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Weighted-density-functional theory of nonuniform quid mixtures: Application to the structure
of binary hard-sphere mixtures near a hard wall
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A computationally practical density-functional theory of nonuniform Quid mixtures designed pri-
marily for the study of interfacial phenomena" is presented and applied to the structure of a binary
hard-sphere mixture near a hard wall. The theory is based on a weighted-density approximation for the
one-particle direct correlation functions of the nonuniform system, and requires as input only the one-
and two-particle direct correlation functions of the corresponding uniform system. Numerical results
for density and concentration profiles are presented and compared with available simulation data.

PACS number(s): 61.20.Gy, 61.20.Ne, 68.45.Ax

I. INTRODUCTION

The physical properties of solid-Auid interfaces are of
both fundamental theoretical interest and also of consid-
erable practical importance in connection with phenome-
na such as adsorption, wetting, catalysis, and filtration.
A characteristic feature of interfacial systems is the pres-
ence of a nonuniform (i.e. , spatially varying) density
profile in the vicinity of the interface. One reason for
theoretical interest, then, is that such systems can serve
as useful testing grounds for theories of nonuniform
Auids.

The simplest imaginable model of a solid-Auid interface
treats the solid as a smooth (i.e., structureless), hard (i.e.,
impenetrable) wall. Such a model is certainly a severe
idealization of a real interface since it completely ignores
any detailed microscopic interactions between solid and
Auid. It does, however, capture one essential feature of
the interface, namely the exclusion of the Auid from the
region of space occupied by the solid. The role of ex-
clusion in determining the density profile of the Auid may
thus be studied in isolation from other contributing fac-
tors, such as, for instance, long-range Auid-solid interac-
tions.

In recent years the wall-fiuid model has been extensive-
ly studied by a variety of theoretical and computer-
simulation techniques. On the theoretical side, the
density-functional method has proven to be one of the
more successful approaches. This method is actually a
quite general approach to the equilibrium properties of
nonuniform Auids, and has been widely applied to a
variety of interfacial and bulk phenomena [1]. It usually
proceeds by first approximating the thermodynamic po-
tential of the nonuniform Auid, using known structural
and thermodynamic information for the corresponding
uniform Auid, and then minimizing the approximate ther-
modynamic potential with respect to the equilibrium den-
sity profile.

Numerous studies already have addressed problems in-
volving simple one-component fluids near walls (see, for
example, Refs. [2—9]). Relatively few studies, however,

have yet considered the more general case of Auid mix-
tures near walls. In comparison with one-component sys-
tems, mixtures naturally constitute a much richer class of
systems because of the additional concentration variables.
For the same reason, however, their quantitative study
necessarily entails greater computational complexity.
Recently Tan et al. [10] generalized one formulation of
the density-functional method —one which is based on
the smoothed density approximation of Tarazona [4]—
from one-component systems to mixtures, and applied it
to the structure of binary hard-sphere mixtures near a
hard wall. Subsequently, Kierlik and Rosinberg pro-
posed [8] a simplified version of the formulation of
Rosenfeld [11]and applied it to the structure of the one-
component hard-sphere fiuid near a hard wall [8] and to
adsorption at substrates of several simple binary mixtures
[12]. The primary purpose of this paper is to present a
corresponding generalization and application of a
di8'erent formulation of the density-functional method-
one which is based on a computationally simple version
of the weighted-density approximation (WDA) of Curtin
and Ashcroft [13].

The outline of the paper is as follows. In Sec. II we
first describe our density-functional theory —based on a
simple version of the %'DA for the one-particle direct
correlation function (DCF)—in the context of one-
component Auids, and then propose its generalization to
mixtures. In Sec. III we apply the theory to the special
case of hard-sphere fluids near a smooth, hard wall,
modeled as noted by a structureless, impenetrable, planar
boundary, and then present results for density and con-
centration profiles. These results are compared with
available simulation data, and some strengths and limita-
tions of the theory are discussed. Finally, in Sec. IV we
summarize and conclude.

