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Interaction free energy between planar walls in dense fluids: An Ornstein-Zernike approach
with results for hard-sphere, Lennard-Jones, and dipolar systems
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The interaction free energy per unit area between planar walls is given as a convolution of wall-solvent
pair-correlation functions. This result, derived from the large radius limit of the macrosphere-solvent
Ornstein-Zernike equations, and from the hypernetted-chain closure, provides a statistical-mechanical
basis for the Derjaguin approximation, and is both generally applicable and computationally tractable.
It is found that the interaction between hard walls in a hard-sphere fluid is oscillatory, and in good

agreement with simulations.

The van der Waals attraction emerges from asymptotic analyses of

Lennard-Jones and dipolar fluids, and the full expression allows calculation of this quantity down to
molecular separations. This is demonstrated by numerical results for dipolar fluids.

PACS number(s): 61.20.Gy, 82.70.Dd, 68.45.—v

I. INTRODUCTION

The Derjaguin approximation [1] relates the force be-
tween bodies with curved surfaces to the interaction free
energy per unit area between planes. This is arguably one
of the most useful results in colloid science, because
curved surfaces comprise almost all systems whose prop-
erties are measured, whereas planar geometry is the one
most accessible to theoretical calculation. White [2] has
given a transparent albeit heuristic derivation of the Der-
jaguin approximation, and Ohshima et al. [3] and Glen-
dinning and Russel [4] have given the next-order correc-
tion for charged spheres in the linearized Poisson-
Boltzmann approximation.

In this paper, a statistical-mechanical analog of the
Derjaguin  approximation is derived from the
macrosphere-solvent Ornstein-Zernike equations. Within
the hypernetted-chain (HNC) approximation, we show
that the force between macrospheres divided by 7 times
their radius equals, in the large radius limit, the interac-
tion free energy per unit area between walls. The latter is
a one-dimensional Ornstein-Zernike convolution integral
of wall-solvent pair-correlation functions, and as such its
general application goes beyond the Derjaguin approxi-
mation.

We believe our result will prove useful for a variety of
reasons, mainly connected with its statistical-mechanical
basis. Since our derivation is rigorous, the regime of va-
lidity is clear, and successive corrections to the Derjaguin
approximation in particular, and to the hypernetted-
chain approximation more generally, may be applied.
The expression makes direct contact with standard
theories of the liquid state via the pair-correlation func-
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tions. Consequently, an extensive collection of
procedures—analytic, asymptotic, and numeric—
become applicable to the colloid system, and in this pa-
per we shall use the expression to obtain a range of re-
sults. The pressure between hard walls in a hard-sphere
fluid is obtained analytically in certain limits, and also
numerically where good agreement with simulation data
is found. Asymptotic analysis of the Lennard-Jones fluid
shows a long-ranged inverse cubic profile near an isolated
wall, and the well-known van der Waals attraction be-
tween walls. Asymptotic and numerical results for dipo-
lar fluids between hard walls are also obtained. The latter
are particularly interesting because they show explicitly
the behavior of the van der Waals force in polar fluids at
molecular separations, something not possible with the
traditional Lifshitz or Hamaker theories.

The paper is laid out as follows. The formulation of
the singlet Ornstein-Zernike equation for simple fluids in
planar geometry is presented in Sec. II, and its history
and numerical implementation are briefly reviewed. Sec-
tion III contains the derivation of the result for interact-
ing walls. The analysis for molecular fluids is summa-
rized in Sec. IV. Analytic and numeric results for hard-
sphere (Sec. V), Lennard-Jones (Sec. VI), and dipolar
fluids (Sec. VII) are given. A brief conclusion completes
the paper.

II. SINGLE WALL

We shall first derive the wall-solvent equation as the
large radius limit of the macrosphere-solvent result. For
an infinitely dilute spherical solute, species 0, in a simple
fluid, species 1, the Ornstein-Zernike equation is [5]

(2.1)
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Here p, is the solvent density, and 4 and c are the total
and direct correlation functions. R is the hard-core ra-
dius that characterizes the solute-solvent system; it is the
distance of closest approach of the centers of the solvent
and the solute. If the solute and solvent have additive
hard-sphere diameters d, and d,, respectively, then
R =(dy+d;)/2. The origin of the cylindrical coordinate
system employed above is on the surface of the macro-
sphere with the z axis coinciding with the solute-solvent
separation vector r.

In the above we have made explicit the R dependence
of the solute-solvent correlation functions in order to
take the large radius limit. Provided that the solute-
solvent pair potential remains bounded in this limit (such
as hard sphere, or Lennard-Jones), then the solute-solvent
correlation functions also remain well behaved and
reduce to functions of the distance from the interface
only. Hence measuring from contact y =r —R, we define

Rhm ho](R +,V’R):h01(y) N (2.23)
Rlim co1(R +y;R)=cy (y) . (2.2b)

lim Co1 (y):

y—>—®

= —1+pl/€“(0): —K;l .

Here, k7 =1+p,h,,(0)=kyTdp,/dP (ky is Boltzmann’s
constant, T is the absolute temperature, P is the pressure
of the bulk solvent, and the caret denotes the Fourier
transform) is the reduced isothermal compressibility of
the solvent. The fact that neither A, (z) nor ¢y, (z) decay
to zero as z— — oo means that their Fourier transforms
do not exist (at least not classically; they may formally be
expressed in terms of generalized functions). That is, one
cannot numerically Fourier transform the wall-solvent
correlation functions which appear in Eq. (2.3).

