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Limiting law for ion adsorption in narrow planar pores
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The adsorption of simple electrolytes in narrow planar pores is studied. The validity of the limiting

law according to which the density of a classical ionic Auid approaches the fugacity in the pores barely
exceeding the diameter of the ions is confirmed using the graphical expansion of the singlet-ion distribu-

tion. The same result emerges from the Kirkwood equation for the ion-wall correlation. The analysis is

paralleled by the open-ensemble Monte Carlo simulation of the electrolyte in the pore, the periodic
boundary conditions being implemented using the two-dimensional Ewald summation. The computa-
tions conform with theoretical predictions for extremely narrow slits and provide useful insights into the
partitioning of the salt between the slit and the bulk solution at intermediate widths of the pores.

PACS number(s): 68.45.—v, 82.45.+z, 82.70.—y, 82.65.—i

I. INTRODUCTION

While structural studies of electrolyte systems involve
inevitable approximations, there are a number of exact
criteria that should be met in a satisfactory theoretical
framework. Examples are the Stillinger-Lovett moment
conditions [1] for interionic distribution in homogeneous
solutions, or the contact theorem [2—4] for ion density at
rigid interfaces. For neutral surfaces, the latter theorem
reduces to a form of the pressure equation regardless of
the interparticle pair interaction [4,5]. The present work
is concerned with ionic Auids confined by adjacent planar
boundaries and with interpenetrating wall-ion distribu-
tions. In earlier studies of confined fluids with short-
ranged interactions [6—9], an exact limiting law has been
derived according to which the number density of the
Auid approaches its fugacity at vanishingly small width of
the pore. Computer simulations [6—8] and numerical
solutions to the anisotropic integral equation approxima-
tion conform [10] with this finding. Extensions to ionic
systems of the cluster expansion analysis used in the
above examples is, however, not straightforward because
of the long-ranged nature of the Coulombic interaction.
In this study, the expansion of the singlet ion distribution
is carried out in terms of the h-bond graphs replacing the
f-bond graphs of the former work [6—8] since the screen-
ing effects [11]are easier to handle in this representation.
The analysis is paralleled by the open-ensemble computer
simulation carried out on the restricted-primitive-model
(RPM) electrolyte [12] in a slit maintaining equilibrium
with homogeneous solution. The distribution of the salt
between the bulk phase and the pore is studied. In wide
pores, virtually independent adsorption layers are formed
at each boundary, the density at the surfaces being deter-
mined by the contact theorem [2—4] and therefore by the

osmotic pressure of the solution [4,5, 13]. In very narrow
pores, barely exceeding the size of the ions, the electro-
lyte density is found to follow the above limiting law and
thus to approach the ionic fugacity of the solution. In ei-
ther of the two extremes, namely the very wide or very
narrow slits, the interfacial density of the salt is deter-
mined by thermodynamic coe%cients of the bulk solu-
tion: the osmotic coefficient in the case of wide pores and
the activity coefFicient in very narrow pores. The two
coefIicients can difFer significantly from each other and
may even deviate from unity in the opposite directions.
An interesting dependence of the electrolyte density on
the width of the pore is observed in the intermediate
width regime for which only approximate theories are
available [14,15].

The cluster expansion analysis for the distribution of a
classical ionic Quid in a thin layer, virtually squeezed to a
two-dimensional region, is outlined in Sec. II. In Sec. III,
the grand canonical ensemble Monte Carlo simulation
(GCEMC) is described, particular attention being paid to
the periodic boundary conditions in this semi-infinite sys-
tem. Section IV contains simulation results for electro-
lyte partition between the pore and the bulk solution. A
comparison with the prediction of the squeeze limit
theorem is made and the dependence of the mean density
on the width of the slit is discussed. The mean potential
energy of the ions in narrow slits is also considered.

