solid
line is a fit to AB'~(¢—¢,)7, where we obtain ¢, =0.15
and 7=~2.5. Both parameters are in excellent accord with
those of the micelle data [6]. Thus we observe a dynamic
rigidity percolation for the microemulsion system as well,
provided we adjust the solvent to bring 7, into a measur-
able range.

There are relatively few results available for elasticity
percolation of random networks in three dimensions with
which these data can be compared. No calculations for
the elastic properties of random, multiply connected
three-dimensional networks exist. The electrical conduc-
tivity [20] of three-dimensional random networks is be-
lieved to scale as o=(¢—¢,)", with t =2. It has been
conjectured that the elasticity exponent has the same
scaling as the conductivity exponent [21]. This is true,
however, only if central forces alone exist between the
constituent particle in the network [22]. By contrast,
noncentral forces, or bond-bending forces, break the simi-
larity between conductivity and elasticity, leading to an
increase in the elasticity exponent [23]. For singly con-
nected networks [24], the exponent is predicted to be
about 3.5. Experimentally, measurements on beams of
sintered metal [25] yielded 7=~3.8, and #~2.0, over an
equally large range in ¢ —¢.. The behavior of the shear
rigidity of the network of surfactant micelles is consider-
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ably different. This may reflect the different nature of the
micelle interactions, which might change 7. Finally, the
value of ¢. found here is consistent with that found from
simulations of interacting spheres [26]. It can be expect-
ed to change as E, is varied, modifying 7,. These invert-
ed micelles allow the investigation of this important issue.

One final interesting comparison that can be made is
between the dynamic rigidity percolation behavior re-
ported here and the conductivity percolation behavior
that is also exhibited by the microemulsions [27]. The
critical volume fraction for conductivity percolation is
found experimentally to be strongly dependent on the
droplet size [16], the chain length of the solvent oil [10],
and the temperature as a critical point is approached
[10]. While the precise origin of this behavior is still sub-
ject to some speculation, it is generally believed that the
mechanism for conductivity in microemulsions involves
the hopping of charge between the droplets [28]. The
hopping range varies with droplet size, solvent oil, and
temperature, accounting for the observed variation in ¢,.
By contrast, dynamic rigidity percolation depends on the
formation of a connected network that is mechanically
rigid and can support shear. Furthermore, this rigidity
percolation is dynamic, and here we investigate only the
limit at very high frequencies, where the rigid, percolat-
ing network remains fully formed during the measure-
ment. As such, dynamic rigidity percolation is somewhat
different from conductivity percolation. It would, how-
ever, be of interest to further investigate the behavior of
¢. for dynamic rigidity percolation to explore its sensi-
tivity to both frequency and the strength of the interac-
tion potential. In the experiments reported here, we have
adjusted the interaction energy of both systems to ensure
that f. lies in an experimentally accessible range. As
such, we find that ¢, is the same for each system. In ad-
dition, we were unable to detect any dependence of either
¢. or 7 on frequency as the characteristic frequency was
approached. Further experiments to determine the sensi-
tivity of ¢, on interaction energy and on frequency would
be of great interest, and would provide a more complete
comparison of the behavior of conductivity percolation
with that dynamic rigidity percolation.

Spectral fits

There is considerably more information in the full
Raleigh-Brillouin spectra than the peaks and widths of
the Brillouin doublet. For simple liquids, the spectrum
consists of three Lorentzian lines. However, for molecu-
lar fluids, an additional, prominent continuous back-
ground is found between the Rayleigh and the Brillouin
doublet [1,29,30]. This additional scattering results from
the internal degree of freedom of the molecules, which
couples to the compressional motion, and thus contrib-
utes scattered light intensity [1]. The Brillouin spectra of
the micelles and microemulsions also show significant in-
tensity in the region between the Rayleigh and Brillouin
peaks. We might expect the relaxation of the extended
networks to produce this broad background in a manner
analogous to the internal relaxation of simpler molecules.
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To test this hypothesis, we employ Mountain’s formalism
[1] to compare to our measured spectra.