One way to evaluate Eq. (2.3) numerically is to treat
the core contribution separately, as has been done previ-
ously [8,9]. That is, let

ho](y):COI(y)+H(y)—C(y) > (2.6)
where the core integral is

C(y)=277p]fi) dx fowds sey ([(z—p)?+52]172) .

r¥dr, y>0. (2.7)

:21rp1fy°°c”(r) 1—)’%

The remaining convolution integral may be evaluated by
Fourier transform methods, yielding

8225

Further, in the same limit we must have s <<R, and
z<<R in Eq. (2.1) [because c;,(t)—>0 as t— 0, and
—R <y=R—r <<R]. Consequently [(R +z)*+s2]!/2
~R +z+O(R '), and the limiting result is

ho(¥y)=co (p)
+27rp1f_wwdzfo°°ds shg,(z)
Xy ([(z—y)*+52]172) .
(2.3)

The technique of creating a planar wall from the infinite
radius limit of a macrosphere was first employed in prac-
tical calculations by Perram and White [6]. The wall-
solvent Ornstein-Zernike equation, (2.3), was derived by
Henderson, Abraham, and Barker [7].

For a hard wall, one has the exact condition

hoa(y)=—1, y<0, (2.4)

which expresses the exclusion of solvent from inside the
wall. Now the z integral in Eq. (2.3) is dominated by re-
gions z =y [because ¢;(?) is short ranged], and hence one
immediately see that

—1+2mp, [ 7 dzfo“’ds sy ([(z—p )2 +52]172)

(2.5)

H(y)=277p1f0 dzfo dsshOl(Z)
Xep([(z—p)2+521Y%)  (2.8)
_1__ ® iy —iky
X5 [T Hike Mk . (2.9)
Note that H(y)—0, y— 1t . Here one has
Hio)= [ H(ple™dy

=ho (k)2 (k) , (2.10)
where
;701<k)=f0°°h01(y)e‘kydy (2.11)
and
@“(k)=47” Owc“(r)sin(kr)rdr. (2.12)

An alternative, perhaps more direct method is to define
the function

Cyllz—yh= fowcll([(z_y P +521"2)s ds , (2.13)
and then Eq. (2.3) becomes

hol(y)=c01(y)+2ﬂ'p1f_:dz hoy(2)Cy (lz—y]) . (2.14)
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These one-dimensional integrals are straightforward to
evaluate.

Note that a different way to avoid the difficulties asso-
ciated with the nonexistence of the numerical Fourier
transforms of the wall-solvent correlation functions is to
define a wall of finite thickness surrounded on both sides
by fluid. For the case of a fluid with finite-ranged poten-
tials, such as a hard-sphere fluid, the results will not de-
pend upon the thickness of the slab. However, this is not
true for longer-ranged potentials, such as those that
occur in Coulombic or polar fluids, and for these cases
one cannot expect the results of a calculation made for a
wall of finite thickness to agree with those for a semi-
infinite half-space [10].

Three functions are related by the wall-solvent
Ornstein-Zernike equation—cy,(r), hy (), and cq(p).
The solvent-solvent direct correlation function c¢,;(r) is a
property of the bulk fluid and is independent of the wall.
It may be calculated via the standard statistical-
mechanical techniques for uniform fluids [5]. It is as-
sumed known, and hence one has only to evaluate Eq.
(2.7) or (2.13) once. One requires a closure approxima-
tion to relate Ay, (y) and c,, (y), which is then to be solved
by iteration in conjunction with Eq. (2.6) or (2.14). The
formally exact closure equation is

ho(y)=—1+ exp[ho(y)—co;(¥)+do; (¥)

—ug(»)/kpT], (2.15)

where u,;(y) is the wall-solvent potential. Because the
bridge function d;(y) remains largely intractable, one is
forced to make some approximation. Perhaps the best-
known approximation is the HNC

doy(»)=0. (2.16)

A possible improvement upon the HNC is the reference
hypernetted-chain (RHNC) closure, which uses hard-
sphere bridge functions rather than neglecting them com-
pletely.

One can perhaps judge the accuracy of the HNC ap-
proximation for the wall-particle problem by its predic-
tion for the contact density. The exact contact density of
a fluid against a hard wall is related to the pressure of the
bulk solvent by the contact theorem [5]

pi[1+hy (0T) =P /kpT . (2.17)
In contrast, the HNC approximation satisfies
Pi 1 OP
1+hg(0F)]=" 1+ —5—— .
pill+he (07)]== +kBTap, , (2.18)

in agreement with the exact expression only at low densi-
ties. This result appears to have been first obtained by
Carnie et al. [11].