II. GRAPHICAL EXPANSION
OF IONIC DENSITY IN A NARROW SLIT

Consider an equilibrium between the solution of a
symmetrical salt with bulk ionic number densities
n+ =n =nI„and ionic fugacities g+=g, and a layer
of the Quid confined by adjacent hard walls, parallel to
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ln[n, (1)/g, (1)]=C;(1), (2)

g, (1)=g, exp[ —Pu, (1)], (3)

where P= 1/kT, k is Boltzmann's constant, T is the tern-
perature, and u;(1)=u;(ri) is the external potential.
Since, for the time being, we will study neutral walls, we
take

u 1='
otherwise . (4)

We aim to show that, in the squeeze limit L —+0, the

the plane x-y and located at z=+L/2. Here, the walls
are defined as the planes bounding the region accessible
to the centers of the ions. The walls are not charged and
the permittivity is e uniformly for the entire system. We
study the RPM for which the ions are of equal diameter
o.. The ion-ion pair potential consists of the hard-core
repulsion and the Coulomb interaction

1f P';~ KO

Z, Z eo/4n. er, if r,~
~o,

where eo is the elementary charge, Z+ = —Z the
valence of the ions, and r,- the radial distance. Neglect-
ing the quantum effects (that should be present for finite
mass particles in very narrow slits [16]),we write for the
singlet density of ionic species i, n;(1) [17]:

function C;(1) is zero. As was shown in our previous
works [6,7], it can be expressed as a series in the fugacity
with graphs with f bonds defined by

fj(rj ) =exp[ Pu—J(r I )]—1 . (5)

However, the Coulomb potential, Eq. (1), yields divergent
integrals and the theorem cannot be proven this way.
There is an alternate expansion for C,.(1)

C;(1)= + + 0 ~ ~ (6)

h(Z) ~(3)

where the black circles represent density factors n (r )

and integrals over r. , with summation over j. The white
and black circles are linked by h'"' bonds where h'"' is
the n-particle correlation function. We consider the
lowest-order term with the h' ' bond, the pair correlation
function h,"=g; - —1. In the case of an ionic Quid
confined by planar boundaries [18,19], Jancovici has
shown that the pair correlation function has a long-range
tail of the form

lim h; (r12,'z„z2)= A; r12, z1,z2~0 .—3.
P» —+ OO

(7)

This rule should be true for a slit containing a neutral
mixture of equal size ions. Intuitively, one should think
of this mixture in the squeeze limit as a mixture of ran-
dom dipoles. We now compute the leading graph of Eq.
(6), J;(1), in the limit of a narrow slit L ~0,

J, (1)= = f dr2 g n (r2)h;. (r12)exp[ —Pu (z2)]
J

L/2 QO

2 X nj(z2)
~

~d 12 12 j 12 1 2—L/2 »J
(8)

From the asymptotic behavior we know that

h; (r12', z„z2)= —e( —r, 2+cr )+e(o—r,2)[f; (r12,'z„z2)+ A jr12 ] . (9)

Here, (1) denotes r„r,2=r2 —ri, r,2= lr12l, and h j(r J.;z, ,zj ) =gj(r j;z;,zj ) —1 is the total correlation function for the
species i and j at the distance r, , when a particle i is located at the distance z; and the particle j at the distance z. rela-
tive to the walls. B(x) is the Heaviside step function and fj(r,2', zi, z2) is the short-ranged part of h J(r12,zi, z2). The
integral J;(1)=J;(z1) of Eq. (8) can now be split to three separate contributions

[L/2, zl +o.j
J,.(z, )= 2mf— .dz2 g n (z2) f dr12r12

1 »

L/2 OO L/2 CO+2~ dz2 g n, (z2) «12r12f j(r12',zi, z2)+2~ dz2 g n, (z2)A;,—L/2 [~» ~l —L/2 [z»'u]J J

or

J, (z, ) =J,' "(z, ) +J,' '(z, ) +J,' '(z, ) .
J;"'(zi )= 2~f —dz, g n, (z, ) A,,