To account for the contribution of the molecular relax-
ation, the viscosity must be made to be frequency depen-
dent [1,12].

v —viw)]r,

6
1+ior, ’ ()

nylw)=ny+
where 7, is the center-of-mass part of the bulk viscosity
at constant volume V and is frequency independent, 7, is
the relaxation time, and v is the sound velocity in the
high-frequency limit. The frequency dependence of
ny(®) is such that for w small compared to the relaxation
rate 1/7,, 9(w)—ny,+[v% —viw)]r.; for frequencies
large compared with 1/7., ny(w)—ny,. Thus, n,(w)
provides a phenomenological description of the effects of
the molecular relaxation process on the viscosity. The
Rayleigh-Brillouin spectrum for constant scattering wave
vector ¢ is given by [1,30]

N (0)D(0)+N,(0)D,(w)

I(w)=const D2 (w)+D3w) , (7
where
N,(0)= —a*+yDrDyq*+v2q*(1—1/y)
+(yDybig*+bw*q?r,) /(1 +0?7?) , (7a)
Ny(@)=wlyDrq*+Dyq*
+(biq*+yDrbiT.q*) /(1+w*2)], (7b)
D (w)= ~w2(yDTq2+DVq2)+v2q4DT
+(yDybio?qr, —blw*q?) /(1+w?7?) (Tc)
D,(0w)=o0[ —w*+v,q°+yDsD,q*
+(b\q*0*r, +yDybigY) /(1 +0?72)] , (7d)
and where

(% —vHr,
P

In these equation, D;=A/pC, is the thermal diffusivity
and A is the thermal conductivity, Dy, =(ny+47g)/p is
the longitudinal kinematic viscosity, with 1, and 7y the
bulk and shear viscosities, respectively, and y=C,/Cy,
where C, and Cj, are the specific heats at constant pres-
sure and volume, respectively.

The exact expression for the Brillouin spectrum with
the structural relaxation, Eq. (7), is simplified for small
viscosity, such the D, q%<<w(q), where w(q) is the fre-
quency of the Brillouin shift. The spectrum is comprised
of three Lorentzian peaks: the first is the Rayleigh peak,
the second is the pair of Brillouin peaks, while the third
is a broad peak centered at zero frequency [28]. The
width of the Rayleigh peak depends on the thermal
diffusivity. The Brillouin doublet has a frequency shift of
= ~tvgq, while its width is determined primarily by D, q>.
The width of the broad peak depends on the structural
relaxation time 7, !, while its magnitude depends on the

bl =

8259

ratio of v /v, as well as on 7.

Thus to compare the theoretical spectra to our data,
there are six unknown parameters, Dy, 1;, ¥, 7., v and
v,. However, because each parameter influences the
spectrum in such a different fashion, reliable values for
these parameters can be obtained from fits to the data.
The only exceptions to this are the values obtained for
the Brillouin velocity v and the high-frequency limit of
the velocity v,,. Attempts to determine both of these pa-
rameters independently from the fits invariably led to un-
realistic values, presumably because our data are ob-
tained at rather large frequencies, where v is nearly equal
V.. Thus in fitting the data, we fix v, determining its
value from the maximum intensity of the Brillouin dou-
blets, and use v, as a fitting parameter.

To fit the experimental data, we convolve the theoreti-
cal expression, Eq. (7), with the instrumental response
function, Eq. (4a), and use a nonlinear least-squares rou-
tine to obtain values for D, 1,, ¥, 7., and v, as well as
an overall normalization constant to account for the ab-
solute intensity. This theoretical formalism provides ex-
cellent agreement with the data, as shown by the exam-
ples in Fig. 7, which shows the data for micelles in hex-
ane, decane, and hexadecane, all with ¢=0.5 aond ob-
tained at a scattering angle of 90° with A=5145 A. The
intensities are plotted on a logarithmic scale to show the
large variation, and the dark counts and background
have been subtracted. The Raleigh peaks are all substan-
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FIG. 7. Brillouin spectra of AOT micelles for several
different solvents, hexane (Cg), decane (C,y), and hexadecane
(C,¢) at $=0.5. The solid lines are the theoretical spectra calcu-
lated from Eq. (7). The scattering angle is 90°, and the wave-
length is 5145 A.
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tially larger than the Brillouin peaks, as is typically ob-
served for viscoelastic materials. In addition, there is a
continuous intensity between the Rayleigh and the Bril-
louin peaks, reflecting the additional relaxation mecha-
nism.

In all the spectra, the width of the Rayleigh peak is
determined by D;q% Since the measured width is close
to the limit of the resolution of the interferometer, we are
unable to precisely determine the value of Dy. It is on
the order of 10~ * cm?/sec, which is the same order of
magnitude as D4 determined for decane or CCl,.