III. INTERACTING WALLS

The macrosphere-macrosphere Ornstein-Zernike equa-
tion is, in bipolar coordinates,
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hoo(r;R)_-Coo(r;R)
=p, [ hoy(v;R e (Ir—v[;R)dv

_ 27p,

[ "do ahm(a;R)f’:r:’drrcm(f;R) NERY)
In order to obtain flat plate results, we require the R — oo
limit. First we need to identify the dominant regions con-
tributing to the integrals. We are interested in separa-
tions such that —d <x =r—2R <<R. Define s=o—R
and t =7—R, then, because both solute-solvent correla-
tion functions are short ranged, the integral is dominated
by regions such that s <<R and t <<R. Changing the
variables of integration, the lower limit of the 7 integral
becomes |2R +x —s —R|—R =x —s, and the upper limit
may be extended to infinity. This gives

hoo(x +2R;R)—cpy(x +2R;R)

_ 2mp,
" 2R +x

f_”Rds(s +R)hg,(s+R;R)

Xfxw_sdt(t +R)cg (t+R;R) . (3.2)

Note that the separation between the actual surfaces of
the macrospheres is x +d;. In the region —d, <x <O,
solvent is excluded from some region between the macro-
spheres, and this gives rise to the Asakura-Oosawa de-
pletion attraction [12,13]. Now as s——R, t— o and
coi(t+R;R)=0. Therefore the integrals are dominated
by regions s >>—R and |t| <<R. Accordingly, we can
now take the large radius limit to obtain

lim [hgy(x +2R;R)—cpo(x +2R;R)]

R—

=mpR [ dsh Tdteg(t). (33

TP fﬁw S OI(S)fx——s cOl( ) (3.3)
In view of this limiting result, we shall divide Eq. (3.2) by
mR and differentiate with respect to separation in order
to remove the second integral in Eq. (3.3). That is, we
define a function

FSE(x;R)—E%[hOO(x +2R;R)—colx+2R;R)] .
(3.4)
Then defining
Rli_{nng’é(x;R)ZF%(x) , (3.5)
one has
F&(x)= *plf_wwhm(s)cm(x—s)ds . (3.6)

This is our central result.

The interpretation of Egs. (3.4) and (3.6) is straightfor-
ward, at least within the hypernetted-chain approxima-
tion, which equates the excess potential of mean force to
the negative of the series function (the excess quantity
lacks the interaction potential, and the series function is
the difference between the total and direct correlation
functions, which equals their convolution). The quantity
F§(x;R) is the solvent-mediated excess mean force be-
tween macrospheres whose surfaces are separated by
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x +d,, scaled by 7 times their radius, and in units of
kgT. A positive value of Fy,(x;R) corresponds to a
repulsion. Fg5(x) is the solvent-mediated excess interac-
tion free energy per unit area between two semi-infinite
half-spaces separated by x+d,. A positive value of
Fy(x) means that the configuration is unstable with
respect to infinite separation. The full functions contain
the direct interaction potential that is lacking in the ex-
cess functions (denoted by a superscript). Note that
Fy(x)—0, x — o0, and hence neither the bulk free ener-
gy nor the surface free energies contribute to Eq. (3.6).
Equating the right-hand side of Eq. (3.6) to the excess
interaction free energy per unit area is only true within

the hypernetted-chain approximation [dy(x)=0]. One
can write down the formally exact result
Foo(x)=upy(x)/kgT —dy(x)
—p1 [ hoi(s)ey(x —s)ds 3.7

where ugy(x) is the direct wall-wall potential per unit
area, dy(x) is the wall-wall bridge function per unit area,
and the wall-solvent correlation functions are presumed
to be known exactly. There is an analogous formally ex-
act version of Eq. (3.4). The bridge function may be tak-
en from the limit of the macrosphere result

R dx (3.8)

dg(x)= lim

Alternatively, in the definition of the bridge function, one
simply replaces one of the three-dimensional convolution
integrals of each Yvon-Mayer diagram by a one-
dimensional convolution. Note that in the solvent ex-

J

8227

cluded region —d, <x <0 one has the exact result
—9[kpTFy(x)—ugy(x)]/0x = — P, where P is the bulk
pressure. Note further that the interaction free energy
per unit area for walls of infinite extent is a well-defined
function, but that the total and the direct wall-wall corre-
lation functions do not exist (their formal difference per
unit area does).

The fact that Eq. (3.6) is the limiting form of Eq. (3.4)
is characteristic of the Derjaguin approximation, which,
in particular, equates the force between macrospheres
scaled by their radius to the potential per unit area be-
tween plates [1,2]. Thus these equations are the
statistical-mechanical analog of that classic approxima-
tion, and, we believe, the present work represents the first
satisfactory microscopic derivation of that result. We
emphasize that the Derjaguin approximation consists of
equating Fy,(x;R)~Fy(x) for finite R, not just in the
limit Eq. (3.5). In deriving Eq. (3.6) from the right-hand
side of Eq. (3.1), we simply neglected all terms which
were small compared to R. The obvious systematic
correction to this is to retain terms of O(R™!)
throughout. Note that in order to be consistent this
would also have to be done in the derivation of Eq. (2.3)
from Eq. (2.1).