II. THEORY

A. Density-functional theory of one-component Auids

Two central quantities in the density-functional
inethod for nonuniform Auids [1,14] are the grand poten-
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tial O[p], and the intrinsic Helmholtz free energy F[p],
both unique functionals of the spatially varying one-
particle density p(r), and related according to

Q[p]=F(p]+ fdrp(r)[u(r) —p], (1)

where u(r) is an external potential and p the chemical
potential. The foundation of the method is a variational
principle, according to which Q[p] is minimized by the
equilibrium density [14]. Thus, at equilibrium

~&(p)
5P(r)

which implies [from Eq. (1)] the Euler-Lagrange relation

(2)

8F(p) „„(,)
5P(r)

It is standard to separate F[p), according to

F(p) =Fd(p]+F..[pl (4)

(7)

From Eq. (6) it is evident that c"'(r; [p] ) plays the role of
an effective one-particle potential that acts self-
consistently to determine p(r).

The application of the density-functional method can
now, in principle, proceed either by the minimization of
Q[p] with respect to p(r) or alternatively by the search
for a self-consistent solution of Eq. (6). In applications to
interfacial properties of nonuniform fluids the latter ap-
proach is usually the more practical and is the approach
followed in this paper. Equation (6) is a formally exact
relation, which in principle may be solved for p(r) if the
functional c'" is known. In practice, however, c"' is
generally unknown and so must be approximated. Here
we adopt a simple version of the WDA of Curtin and
Ashcroft [13], which we have previously proposed [16]
and subsequently used [16,17] to study the structure of
the uniform hard-sphere fluid. The approximation is ex-
pressed by the simple relation

cwDA(r [pl) co (p(

into an ideal gas fre-e energy F;d[p], which is the free en-

ergy of the nonuniform system in the absence of internal
interactions, and which is given by the exact relation

F d [p] =k~ Tf dr p(r)(ln[p(r)A, ]—1), (5)

where k is the thermal de Broglie wavelength, and an ex-
cess free energy F,„[p], which originates in internal in-
teractions and is in general unknown. The substitution of
Eqs. (4) and (5) into Eq. (3) then leads to the following ex-
act Euler-Lagrange relation for the equilibrium density:

p(r) =z exp( —Pu (r)+c'"(r; [p])),
where z =e~"/A, (the fugacity), /3= I/kz T, and
c"'(r; [p]) denotes the one-particle direct correlation
function [15]. The latter is a functional of the density,
and the first of a hierarchy of DCF's defined by succes-
sive functional differentiation of F,„[p) according to

which equates the one-particle DCF of a nonuniform
Iluid to its counterpact co" for the corresponding uniform
Auid evaluated, however, at a weighted density p(r)
defined according to

p(r) =—fdr'p(r')w( Ir —r'I;p(r) },
that is, p(r) is a weighted average of the physical density
p(r) with respect to a weight function w. The basic phys-
ical assumption implicit in the approximation is that, at
the level of c'", the nonuniform fluid may be mapped
onto" an effective locally uniform fluid. The statement of
the approximation is made complete by a specification of
the weight function, a task to which we return below.

Several different but related formulations of the WDA
have been proposed in recent years and applied to a
variety of problems involving nonuniform fluids
[2,4—13,16—19]. Generally the approximation is applied
at the level of the excess Helmholtz free energy F,„. A
corresponding approximation for the one-particle DCFc'" may then be obtained by functional differentiation ac-
cording to Eq. (7). The resulting expression is normally
dificult to evaluate in the numerical sense, however, and
especially so in the case of Iluid mixtures (for a generali-
zation to mixtures of the WDA of Curtin and Ashcroft
[13], see Ref. [19]. It is important to emphasize that the
WDA for c"' employed here [Eqs. (8) and (9)] is not de-
rived from any corresponding higher-level approximation
for F,„,but is motivated primarily by a desire to facilitate
computations (see Sec. III). In passing, we note that from
our approximation for c'" a corresponding approxima-
tion for F„can be obtained, in principle, by numerical
functional integration. In practice, however, one of the
earlier versions of the WDA explicitly formulated to ap-
proximate the excess free energy is actually better suited
to this purpose.

As demonstrated in Ref. [17], in the context of the
structure of uniform fluids, our approximation for c"'
may be interpreted as an approximate closure of the
Ornstein-Zernike (OZ) equation. Similarly, in the present
context, the approximation may be interpreted as an ap-
proximate closure of the wall-particle OZ equation. A
distinction should be noted, however, between our ap-
proximation for c"' and a previously proposed modified
weighted-density approximation [18] for F,„. Whereas
the latter approximation has been shown by White and
Evans [20] to correspond to the well-known
hypernetted-chain (HNC) closure of the wall-particle OZ
equation, our approximation for c'" does not appear to
correspond to any of the standard closures, but instead to
a new closure [21].