The width of the Brillouin peak is determined by D,q>.
In general, for a viscoelastic fluid, the longitudinal kine-
matic viscosity Dy is frequency dependent, reflecting the
consequences of the relaxation processes in the fluid.
From the width of the Brillouin peaks for the micelles in
decane, we obtain values for D of 2.3 X 102 cm?/sec for
#=0 (pure decane) and 0.11 cm?/sec for $=0.5. We
have measured the shear viscosity using a viscometer.
We find an exponential increase with volume fraction,
from 7, /p=1.1X10"? cm?/sec for pure decane to 0.2
cm?/sec for $=0.5. The static viscosity measurements
give a value for 7, that is larger than that obtained from
the Brillouin measurements, which include the contribu-
tion of both the shear and bulk viscosities. This behavior
is often observed in viscoelastic materials and reflects the
complexity of the physical processes which contribute to
the width of the Brillouin peaks [31]. Physically, we
might also expect the static measurements of the shear
viscosity to yield a larger value for 7, since they reflect a
macroscopic flow, wherein the micelles must move dis-
tances larger than their own size, making the effects of
geometric constraints contribute to the viscosity.

The prominent background induced by the relaxation
mechanism in the spectrum depends on the relaxation
time 7, and the velocity ratio v /v,,. For micelles in de-
cane and microemulsions in hexane, where continuous
backgrounds are observed, the values of 7, obtained from
fits are 7,~1.4X 1078 sec for micelles in decane and
7,7=2.4X 1078 sec microemulsions in hexane. These are
in excellent agreement with the values of 7 obtained from
the measured frequency dispersion of the velocity fit to a
single relaxation time Debye behavior. In addition, the
values of v, obtained from the spectral fitting of the two
systems are also consistent with those obtained from
measured frequency dispersions: the fits to the spectra
give v, =~1309 m/sec for micelles in decane at ¢=0.5,
and v, ~ 1140 m/sec for the 25-A-radius microemulsions
in hexane with ¢=0.5. The values are in excellent agree-
ment with the values of 1298 m/sec for the micelles and
of 1130 m/sec for the microemulsions. When o7, >1,
the broad peak becomes very narrow and cannot be dis-
tinguished from the Rayleigh peak. Thus for micelles in
hexadecane, where 7, > 1077 sec, the broad peak is great-
ly reduced. Similarly, the broad peak is essentially absent
in the hexane spectra in Fig. 7, and the actual value ob-
tained for 7, from the fit is unreliable. The value ob-
tained is very low, consistent with the absence of any ad-
ditional dispersion of v with f. Finally, for the 75-A-
radius microemulsions in decane, when the swollen water
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cores reduce the rigidity of the droplet phase, there is
again no contribution due to the relaxation of the mi-
croemulsion structures, and the spectra are again similar
to those of simple fluids where we do not see a broad
peak. Thus the presence of the broad peak in the spectra
is completely consistent with our frequency dispersion
data. As expected from the theory, it is only observed
when 7, ~ 1073 sec, and when it is present, the value for
7. obtained from the fit to the spectra is consistent with
that obtained directly from the frequency dispersion of v.

The Landau-Placzek ratio ¥ — 1 is the intensity ratio of
the Rayleigh peak to the Brillouin doublet. As a fitting
parameter, we find y~1.2 for decane, consistent with
v =1.219 measured for n-hexadecane by Patterson and
Lindsey [32]. We find that ¥ increases up to 1.8 at high ¢
in the micelle systems. However, the values of y ob-
tained from the fits to the spectra of the microemulsion
systems, at larger droplet sizes and higher ¢, can be as
large as 10. This reflects the viscoelastic nature of the
system. Similar behavior is found in polymer fluids [33],
where the intensity ratio of the central peak to the Bril-
louin doublet is often much greater than unity.

We also attempted to use a model for a binary mixture
[1] to fit our spectra. The binary-mixture model accounts
for additional concentration fluctuations which contrib-
ute to the density fluctuations. Thus the central com-
ponent consists of a superposition of two peaks, one re-
sulting from entropic fluctuations, and the other from
concentration fluctuations. We find that this model can-
not adequately describe our results. The calculated Ray-
leigh peak from the model is too broad to fit our spec-
trum, implying that concentration fluctuations of the mi-
celles or microemulsions do not play an important role in
the scattering from these systems.

In summary, the spectral fitting using Mountain’s re-
laxation model successfully describes our data. The cou-
pling between the translational motion and the structural
rearrangement motions leads to a new nonpropagating
mode, with a width on the order of 1/7, [1,31]. For the
micelle and microemulsion systems, the parameter T,
reflects the structural relaxation time in the system. In
addition, the relaxation time and high-frequency sound
velocity obtained from the spectral fitting are consistent
with those given by the Debye relaxation model fit to the
measured frequency dispersion of the sound velocity. Fi-
nally, the computed curves are in good agreement with
the measured spectra. Thus, a totally self-consistent pic-

* ture emerges.