The HNC approximation consists of the identification
of the right-hand sides of Eqs. (3.4) and (3.6) with the ex-
cess mean force and the excess interaction free energy, re-
spectively. This is a good approximation when the bridge
function may be neglected. A systematic correction to
the HNC approach is Attard’s binodal chain approxima-
tion [14]. In this approximation, the bridge function is
expressed as the binary convolution of two ternary func-
tions. For the wall-wall case one has

wf)%))(x)=7rp%f—wdx3 f;wd’% fowdr34"34[7701(x3,x4,"34 0811 (R34 )Xo01(x —X3,X —X4,734)

01X 3,X4,734 ) ho (X —x3)ho (x —x4)],

where R%,=(x;—x,)>+r3, For the definitions of the
ternary functions, consult Refs. [14,15]. The convolu-
tion integrals that occur here and in the wall-solvent
problem are best evaluated by two-dimensional Fourier
(Hankel) transform techniques.

The numerical resolution of the HNC wall-wall free
energy is straightforward. Equation (3.6) is a one-
dimensional convolution integral that can be evaluated
directly. The functions comprising the integrand are
available from Eq. (2.3) and some closure approximation,
Eq. (2.16), for example. Normally c(,(z) is not evaluated
for z <0, because one only applies the closure for positive
argument. However, given h,(z), one can determine
¢o1(z) for z <O directly from Eq. (2.14), bearing in mind
the limiting behavior, Eq. (2.5). Note that once the wall-
solvent functions are known (see Sec. II), no further itera-
tion is required to determine the wall-wall properties.

Equation (3.6) or (3.7) yields the interaction free energy
between planes, and the net pressure can be obtained by

(3.9)

differentiation. It is worth mentioning an alternative ap-
proach used by Lozada-Cassou [16]. This is based on the
Ornstein-Zernike equation for a dumbbell-shaped mole-
cule in a solvent, and the pressure between the two walls
which comprise the solute molecule is determined from
the solvent contact density. As mentioned above, if the
walls are taken to be of finite thickness, the results may
depend on the value chosen for that parameter (e.g., the
electrical double layer [10]). Comparing this method to
the present procedure, one would expect the dumbbell
approach to be the more accurate, in principle (based
upon diagrammatic considerations for a given closure),
but practical considerations suggest difficulties in deter-
mining the pressure accurately from the contact density
because of cancellations among large terms which often
occur. Another method of determining the interaction
between plates is based upon the inhomogeneous
Ornstein-Zernike equation [17, 18]. For a given closure,
it can be expected to be more accurate than either of the
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singlet methods, Eq. (3.6), or that of Lozada-Cassou [16],
although it is certainly much more numerically demand-
ing. On the other hand, a great advantage of the present
approach is that it can be applied to more realistic molec-
ular models with relative ease (see below).

The interaction between macrospheres (as distinct
form the interaction between planar walls considered
here) has been treated by many authors using the
Ornstein-Zernike equation (e.g., Refs. [13,19-22]). Our
intermediate result for the macrosphere-macrosphere
pair correlation functions, Eq. (3.3), has simultaneously
and independently been presented by Henderson [23].

IV. MOLECULAR FLUIDS

For a molecular fluid of nonspherical particles, Eq.
(2.3) becomes

ho (¥, Q)=co1(y, Q)

+ Splz fh01(S'i,ﬂz)cll(y’i—s,ﬂz,ﬂl)
T

XdsdQ, , @.1)

where we have chosen the normal to the wall to coincide
with the z axis of the laboratory frame, and where Q
denotes the Euler angles describing the orientation of the
solvent molecule in the laboratory frame. We use the
standard expansion in rotational invariants [24],

1l A
cn(r,2,Q)= 3 C,wu("lz) L"v"(ﬂbﬂz’flz) ’
m,n,l
v

(4.2)

where the rotational invariants are

m

mnl, AN y— gmnl m

(I),u,v (Q];Qz,rlz)—'f #,g}/, ‘LL' VI '}/' R#:#(Ql)
XR%(Qy)Ro(F,) . (4.3)

Here r;,=r,—r, is the intermolecular vector, and T;,
denotes its orientation. Also f™" is a nonzero constant,
the term in large parentheses is the Wigner 3-j symbol,
and R, (Q) is a Wigner generalized spherical harmonic
[25]. It follows that the wall-solvent correlation func-
tions may also be expanded

n

n
0 0 o|RLQ@), ©“4

hoi(y, Q2 Ehgt," f

and similarly for cq;(y, Q).
It is straightforward to insert these expansions in to
Eq. (4.1), to use the orthologonality property
87r°

I *pl
men(Q) Rm'n 21 +1 811’

where R}, (Q)*=(—1)"*"RL_(Q), (m=—m), and to
equate coefficients of the Wigner generalized spherical
harmonics (after accounting for the azimuthal integral).
The result is

(D)dQ=—"""78,,8,, "0 (4.5)

m,m nn’

I

8,':'611 )= Co;; o (y)=

X[ 7 h e (y—z2)dz,

4.6)
where
fOrm 0 fmnI m n 1
000 0 0O
Frnl= , 4.7)
omm Om m
10 0 o
and where we have defined
Crtily—2)= [ Tt [y =22+,
y—z
XP rdr, (4.8)
! [(y——z)2+r2]1/2

P/(cosO) being the Legendre polynominal of order I.
Note that the argument of the Legendre polynomial is
simply the cosine of the polar angle (y2—s)-Z/|yZ—s]|.