We now return to the specification of the weight func-
tion. Normalization of w, according to

fdrw(r)=1, (10)

ensures that the approximation becomes exact in the uni-
form limit [p(r)~po]. The weight function is now
uniquely specified by requiring that the first functional
derivative of cwoA(r;[p]) with respect to the density
yields, from Eq. (7), the exact two-particle DCF in the
uniform limit, i.e.,
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5cwDA(r [p])
lim

p(r)- p, 5p(r')
=c,'"(lr —r'I;p, ) .

2
F d fp» p2] =k~ T g f«p;(r) [»[p;(r )~,']—1], (16)

Indeed, substitution of Eqs. (8) and (9) into Eq. (11) leads
to the following analytic form for the weight function:

co"(r po)
w(r;po) =

ac o'" /apo
(12)

In contrast, the HNC approximation, which is commonly
used in integral equation theories of Iluid structure [22],
corresponds to a first-order truncation of the expansion
[23]. Second, the self-consistent choice of the density ar-
gument of the weight function in Eq. (9) can be shown to
ensure that Fourier transforms of co ' and higher-order
DCF's derived from cwDA(r; [p]) are smooth functions of
their wave vector arguments [16).

Summarizing to this point, given as input the uniform-
state functions co" and co ', Eqs. (8)—(10) and (12) now
constitute a closed, self-consistent set of equations for the
density p(r), which may be solved numerically by an
iterative procedure (see Sec. III A). Next we turn to a
generalization of the above theory to Quid mixtures.

B. Density-functional theory of Auid mixtures

The theory described above for one-component sys-
tems may be generalized to mixtures in a manner com-
pletely analogous to that proposed in Ref. [19] in a
different context, namely a theory of freezing. In the sim-
plest case of binary mixtures, the grand potential and the
intrinsic Hebnholtz free energy are unique functionals of
the two spatially varying one-particle densities p, (r) and
p1(r) of the two components, and related according to [cf.
Eq. (1)]

2

Q[p»p2]=F[p»pz]+ g fdrp;(r)[u;(r) —p;], (14)

where the subscript i labels the component. The funda-
mental variational principle [Eq. (2)] can also be shown to
apply to the density of each component, so that at equi-
librium

=0, 1'=1,2 .
5p;(r)

(15)

The substitution of Eqs. (4), (14), and the generalization
of Eq. (5) for the ideal-gas free energy, i.e.,

Two important formal features of the approximation
may now be noted. First, Eq. (11) ensures that a func-
tional Taylor-series expansion of cwz', A(r;[p]) about the
uniform Quid is exact to first order and also includes a
subset of certain exact terms to all higher orders,
specifically those terms which may be derived from co '

according to the hierarchy relation

~ ~ (n)dr3 dl Co (1f 11 13 . , r„;po)

Qn 2

co ( Ir] r21 vapo) .

into Eqs. (15) then leads to a pair of coupled Euler-
Lagrange relations [cf. Eq. (6)], namely,

p,.(r)=z;expt —Pu;(r)+c;"'(1;[p„p2])], i =1,2 (17)

where c;"'(r;[p„p2]) denotes the one-particle DCF of
component i.

The weighted-density approximation described above
for the one-component c"' now may be generalized to
c,"' in the same manner as a similar generalization pro-
posed in Ref. [19]. The generalized approximation is ex-
pressed by

~i~wDA( i [p]):cio (p"(1)ix ) i (18)

where c 0' is the uniform-Quid counterpart of c;"', x is the
average concentration of the mixture, and p '(r) is the
weighted density associated with component i, defined in
terms of weight functions w;1 (i,j =1,2; w, 1=we&) ac-
cording to

p '(r)—:g f dr'p (r')w, (lr —r'I;p '(r)), i =1,2 .

(19)

lim
p(1)~po

5c w'DA(r [Pi Pzl)
5p (r') =c,',"(lr—r'I;p„x),

l,J= 1,2 (21)

The substitution of Eqs. (18) and (19) into Eq. (21) leads
to the following analytic forms for the weight functions
[24] [cf. Eq. (12)]:

c,',"(r;p„x )
w j(r;po, x)=

Bc;o /BPo
(22)

Summarizing again, given as input the uniform-state
functions co ' and c J

', Eq. (18), together with Eqs. (19),
(20), and (22), may be solved for the densities p, (r) and
pz(r) by a numerical iterative procedure (see Sec. III B).
In the following section we proceed to an application of
the theory described above to the specific case of hard-
sphere fluids.