Relaxation of surfactant molecule tail groups

Here we discuss an additional frequency dispersion of
the sound velocity found in all the micelle and mi-
croemulsion systems. Very near the backward-scattering
configurations, where the sound velocities are measured
at the highest frequencies, we find that the sound velocity
increases rapidly within a very-short-frequency range, re-
gardless of solvent and droplet sizes. We interpret this
behavior as a further relaxation process of the surfactant
tails themselves.

The experimental results are shown in Fig. 8, where we
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FIG. 8. Additional frequency dispersion of the sound veloci-
ty for AOT micelles and microemulsions of three sizes, all in de-
cane and all at ¢=0.5, demonstrating the additional relaxation
of the tails of the AOT molecules themselves.

plot the dependence of v on frequency for micelles and
for othree sizes of microemulsions, with radii 25, 45, and
75 A, all at $=0.5 and all in decane. The data are ob-
tained by varying the scattering angle from 30° to nearly
180°, using an Ar* laser at 5145 A, except for the last
data point for each system, which is obtained using the
4880-A line at nearly 180°, to obtain larger scattering
wave vectors and hence larger frequencies. The velocity
v for each system increases dramatically, by as much as
5%, when the frequency increases from 5 to 8 GHz, cor-
responding to scattering angles varying from 90° to 175°.
This additional frequency dispersion in the velocity is ob-
served in all AOT micelle and microemulsion systems, re-
gardless of the size of the droplets or the solvent used.
These results imply a further relaxation process, which
results in a further increase in the stiffness of the mixture
at higher frequency.

One possible origin for this behavior is the exchange of
surfactant monomers between the micelles or microemul-
sions and the surrounding solvent oil. However, the
characteristic frequency of this effect is generally believed
to be much lower than the frequencies observed here [34].
Furthermore, the exchange frequency is considerably
different for micelles and microemulsions, while the re-
laxation frequency observed here is essentially constant
for all systems. Thus, we reject the surfactant monomer
exchange as the origin of this high-frequency relaxation.

Instead, we attribute this behavior as arising from ad-
ditional relaxation due to the surfactant tails, since it is
independent of the solvent and the droplet size and since
the time scale is consistent with the frequencies associat-
ed with the motion of the surfactant tails. Thus, there is
an additional characteristic time 7, corresponding to the
motion of the tails. The inverse of this relaxation time is
slightly above 5 GHz. When the period of the sound
wave is shorter than 7,, there is not enough time for this
tail motion to relax, and the system appears stiffer, there-
by increasing the velocity of sound. This additional inter-
nal molecular degree of freedom may also contribute to
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FIG. 9. Additional elastic modulus due to the relaxation of
the tails of AOT surfactant molecules in the system as a func-
tion of volume fraction, demonstrating a further enhancement
of the dynamic rigidity. The solid lines are fits to (¢ —¢.)” with
7==2.5 and ¢.=0.16, the same values that describe the behavior
of the dynamic rigidity percolation observed at lower frequen-
cies.

the stiffness of the extended networks formed by the
droplets. To examine this possibility, in Fig. 9 we plot
the increase in the elastic modulus from 1 GHz, which is
the plateau of the relaxation due to the networks, to 8
GHz, which is the highest frequency measured, as a func-
tion of ¢ —¢,, for the micelles in decane. Unlike the pre-
vious dispersion observed at lower frequencies, we are un-
able to reach the asymptotic value of v at the highest fre-
quencies. We again find that the data exhibit a power-
law scaling. As before, the data are well described by
AB' ~(p—¢,.)7, with ¢.~0.16 and 7~2.5, in surprising
accord with the previous values. This implies that the
additional rigidity contributed by the “frozen” surfactant
at high frequency also contributes to the percolating net-
works. At higher ¢, there are more AOT molecules in
the system to contribute to the enhancement of the elastic
modulus, making it a function of droplet volume fraction
with a behavior similar to that of the droplet networks
themselves.
CONCLUSION