Now one has, for the case of molecules with a spherical
hard core (assuming f%%°=1),

hOmE (¥)=—8,,68,0, ¥ <O (4.9)

where the Kronecker delta appears, and hence, since the
direct correlation function is short ranged,

Omm

lim Coﬂ;()l(y)="'8m,08”,()l€;l , (4.10)
y—>—x
where
kpl=1——— (8 2)2 [ en(r,Q,,9,)dr,dQ,dQ,
=1—4wp1f°°°fo°°cg.'??“(r)r2dr . 4.11)

Turning now to the excess interaction free energy be-
tween walls, Eq. (3.6), for a molecular fluid one has

Fgi(x)=—11 Q)cyy(x —2,0) .

(4.12)

Here, if Q=(a,B,7) is the orientation of the molecule
with respect to one surface, then it is obvious that

Q=(—a,7—B, —y) is its orientation with respect to the
other surface. One can show that
an()=(—1)*me2inYRI _(Q)* 4.13)
and hence
= _ 2 __ 1y +n
[RL @R (@aa=3T"D""5 &5 (@14

21 +1

Inserting the invariant expansion (4.4) into Eq. (4.12), and
using this orthogonality condition, one achieves the
desired result
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2
(_1)n+v
2n +1

X fjwhgf,;”m(z)cgﬁ;"m(x —z)dz .

fOnn 0 n n

Foo(x)=—p; 3 000

n,v

(4.15)

This result is valid within the HNC approximation; it is a
detail to formally include molecular bridge functions.

V. HARD-SPHERE FLUIDS

This section is concerned with hard-sphere fluids,
specifically with the properties of such fluids near hard
walls, and with the fluid-mediated interaction between
walls. Throughout this section all lengths are expressed
in units of the solvent diameter d,, and hence the number
density p, is in units of d; 3. The contact conventions are
that the separation between solvent atoms is measured
from their centers [A(r)=—1, 0<r < 1], that solvent-
wall contact occurs at zero [hy(x)=—1, x <0], and that
solvent is excluded from between the walls for separa-
tions less than zero (wall-wall contact actually occurs at
x=—1). Before presenting numerical results for the
pressure between walls, it is useful to discuss the behavior
of the direct correlation function inside the wall, and
then the excess free energy in the fluid-excluded region.

Consider the behavior of the wall-solvent excess poten-
tial of mean force v§}(x) (i.e., the full potential of mean
force less the pair potential) for the particular case when
the atom is completely immersed in the wall, x < —1.
Since v§}(x) is the work (due to rearrangement of the sol-
vent) required to bring the atom from infinity to x, and
since the solvent is not affected by further movement of
the atom once it is fully inside the wall, then v§}(x) must
be constant in this region. Its value follows by noting
that it is the difference in free energy of the solvent with
the atom fixed at the two positions. At infinity the total
free energy is the bulk Helmholtz free energy due to N
atoms, less the entropy of the fixed atom, plus the surface
free energy of the fluid in the vicinity of the wall. Inside
the wall, the total free energy is the Helmholtz free ener-
gy of N—1 atoms plus the surface free energy. The sur-
face free energies cancel, and the difference between the
Helmbholtz free energies is the chemical potential less the
ideal gas entropy,

vii(x)=—pu, x=<—1. (5.1)

In other words, the free energy change upon removing a
fixed atom from the fluid is the excess chemical potential.
This exact result is just the zero separation theorem
[26,27].

Now suppose that some approximate theory satisfied
Eq. (5.1), and that the excess potential of mean force in
that approximation is only a function of
bo(x)=hg(x)—cp(x) (almost all approximate closures
belong to this class). Since hy(x)=—1, x <0, these as-
sumptions lead one to conclude that ¢y, (x) must be con-
stant, and, provided that the approximation satisfies the
Ornstein-Zernike equation, its value follows from Eq.
2.5),
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cor(x)=—k7! x<—1. (5.2)

This result is wrong; it is obeyed by neither an exact
theory nor by most approximate theories. [The notable
exception is the Percus-Yevick approximation in which
c1(r}=0, r>1; in this case Eq. (5.2) follows directly
from Eq. (2.3).] The reason that Eq. (5.2) does not hold
for approximate theories is that in general they do not
obey the exact result Eq. (5.1), and it does not hold for
the exact cg;(x) because the bridge function is not a func-
tion of by (x).

For the case of the HNC approximation, diagrammatic
analysis indicates that there is a single bridge diagram of
order p} (the second diagram of the third row of Fig. 1 of
Ref. [19], with the left root point representing the wall),
which is not constant nor does it cancel with any other
bridge diagram, nor with any nodal diagram with a
bridge subdiagram. Hence the HNC approximation does
not obey Eq. (5.1). Further, there remains a single non-
constant, noncanceled diagram of order p? in the HNC
approximation to the direct correlation function. One
has (in the region —2<x < —1)

3 3
T
cENC(x)=const+ d (x—2)°
x3 x? 25x 17
4608 384 2688 2520

+0(p}) . (5.3)

This proves that Eq. (5.2) does not hold for the HNC ap-
proximation. This conclusion has been confirmed by nu-
merical solution of the HNC closure for the hard-sphere
fluid at a hard wall.