Physically, P"'(1) may be interpreted as the total density
of an effective locally uniform mixture, associated with
component i at position r, onto which the nonuniform
fluid is mapped. For simplicity, the concentration of the
effective mixture is taken to be the same for each com-
ponent.

The weight functions are specified first by normaliza-
tion conditions [cf. Eq. (10)]

f drw; (r)=l, i j =1,2 (20)

thus ensuring again that the approximation is exact in the
limit of a uniform mixture [p(r)~po], and second by re-
quiring that the first functional derivatives of c " with
respect to the densities yield the exact two-particle DCF's
in the uniform limit, i.e. [cf. Eq. (11)],
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III. APPLICATION TO HARD-SPHERE FLUIDS
NEAR HARD WALLS

A. One-component hard-sphere Suid

We first test the theory of Sec. II on the relatively sim-
ple (but well-studied) one-component hard-sphere fluid.
Under the assumption of planar symmetry, the one-
particle density is a function of z only and, from Eqs. (6)
and (23), it may be expressed in the form

P(z) =PgxP I
c' "(z;[P ] ) —co" (Po)I, (24)

where po is the bulk Quid density far from the wall. Ap-
plying the weighted-density approximation described in
Sec. II A to the functional c"' in Eq. (24), p(z) may be
approximated by the relation

P«) =PoexP [&o"(P«» —
& o" (Po) ]

where the weighted density p(z) is defined by

p(z) —= f dz'p(z')io( tz —z't;p(z)),

(25)

(26)

and where w(z) is a planar average of the weight function
w(r), i.e.,

In this section we study the density profiles of both
one- and two-component hard-sphere Auids in the pres-
ence of a wall which is both smooth and hard in the sense
described earlier. We locate the wall at z=0 and de-
scribe the corresponding external potential by

u (z) = ~, z ( cr /2

u(z)=0, z) o/2

where o. is the hard-sphere diameter. For simplicity, we
assume planar symmetry and concern ourselves here with
spatial density variations only in the direction perpendic-
ular to the wall. In making this assumption, we implicitly
ignore the possibility of fluid structure in directions
parallel to the wall.

p;"„+'(z)=up,"„,(z)+ (1 —a)p,"„(z) . (31)

Figure 2 shows a sample of the resulting density and
weighted density profiles at bulk density poo. =0.81, to-
gether with the corresponding simulation data of Snook
and Henderson [27]. Several features of the profiles may
be noted. First, the density profile p(z) vanishes as ex-
pected in the region z & o. /2 because of exclusion of the
fiuid by the wall (at z =0); moving away from the wall it
oscillates with a period equal to the hard-sphere diameter
o.. Second, the oscillations in the weighted density profile
P(z) are much weaker than, and out of phase with, those
of p(z), a consequence of the exponential relation between
p(z) and co '(P(z) ) [see Eq. (25)] and also the fact that eo '

is always negative. Finally, both p(z) and p(z) asymptoti-
cally approach po far from the wall; this trend serves as a
numerical check on the computations.

where a = —(1+2rl) /(1 —il), b =671(1+zq) /(1 —g),
and d= —,'ga. Figure 1 shows an illustrative plot of w(z)
vs z. Notice in particular that w(z) has a range o equal
to the range of the PY direct correlation function. This
ensures that the range of nonlocality of the approximate
c"', that is, the range over which cwD~ depends on p(z),
is accurately represented by the WDA.