J

Integrating over r &2 we obtain
[L/2, zl +0 ]

(12)

&[lz 21 'e(z —o)+o 'e(o —z12)]

2~Lo 'y A,,n,'"—
,

J
(13)
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and we know that the integral J '(zi ) is convergent since

f/(r~;z;, zj ) is short ranged. When the integration inter-
val L /—2 ~zz ~ L/2 becomes sufficiently narrow, all the
contributions to J;(z, ) vanish. We assume that the same
will happen to all remaining graphs. Then, in the limit
L~0,

lim C, (l)=0 (14)L~0
and

n;(0) =g, (0), (15)

the number density of the ions approaches their fugacity
in vanishingly narrow slits.

Analogous considerations lead to an estimate of the
mean potential energy of an ion i due to the interactions
with the ionic lamina in the slit. Assuming the elec-
troneutrality of the system, g;n;Z, . =0, the mean energy
of an ion i located at z& may be expressed as

L/2 00

u, (z, )=2m. dzz g n~(z2) drizri2h, j(riz, zi, z2)u;J(r, z)—L/2 [o z&2]J
2 L/2 00 —3=(Z;eo/2e) dz2 g n~(z2)Z~ driz[f J(r,2,zi, zz)+ &;~r~ ] .—L/2 ~,z„]

The range of the integrand in Eq. (16) is even shorter
than in the case of J, (zz ) in Eq. (10). The mean potential
energy of a confined ion tends to zero when the pore
width approaches the size of the ions, i.e., when L —+0.
In view of this observation, the Kirkwood integral equa-
tion [20] for wall-ion distribution, expressed in terms of
the ionic potential energy in the imaginary charging pro-
cess, represents another route to the limiting law dis-
cussed in this section.

ZZ eo
(17)

periodically repeating cells, each containing the same
configuration of the ions [24—26]. In the simulation, only
the central cell of volume V=L L is considered in an
explicit manner while all the replicas are taken into ac-
count in energy calculation. The configurational energy
Uz of a cell with X ions is given by

III. GRAND CANONICAL
ENSEMBLE SIMULATION

The distribution of the RPM salt between the slit and
the bulk solution at fixed chemical potential was studied
by using the GCEMC procedure that was essentially
equal to the method of Valleau and Cohen [21], here
adapted to inhomogeneous systems. A detailed descrip-
tion of the method is given in the original work [21] and
applications to confined systems have been discussed re-
cently [22,23]. The main difference between the simula-
tion technique of these works [21—23] and our study
stems from the particular geometry considered in the
present treatment. The planar slit of infinite width in the
directions x and y, confined by planar walls at z =+L /2,
is represented by a two-dimensional array of equal,

The sum over P includes all lattice points with the coor-
dinates P =(lL„,mL„,O) where I and m are integers and
the prime denotes the omission of the self-term (i =j) in
the basic cell with P=(0,0,0) [27]. The infinite summa-
tion over P is carried out using the method of Ewald,
adapted to two-dimensional periodic conditions [24,25].
The energy U& is calculated according to the equations

+u,',"(R,) )]+u,' '

u~"(R; )=(Z, Zeo/4n. e) g'erfc( —vR 1)/R 1,
P

u
~

'(R;, ) =(Z;Z~eo/4meL„~ ) g exp(ik r;1 )/k [exp(k~z," ~
)erfc(k/2~+sc~z;