This rather lengthy discussion of the behavior of the
direct correlation function inside the wall has been
motivated by a recent paper by Malijevsky et al. [28],
who treated the hard-sphere fluid at a hard wall using a
variety of approximate closures together with the errone-
ous Eq. (5.2). One could argue that Eq. (5.2) forces the
approximation to obey the exact condition Eq. (5.1)
(which might lead to a better performance of the approxi-
mation), and that in any case the departure from constan-
cy is relatively small. While these arguments certainly
have merit, it ought be understood that the results of
such a procedure are not strictly HNC, and it may be
confusing to label them as such.

Consider now the excess interaction free energy per
unit area between walls. In the fluid excluded and inter-
penetration region x <0, one sees that it must be a linear
function because the only effect of changing the separa-
tion is to change the volume of the bulk fluid. The exact
expression is

kpTF§(x)=Px —20, x<0 (5.4)
where P is the pressure of the bulk fluid and o is the sur-
face tension (surface free energy per unit area) of the
hard-sphere—fluid interface at a hard wall. The second
term arises from the loss of two wall-fluid interfaces com-
pared to the situation at infinite separation.
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One can evaluate the first few Yvon-Mayer diagrams
explicitly, including the first bridge diagram which is

0, x=0
p2d @ (x)= mpix*(x2—6)/12, —1=<x <0
mpH8x +3)/12, x<—1.

(5.5)

Using this in the diagrammatic expansion of the excess
interaction free energy per unit area between hard walls
in a hard-sphere fluid, one obtains

F&(x)~pyx +1—”2(8x +3)p}+0(p?), x<0. (5.6)

Now the virial expansion for the pressure is
2
P/kBT~p1+ZT” %+51i8 SR

and the scaled particle theory [29] gives, for the surface
tension of a hard-sphere fluid at a hard wall,

—ap? (1+mp,/6)
8 (1—mp,/6)

(5.7)

(I/kBT:
—mpi
8

It is clear that these expansions inserted into the exact ex-
pression Eq. (5.4) are in agreement with Eq. (5.6) to order
3

(5.8)

i

The HNC closure neglects the bridge function, Eq.
(5.5). Since this is not linear in the range —1=x =<0, one
deduces that the HNC approximation for F§j(x) will not
be linear in this range, and hence will qualitatively differ
from the exact functional form, Eq. (5.4). However, the
HNC approximation does tend to the exact functional
form in the (unphysical) region where the walls are over-
lapping. Suppose that to some acceptable approximation
one has

col(x)=—k7!, x<Z<—1. (5.9)

Then the range of integration in Eq. (3.6) may be split at
two points, s=x —Z and s =0, and one can easily show
that

F&(x)=const+pkr'x, x<Z . (5.10)

In other words, subject to the condition (5.9), the HNC
predicts for the net pressure
BP(x)=—puil=—pBL x<z (5.11)
Ip;
where B=1/kyzT. This confirms that the HNC is exact
only to first order in density. Hence the particular ther-
modynamic path to the pressure which proceeds from
Egs. (3.6) and (5.4) will only yield the first virial
coefficient exactly. Compare this to the path which uti-
lizes the contact theorem for the single wall, Egs. (2.17)
and (2.18), which will clearly give the first two virial
coefficients exactly. Compare again with the HNC solu-
tion of a pure bulk hard-sphere fluid and the virial equa-
tion, in which route one obtains the first three virial
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coefficients exactly. This progressive loss of accuracy as
one applies the singlet Ornstein-Zernike equation to the
solute-solvent problem has been noted previously [3,19].

Figures 1 and 2 show the results of numerical HNC-
type calculations for the pressure between hard walls in a
hard-sphere fluid, obtained from the negative derivative
of Eq. (3.6). These results were obtained using a grid
spacing of 0.01 and 2!2 mesh points. The bulk correlation
functions were obtained using the standard fast Fourier
transform method, and the wall-solvent functions were
calculated using Eq. (2.6). The integral in Eq. (3.6) was
evaluated by the trapezoidal rule, and a four-point finite
difference formula was used to obtain the pressure. Some
calculations were carried out using Verlet-Weis [30]
bridge functions for the bulk, and Plischke-Henderson
[31] or HNCP [19] for the wall-solvent bridge functions.

Figure 1 shows the region around contact for a low-
density fluid (p;=0.2). One can see that the pressure is
repulsive just before the walls are brought to the fluid ex-
clusion region. At separations less than this the walls are
forced together by the pressure of the surrounding fluid.
In the region —1=x <0, the HNC is certainly not linear,
but the inclusion of the first bridge diagram, Eq. (5.5),
ameliorates this. The HNC pressure on this scale ap-
pears constant for x < —1, suggesting that one might
take Z=—1in Eqgs. (5.11) and (5.9). The numbers them-
selves do show some small variation, again indicating
that Eq. (5.2) is strictly incorrect, although it is a good
approximation at this density.