Using this w(z), we next compute profiles of the densi-
ty p(z) and the weighted-density p(z) by the following
iterative procedure. Beginning with initial estimates of
p(z) and p(z), a new estimate of p(z) is computed from
Eqs. (26) and (30). We find it sufficient to begin with flat
profiles, discretized with a step size of 0.02o. . The substi-
tution of the new p(z) into Eq. (25) then immediately
yields a new estimate of p(z). Using the new p(z) and
p(z), the procedure is then iterated until it converges [i.e.,
until p(z) and p(z) change insignificantly from one itera-
tion to the next]. To obtain convergence, we find it essen-
tial to use the standard technique of mixing the old solu-
tion with the new, according to [26]

io(z) = f dx f dy w(r) . (27)
1.0

For the required uniform-state functions co" and co ',
we adopt the expressions which conveniently follow from
the analytic solution of the Percus-Yevick (PY) integral
equation for hard spheres [25], explicitly,

7g —13' /2+5' /2
(1—g)

co '(x) =a +bx +cx, x (1
(29)

co '(x)=0, x) 1

where 7) = (vr/6)pocr, x = r /cr, a = —( 1+2g ) /( 1 —g ),
b =6'(1+—,'g) /(1 —rj), and c =

—,'rja.
The integrals in Eq. (27) may be evaluated analytically,

and they yield the result

0.8

0.6

0.2

0
0 0.2 0.4 0.6

z /o-
0.8 1.0

FICx. 1. Planar-averaged weight function for one-component
hard-sphere Quid at bulk density poo. =0.8.+ —,'d(cr —z )], z (cr (30)

u)(z)= „, [a(cr z)+ 2b(o z)— —
ac,'"yap,
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2.0—
I

I
I I I I

I
I I I bulk packing fraction q, related to the bulk density pp ac-

cording to

b g= —[x+(1—x)a ]poo2. (33)

l.5—

0 0.5 I.O I.5 2.0

Here we follow the conventions 0, &o2 (a&1) and
x =po2/po (concentration of larger spheres). Equations
(25)—(27) for the one-component fiuid generalize quite
naturally to

p;(z) =p;oexp[c(o" (p '(z), x ) —c,(o'(p;o, x)],
i =1,2 (34)

0.5— 2

p"'(z) = y f dz'p, (z')w, ,(lz —z'l;p '(z), x),

i =1,2 (35)

0
0

I I I » I I I I I I I « I I I I I I

I 2
z/cr

and

w;(z)—= fdx fdyw;(r), (36)

FIG. 2. Density profile of one-component hard-sphere Quid,
of bulk density poo =0.81, near a hard wall (at z=0). The
solid and dashed curves are the theoretical results for the densi-
ty and weighted-density profiles, respectively, and the symbols
are the simulation data of Snook and Henderson [27].

where p;p is the density of component i in the bulk. For
the required uniform-state functions cp" and c.j ', we
adopt the expressions which follow from Lebowitz's ana-
lytic solution [29] of the PY integral equation for hard-
sphere mixtures. Evaluating the integrals in Eq. (36), we
obtain

In comparison with the simulation data, the theory ac-
curately predicts the position of the first peak of the
profile but it somewhat overpredicts the corresponding
amplitude. The theory also overpredicts somewhat the
peak in the density at contact [28], which reveals a not-
able limitation of the theory, namely its failure to satisfy
the exact relation between the bulk pressure P of a Quid
and the density at contact with a hard wall, i.e.,

w„(z)= (, )
[a, (o, —z )+ ,'b, (o, ——z )

~c'to'/~po

+ ,'d(cr, —z)]—, z&a,

w, z(z) = „, [a, (o. , 2
—z )+ ', bo, —

BC1P /BPP

+2dkcT(+ —dcT, '(], z ccTI2

(37)

(38)

PP =p(o. /2) . (32) o5 I I I
I

I I I
I

I I I
I

I I I
I

I I I
I

I I I

At present, we know of no explicit formula for the con-
tact density predicted by our theory. It is important to
note that some earlier density-functional theories
[4—7,9,13] based on weighted-density approximations for
I',„, rather than for c'", do indeed satisfy Eq. (32), albeit
at the expense of greater computational complexity. On
the other hand, some other theories, such as integral
equation theories based on PY or HNC approximations
[22], also fail to satisfy Eq.(32). A major feature of the
present theory is that it appears to accurately capture at
1east the qualitative trends of the density profile, while
demanding minimum computational efFort. This takes on
added importance when the theory is applied to the in-
trinsically more complex Auid mixtures, as we next
proceed to demonstrate.