~ )
k+0

+exp( —k~z,~ ~

)erfc(k/2~ —ir~z;J ~ )], (20)

u J '(R; )= —(Z, Z eo/2meL„)[z; erf(az; )+exp( —~ z; )/( ~e)], (21)

u '= —Z e a/2v~, (22)
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where R;~ =r; —r~, R,J
= ~R;, ~, lt;~ is the two-dimensional

reciprocal lattice vector, k;~ =
~ k,z. ~, r;~

= (&;~,&;~ ),
z, -=z, —z-, and a is the screening parameter of the
Gaussian distributions introduced in Ewald method [29].
The simulation parameters were adjusted to ascertain the
average number of 50—100 ions per cell. The moves of
randomly chosen ions were attempted with the probabili-
ty P=0.5 and the additions or deletions with the proba-
bilities (1 —P)/2=0. 25. Depending on the concentration,
the ion charge, the width I, and other conditions, the
maximum displacement was adjusted to keep the mean
acceptance of the moves within 40—60%. As usually,
the screening parameter K and the number of the recipro-
cal k vectors were chosen in such a way that only the
direct interactions of ion i with ion j or with its nearest
image, whichever closer, had to be considered in u,-'".
The number of the two-dimensional reciprocal vectors k
was usually 56, this corresponding to about 3 X 10 k vec-
tors in the three-dimensional Ewald summation. The
screening parameter ~ was chosen with regard to the cell
size L,„according to the relat][on ~=4/Lzy in most of
the simulations. A few runs, however, have been made
with di]terent values of the above parameters to verify
that the result was suKciently independent of the particu-
lar choice within a broader range considered.

IV. RKSUI.TS AND DISCUSSIQN

The dependence on the pore width of the electrolyte
distribution between the bulk phase and the slit was ex-
amined to test the prediction of the limiting law of Sec. II
and to monitor the intermediate situations with the slit
width of up to 4—6 ionic diameters. The RPM parame-
ters were taken from previous studies of bulk solutions.
Mono- and divalent RPM electrolytes with ion size
o. =0.425 or 0.42 nm were considered at the temperature
T=298 K and the permittivity @=78.5 [21,28]. The
properties of the solution including some of the known
thermodynamic coefficients [20,21,28] are listed in Table
I. The width of the pores varied from 5 X 10 to about
2—2.5 nm. This was not quite enough for the average
properties of the confined solution to become equal to the
bulk ones, but the two-dimensional Ewald summation has
turned out to be too time consuming to allow the treat-
ment of essentially larger samples. The bulk conditions
were, however, correctly recovered when the three-
dimensional periodic conditions were imposed and the
corresponding Ewald algorithm [29] applied to test the
GCEMC procedure against the known results from the
literature [21,30].
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FIG. 1. The mean potenti. al energy of an ion confined in a slit
of width I. in equilibrium with the bulk monovalent salt solu-
tion of concentration c= 1.0001 mol dm '

( A ), c= 1.9676
mol dm '

( 0 ), and divalent salt solution at concentration
c=0.971 mol dm (R).

Before turning attention to the pore-solution partition
of the salt, we first consider the dependence of the in-
terionic configurational energy on the distance between
the walls. In Fig. 1, the decrease in the reduced mean en-
ergy of an ion ( U&/XkT) accompanying the narrowing
of the gap is given for three situations in which the bulk
solution contained the 1:1electrolyte at the concentration
1 or 2 mol dm, and the 2:2 electrolyte at the concentra-
tion 0.971 moldm . In all the three examples, the re-
duced energy decreases in a similar manner. It vanishes
in extremely narrow pores. The decay is somewhat
slower than might have been expected from simply
discounting the volume unavailable for the formation of a
spherical ionic atmosphere due to the presence of the
walls. In vanishingly narrow gaps, the overall mean in-
teraction among the ions becomes insignificant and the
confined solution approaches the ideal behavior suggested
by Eqs. (15) and (16). The dependence of U&/XkT on I.
is rather smooth, although some layering of the ions
against the walls could be expected. It should be noted
that the mean ionic energy was approximated by the ratio
of separate averages ( U~) and (X ) instead of obtaining
the mean value ( Uv/N) in an independent averaging
procedure. In view of the fluctuations in U~ and X, the
uncertainty in estimated ( U&/X) possibly exceeds the
errors in the average energy and the number of the ions.