Figure 2(a) compares the effects of different approxima-
tions to the bridge function at the higher density of
p1=0.681. The first point to note is the good agreement
between the macrosphere (30 times the diameter of the
solvent atoms) and the wall-wall results which confirms
the applicability of the Derjaguin approximation
Fy(x;R)=Fy(x) for finite R. Similar agreement was
obtained for ten diameter macrospheres. Second, in-
clusion of bridge functions changes the pure HNC results
only slightly. (Note that only bulk and wall-solvent
bridge functions were used; there is no direct wall-wall
bridge function included in Fig. 2.) The discrepancies
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FIG. 1. Net pressure (units of k3 Td{®) between hard walls
in a hard-sphere fluid at a density of p,d;=0.2 as a function of
separation (units of d;). The solid curve is the HNC result, the
dotted curve is the HNC result with d{'(x) given by Eq. (5.5).
Note that these curves are coincident for x >0, and that wall-
wall contact occurs at x = — 1.
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FIG. 2. Net pressure between hard walls in a hard-sphere
fluid at a density of p;d} =0.681 (same units as in Fig. 1). (a)
The solid curve is the HNCP result for 30-diam macrospheres
[19], the almost coincident dotted curve is the HNC wall-wall
result, the short-dashed curve is the HNCP wall-wall result, and
the long-dashed curve is the result obtained using Verlet-Weis
[30] and Plischke-Henderson [31] bridge functions. (b) Compar-
ison on an expanded scale with the simulation data of
Karlstrom [32] (squares); the curves are the same as in (a).

caused by the use of the Plischke-Henderson [31] param-
etrization may be an artifact of that approximation.
Third, the pressure is oscillatory in nature, with period
approaching one solvent diameter, as may be expected
from physical arguments.

Figure 2(b) gives a detailed comparison with the simu-
lation data from Karlstrom [32]. Note that a bulk pres-
sure of P=3.695k, Td | > has been subtracted from those
data in order that the net pressure approach zero at large
separations. The agreement of the present theory with
the simulation is quite satisfactory. (Note that a previous
comparison of interacting macrospheres by two of the
present authors contained plotting errors in Fig. 10 of
Ref. [19] that exaggerated the discrepancy with the simu-
lation data.) The small improvement due to the inclusion
of the bridge functions in the closure cannot really be as-
sessed because of the noise in the simulation data. In any
case, the singlet HNC results are about as accurate as the
inhomogeneous HNC calculations of Kjellander and Sar-
men [18]. It is worth stressing that the singlet calcula-
tions are several orders of magnitude less demanding
than the inhomogeneous ones. One might anticipate on
the basis of these results that Eq. (3.6) will prove a fecund
source of results for colloidal systems.
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VI. LENNARD-JONES FLUIDS

In this section we analyze the asymptotic behavior of
the solvent profile near a wall, and the interaction be-
tween walls, simple fluids with a power-law interaction
potential. That is,

Puy(r)~—Ar™" n>3, r—w .

6.1

For the Lennard-Jones fluid, n=6 and A4 >0. The
asymptotic behavior of the bulk pair correlation func-
tions is known [14,33]

cn(r)~Ar™" r—oo

(6.2)

(6.3)
Here x;=14+ph;;(0)=[1—p,T;;(0)]"" is the dimen-
sionless isothermal compressibility of the bulk solvent.
Consider now the wall-solvent Ornstein-Zernike equa-
tion (2.6). First the contribution from inside the wall,
where, for large y, the solvent direct correlation function
in the integrand of the first line of Eq. (2.7), may be re-
placed by its asymptotic form, Eq. (6.2). This gives

2mp, A
(n—2)(n—3)

The integral representing the contribution from the fluid,
Eq. (2.8), is dominated by two regions: z=~y, in which
case hg,(z) may be replaced by hg (y) and brought out-
side the integral; and z=O0, in which case z may be
neglected with respect to y in the argument of the direct
correlation function. Hence

27T, 4
(n—2)
where ¢,,(0) is the volume integral of the direct correla-
tion function, and where I'|=p, f ,>oho1(z)dz is the sur-
face adsorption excess per unit area. The second contri-
bution to Eq. (6.5) for the fluid side of the interface is
shorter ranged by a factor of y than the contribution

from within the wall, Eq. (6.4). Inserting these results
into Eq. (2.6) one obtains

hll(r)NKZTAr_", V¥ — o0 .,

Cy)~ P37y oo . (6.4)

H(y)~pi€11(0)hg (y)+ yrr y—o o, (6.5)

2apkr A 3—
—_—y>" . (6.6
n—2(n-3> 777 (.0

Now one expects that

Col(y)~—Bu01(y)+0(h01(y)2)~3y_m, y— > (6.7)

and so for a hard wall (or any sufficiently short-ranged
wall-solvent interaction potential), only the second term
will contribute in Eq. (6.6).

For the case of a Lennard-Jones fluid against a hard
wall, one can see that there is a relatively long-ranged
(y ~3) adsorption decrement. This is what one might
have expected physically, since a polarizable fluid (which
Lennard-Jones represents) finds an unpolarizable hard
wall unfavorable. The inverse cubic tail arises from in-
tegrating the absence of r® interactions over a semi-
infinite half-space. For the case of a Lennard-Jones (po-
larizable) wall, one would have ug;(y)~y 3, and so the
first term in Eq. (6.6) will contribute to the leading order.
Whether the tail of the excess adsorption is positive or

ho](y)NKTCOI(y)—
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negative depends upon the relative strengths of the
Lennard-Jones parameters.