B. Binary hard-sphere mixtures

b

li

I.O

0.5

0
0 0.2 Op 0.6

z /cd

0.8 I.O l.2

We now apply the theory to the more interesting and
complex case of binary hard-sphere mixtures. The sys-
tem may be completely characterized by the hard-sphere
diameter ratio a=o.1/o. 2, the concentration x, and the

FIG. 3. Planar-averaged weight functions for binary hard-
sphere mixture at diameter ratio o.=0.6, concentration x =0.5,
and bulk packing fraction g=0.4. The solid, dashed, and dot-
ted curves correspond, respectively to R», R», and ~».
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0.04—
N
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0 i i i I i i i I » i I i i i I

0 2 4 6 8
z /o-,

1 I 1 '

)
I I I

)
I I I

)
I I I

)
I I I

IO

equal to that of its corresponding DCF. Using these
w;. (z), we compute profiles of the densities p;(z) and
weighted-densities p, (z) by the same type of iterative pro-
cedure as described above for the one-component case.

Figure 4 shows a sample of the resulting density
profiles together with the corresponding simulation data
of Tan et aI. [10]. As in the one-component case (Fig. 2),
the theory again accurately predicts the periodicity of the
oscillations in the density profiles, but is less accurate in
predicting the amplitudes and contact values. Figure 5
shows the corresponding concentration profile; it clearly
exhibits the phenomenon of surface segregation, with the
density of the larger spheres exceeding that of the smaller
spheres near the wall. The origin of this phenomenon in
our theory may be traced to the differing ranges of the
weight functions associated with each of the two corn-
ponents and the different magnitudes of the functions c',0'

and c20.(&)

wz2(z)=
~

[a2(oz —z )+—', b2(o2 z )a,",'/ap,

+—', d(o2 —z )], z(o2 (39)

where A, = —,'(o2 —o ), o 2= —,'(o +o2), and the
coefticients a, , b, , b, and d are functions of g, a, and x,
given explicitly in Ref. [29]. Figure 3 shows illustrative
plots of the planar-averaged weight functions. Again it is
important to notice that each weight function has a range

0.5 I
)

I I i )
I I I

I
i I I

)
I I I

0 4

CV~ o.~
+

—0.2

O. I

0
0

I I I I I I I I I I I I I I I I I

4 6 lO

FIG. 5. Concentration profile {of smaller spheres) corre-
sponding to Fig. 4.

FIG. 4. Density profiles of a binary hard-sphere mixture near
a hard wall at diameter ratio a= 3, concentration x =0.2856,
and bulk packing fraction r)= vr[x +(1——x)a']poo2/6=0. 3435.
The curves are the theoretical results —the bottom curve p&(z),
the density of smaller spheres, and the top curve p2(z) —and the
symbols are the simulation data given in Fig. 8 of Tan et al.
[10].

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a density-functional
theory of nonuniform fluid mixtures, designed primarily
for the study of interfacial phenomena. The theory is pa-
rameter free and is based on a weighted-density approxi-
mation for the one-particle direct correlation functions,
which enter in the Euler-Lagrange relations for the one-
particle density profiles of the fluid. It requires as input
only the one- and two-particle direct correlation func-
tions of the corresponding uniform system. A significant
strength of the theory compared with earlier related
density-functional theories is its relative computational
simplicity.

We have tested this approach by applying it to both a
one-component hard-sphere fluid and a binary hard-
sphere mixture near a hard wall, modeled as a structure-
less, impenetrable boundary. Comparison of numerical
results for the density and concentration profiles with
available simulation data indicates that the main qualita-
tive features of the profiles are predicted satisfactorily, al-
though some quantitative discrepancies exist. Notably,
the theory fails to satisfy the exact relation between the
bulk pressure and the density at contact. We note, how-
ever, that satisfaction of this important relation might be
ensured by introducing free parameters into the theory,
an option we mention for future consideration.

Beyond the relatively idealized case of hard-sphere
fluids near a hard wall, the theory may also be straight-
forwardly applied to study the structure of other simple
fluids (e.g., Lennard-Jones or soft-sphere fluids and mix-
tures) near walls or in confined geometries [30] (e.g. , slits,
cylindrical or spherical pores, etc.) with various wall-fluid
potentials. Finally, an important issue is whether the
theory can accurately describe wetting behavior [31]. Al-
though we do not address this issue here, we note, on the
basis of the higher-order terms included by the WDA in
the Taylor-series expansion of c"' (see Sec. II A), that
any predictions of the theory are expected to differ at
least from those of standard integral equation theories
(e.g. , theories based on HNC or PY approximations).
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