In Figs. 2—6, the mean density of the ions in the pore

Valency —Uq /XkT

TABLE jI:. The bulk properties of the RPM electrolytes considered in the GCEMC simulations of
confined solutions.

System o (nm) c (mol dm ) lny+

22
2:2

0.425
0.425
0.425
0.420
0.420

0.103 76
1.000 1

1.967 6
0.045 6
0.971

—0.2311
—0.1265

0.2545
—1.437
—2.635

0.9451
1.094
1.346
0.64
0.605

0.274
0.552
0.651
1.774
3.102
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( n ) is shown as a function of the width I. at various con-
centrations of the bulk solution. In wide pores, the mean
densities slowly approach the bulk values with increasing
L. Considering the thickness of the adsorption layer of
the electrolyte at a neutral interface [13,27,31], wider
gaps than those studied here would be needed for the sur-
face efFects to become insignificant in the solutions with
the osmotic coefficient y considerably difFering from the
ideal value. In the opposite extreme, with the pore width
barely exceeding the size of the ions, the ion density in
the slit attains the value close to the fugacity of the ions
g+ =nby+. The fugacities are marked by the arrows on
the ordinate. With the monovalent salt, Figs. 2 —5, the
limiting law of Eq. (15) is satisfied within 0—+2% of the
final density. With divalent ions, the absolute agreement
is about as good as in the monovalent cases, but the rela-
tive deviations are somewhat larger because the limiting
densities are so low in these cases. The errors of the
GCEMC procedure such as is used in our work are usual-
ly around a few percents and our subaverage estimate
[32] indicates a possible inaccuracy of up to +2% of the
mean density in the pore. The uncertainty in the activity
coefficient y+ from the literature may be of similar mag-
nitude [21,30], but does not contribute to the deviation
from the prediction of the limiting law, Eq. (15), since the
fugacity is used as an input for the simulation. On the
whole, the GCEMC results confirm the predictions of
Sec. II and Eq. (15). In all the cases considered, the limit-
ing density of the ions in the pore lies close to the ionic
fugacity, eventual fluctuations around it being of the
magnitude expected with the method applied. A compu-
tational verification of the narrow pore limiting law for
fluids with long-ranged Coulombic interaction is there-
fore provided.

The dependence of the mean ionic density in the pore
on the separation between the walls L is also of interest.
As mentioned earlier, the density of the ions next to the
walls depends on various factors. With the walls far
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FIG. 3. The mean number density of the ions in a slit of
width L in equilibrium with the monovalent salt solution of con-
centration c= 1.0001 mol dm '. The arrow denotes the fugacity
of the ions.

apart, the contact density is related to the bulk value by
the osmotic coefficient of the solution. When bringing
the walls closer to each other, a partial superposition of
the two wall-ion profiles is possible. In very narrow
pores, however, the mean density begins to approach the
fugacity, determined by the mean activity coefficient of
the ions. When the two coefficients y and y+ are of a
similar value, a monotonous transition between different
regimes is observed. The same holds true if the deviation
of y+ from unity is larger, but of the same sign as with
the osmotic coefficient. Both divalent salt examples, sys-
tems 4 and 5, belonging to this class, display a monoto-
nous increase in the mean density with widening the gap.
A more interesting behavior is observed in concentrated
monovalent salt solutions, systems 2 and 3. In the 1-
moldm solution, the mean activity coefficient y+ is
lower and the osmotic coefficient y higher than unity.
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FIG. 2. The mean number density of the ions in a slit of
width L in equilibrium with the monovalent salt solution of con-
centration c=0.10376 mol dm . The arrow denotes the fuga-

city of the ions.