We have presented the results of a systematic study of
sound propagation in AOT micelles and microemulsions.
These systems are comprised of the surfactant, sodium
di-2-ethylhexylsulfosuccinate (AOT), in a solvent of a
linear chain hydrocarbon. When no water is added, the
surfactant aggregates into inverted micelles each contain-
ing 22 AOT molecules with a radius of 15 A. Upon addi-
tion of water, microemulsion droplets are formed with a
water core and surfactant shell. In all cases, the droplet
diameter remains unchanged as the droplet concentration
is varied, allowing us to measure the dependence of the v,
the sound velocity, on the volume fraction ¢ of micelles
or microemulsions. For all cases, we have used ultrason-
ic and Brillouin-scattering measurements to determine
the frequency dispersion in the sound velocity over three
and a half decades.
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A consistent physical picture is presented to account
for all of our observations. Because of the close-packed,
polar head groups of the surfactant, the droplets are
more rigid than the solvent phase. Thus the sound veloc-
ity always increases with ¢. In addition, there is a weak,
short-range, attractive interaction between the overlap-
ping tails of the surfactant molecules. As a result, the
droplets can form short-lived, extended networks, and
these networks can support shear, provided they span the
whole system. In that case, the additional shear modulus
increases the rigidity of the system, further increasing the
sound velocity. This accounts for the additional disper-
sion in the velocity observed at high frequencies and high
volume fractions. The magnitude of the attractive in-
teraction increases with the chain length of the solvent
molecules. Thus the onset frequency for the additional
dispersion in v at high ¢ due to the shear modulus of the
networks decreases as the solvent is changed from hexane
to decane to hexadecane. In addition, the magnitude of
the attractive interaction increases upon further addition
of water, since the area of overlap is greater with increas-
ing droplet radius for the microemulsions. Thus, again
the onset frequency for the contribution of the shear
modulus of the networks decreases as the droplet radius
increases upon addition of water. However, the water
cores of the microemulsion droplets decrease the inherent
rigidity of droplets themselves, and this effect competes
with increasing rigidity of the surfactant shells. Thus, as
the droplet radius increases further, the shear modulus of
the microemulsion phase is ultimately no longer ob-
served.

Essential to the interpretation of our data in the con-
text of this physical picture is the theoretical description
of the ¢ dependence of v using an effective-medium mod-
el. At low frequencies, where the extended networks are
short lived and do not contribute a shear modulus, the
droplets act as independent particles. At higher frequen-
cies, we treat the droplets as a continuous, connected
phase, and include the shear modulus of this phase in the
calculation of the ¢ dependence of the longitudinal elastic
modulus of the composite medium. To account for the
frequency dispersion of v, we allow the parameters which
characterize the elastic properties of the droplet phase to
be frequency dependent, and fit the ¢ dependence of v for
each frequency. This allows us to determine the magni-

L. YE, D. A. WEITZ, PING SHENG, AND J. S. HUANG 44

tude of the contribution of the shear modulus of the
droplet phase. .

Since the extended networks of droplets can only sup-
port shear if they span the system, they can only contrib-
ute an additional shear rigidity above a critical volume
fraction ¢.. Furthermore, the magnitude of this shear ri-
gidity exhibits a scaling behavior in volume fraction
above ¢.. Thus the shear modulus of the droplets exhib-
its dynamic rigidity percolation. We experimentally
demonstrate this percolation behavior by extracting the
shear modulus from the additional increase in v with fre-
quency. We show that both the micelles and microemul-
sions exhibit nearly identical dynamic rigidity percolation
behavior.

Finally, we also show that the full Rayleigh-Brillouin
spectra obtained can be described in terms of the formal-
ism developed by Mountain [12]. This formalism in-
cludes the contribution of an internal relaxation of the
medium, which results in additional scattering intensity
between the Rayleigh peak and the Brillouin doublet.
We attribute this internal relaxation to that of the ex-
tended networks. Excellent fits of the spectra are ob-
tained, and the values for the relaxation time of the net-
works are in good accord with the values determined
directly from the measured dispersion of the sound veloc-
ity. Thus a self-consistent picture is obtained. We also
discuss an additional dispersion in v that is observed at
very high frequencies, using Brillouin scattering at large
scattering angles. This dispersion is observed for all sys-
tems at a similar frequency, and is therefore attributed to
the relaxation of the tails of the surfactant molecules
themselves. This additional dispersion also contributes to
the rigidity of the droplet networks, and thus also exhib-
its a percolation scaling with volume fraction.

In conclusion, these results demonstrate the utility of
using sound propagation to probe the behavior and dy-
namics of micelle and microemulsion systems. They also
demonstrate the richness of the behavior exhibited by
these systems.
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