FIG. 4. Same as Fig. 3 but with logarithmic scale for L. The
black circles correspond to the simulations with increased num-
ber of reciprocal vectors in Ewald summation. The half-solid
circles denote the results obtained with a 4—5 times bigger num-
ber of ions than in typical runs.
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FIG. 5. The mean number density of monovalent ions in a
slit of width L in equilibrium with 1.9676 moldm bulk solu-
tion. The arrow denotes the fugacity of the ions.
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FIG-. 6. The mean number density of divalent ions in the gap
of width L in equilibrium with the bulk solution of concentra-
tion (a) c=0.0456 moldm and (b) c=0.971 moldm '. Solid
symbols correspond to the 4—5 times bigger samples. The ar-
rows denote the fugacities of the ions.

With the walls sufIiciently apart, the mean density in the
pore exceeds the bulk value. In analogy with simple
liquids [6—10), weak oscillations in the mean density are
found when varying the width of the gap, the period be-

ing close to the thickness of an ionic monolayer in the
pore. In addition to the fact that the mean density
exceeds the bulk value, this is another indication of an
important role of the hard-core packing effects on the
structure of the system. After the distinct maximum ob-
served at the width I.-o /2, the mean density monotoni-
cally decays upon narrowing the gap. The rapid drop of
the density over a relatively narrow range of L is easier to
visualize using the logarithmic scale used in Fig. 4. The
narrow gap limit appears to be attained at the smallest
values of L, no further decrease being expected with even
narrower slits. A check of the applied boundary condi-

tions is also illustrated. The black circles corresponding
to 212 k vectors in the sums of Eq. (20) agree well with
the results obtained by using the lower number of 56 re-
ciprocal vectors k. Note that these values correspond to
essentially higher numbers of k vectors encountered in an
equivalent three-dimensional Ewald summation. Anoth-
er test was made to examine eventual effect of the size of
the system. The half-solid circles denote the results ob-
tained using about 4—5 times larger Monte Carlo cells
and numbers of ions. The good agreement with the re-
sults obtained with usual samples seems reassuring in this
respect.

Figure 5 illustrates the dependence on L of the mean
ionic density in the pore in equilibrium with the 1.976-
moldm monovalent salt solution. The high value of
the osmotic coefricient @=1.346 of this system refIects
notable hard-core exclusion effects present in concentrat-
ed solutions. Like in noncharged inhomogeneous fIuids,
the short-ranged repulsion among the particles leads to
the accumulation of the ions at the interface. In analogy
with hard-sphere systems [6,10,33], this increase becomes
even more pronounced in systems with overlapping ad-
sorption layers. The maximum value of the mean density
between adjacent walls is considerably higher than the
contact density found at an isolated interface. An oppo-
site effect of weakening the electrostatic interaction be-
tween the ion and its truncated ionic atmosphere also ex-
ists. According to Fig. 1, the mean potential energy of
confined ions rapidly decreases upon reducing L below
-o./2. At sufFiciently small distance, this effect takes
over and the density is found to pass through a maximum
and to decrease upon further narrowing of the pore. In
the limit L —+0, the density attains the value of the ionic
fugacity, which in this case exceeds the density of the
bulk solution. A rather monotonic decay of (n ) with I.
is observed at the separations L beyond the position of
the maximum, although some packing effects analogous
to those of system 2 would be expected. There may, of
course, exist an indistinct oscillating contribution that
would be more visible in the absence of the rapid overall
decay of (n ) with increasing I.. A similar reasoning ap-
plies to the concentrated 2:2 salt solution, Fig. 6, where
the rapid growth of ( n ) from nby+ to nb may hide even-
tual layering effects. In any case, the latter are less pro-
nounced in the divalent salt solutions in which the elec-
trostatic interactions dictate a considerable reduction in
the interfacial density of the ions. The development of an
exact analytic theory for ion distribution between adja-
cent walls at finite separations is not expected in the near
future. Quite accurate numerical schemes, however, have
become available in recent years [14,34]. It would un-
doubtedly be of interest to apply these methods to the
systems considered in the present study. Extensions of
both the theoretical considerations of Sec. II and simula-
tions or inhomogeneous integral equations to systems
with polarizable or electrified interfaces are also inviting.
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