The interaction between walls may now be evaluated
from Eq. (3.6). For completeness we shall include a
direct wall-wall interaction potential per unit area uyy(x)
and shall assume cy;(y)~By ~ ™. The integral in Eq. (3.6)
has three regions, which are delimited by s =0 and s =x
[note the discussion of Eq. (5.9); for the asymptotic
analysis Z may be taken to be zero compared to x]. One
has

—plffwhm(s)cm(x —s)ds

0 - p1B -
~ B —_ m — 1—m .
plf—w (x —s)" ™ds — (6.8)
and
—plfwhm(s)cm(x —s)ds
X
o 2mp iy As3T"
~ —1 Bs ~M—
Pikr fx Kr3s (n—2)(n —3) ds
Bx'™m 2mpi Ax*"
_P1 _ P1 (6.9
m—1 (n —2)n —3)n—4)
Now in the region between the plates one has
X
- —s)d.
plf() h()l(S)CO](x S) S
~—plcm(x)fowhm(s)ds—plhm(x)fowcm(t)dt . (6.10)

These may be neglected compared to Egs. (6.8) and (6.9).
It follows that

2p1B xl—m

m—1

2mpr A
(n—2)n—3)n—4)

This is an exact result. It holds even if the bridge func-
tion in Eq. (3.7) were included, because the latter is short-
er ranged.

For the case of hard walls (B =0) or short-ranged
wall-solvent potentials (m >3) in a Lennard-Jones fluid
(n =6), only the last term contributes; the interaction
free energy per unit area is negative and decays with the
second power of separation. This is the well-known van
der Waals attraction. This is also the case for Lennard-
Jones walls [Buqy(x)~Cx 2] across a vacuum or a fluid
with short-ranged interactions. More generally, for
Lennard-Jones walls in Lennard-Jones fluids, the various
constants are related (in essence, A OCa%, B < a0, and
C OCa(z,; physically the Lennard-Jones parameters depend
upon atomic polarizabilities) and one can write Eq. (6.1)
as a perfect square. This result, that the van der Waals
force between identical half-spaces is always attractive,
has long been known on the basis of Hamaker theory,
and has also been shown to hold for Lifshitz theory [34].

One advantage of the asymptotic result Eq. (6.11) is
that it does provide a microscopic basis for the Hamaker
constant in terms of the Lennard-Jones parameters which
are known for a variety of polarizable fluids and sub-

Foo(x)~Bugylx)+

x4 x> . (6.11)
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strates. Although the asymptotic result is clearly inappl-
icable at small separations (where it diverges, as do
Hamaker and Lifshitz theory), Eq. (3.6) is useful even up
to contact. This provides for the first time a way of cal-
culating the van der Waals force at molecular separa-
tions.

VII. DIPOLAR FLUIDS

The dipolar fluid considered here consists of hard
spheres each with an embedded point dipole of moment
. In the wall-solvent case, the lower indices of the rota-
tional invariants vanish because of the cylindrical sym-
metry (see Sec. IV), which reduces them to Legendre po-
lynomials. Further, only even terms appear in the expan-
sion because of charge-reversal symmetry. Asymptotical-
ly, the solvent profile is [35,36]

hoy(x,8)~ Ax 3+ BP,(cos0)x 3, x— (7.1)

where 0 is the angle the dipole makes with the normal to

the wall. We shall require the value of the first
coefficient, and this is [35, 36]
Kt e—1 de
A = —_— | ——— t .
167 e(e+1) |3p; |, (exact) 7.22)
Kt |e—1 e—1
= HNC) , 7.2b
32mp, 3y € ( ) ( )

where € is the dielectric constant of the fluid and
y =4mu’p, /95 T. Note that the dipolar fluid exhibits an
inverse cubic adsorption decrement near an isolated hard
wall, just as does the Lennard-Jones system. Another
point of similarity is that the direct correlation function
decays as the sixth power of distance from the wall.
These mean that the asymptotic behavior of the excess
free energy per unit area between hard walls in the dipo-
lar fluid is determined by the same region of integration
as for the Lennard-Jones, namely beyond the plate [cf.
Eq. (6.9)] where the direct correlation function is con-
stant, Eq. (4.10). The exact asymptotic result is

—1
K A
s~
2x

(7.3)

X — 00 .

This is again the van der Waals attraction.

The RHNC approximation has been solved for dipolar
fluids against a hard wall [36], and the results are here ap-
plied to the interacting wall problem as described in Sec.
IV. In brief, the computations were performed with a
grid spacing of 0.01 and 2'?> mesh points, and four even
rotational invariant projections [up to » =6 in Eq. (4.15)]
were retained. No bridge functions were used for the
wall-wall properties, but the HNCP [19] hard-sphere
bridge functions were used for the wall-solvent reference;
these gave a slightly smaller amplitude and a reduced
period of oscillations in the pressure compared to
Plischke-Henderson [31].

Figure 3(a) indicates that at smaller separations the
pressure is qualitatively similar to the pure hard-sphere
fluid, being oscillatory with period essentially determined
by the hard-sphere diameter. The main effect of increas-
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FIG. 3. HNCP pressure between walls in dipolar hard-sphere
fluids at a density of p,d; =0.7 (same units as in Fig. 1). (a) The
solid curve is for pure hard spheres (u=0), the dashed curve is
for a reduced dipole moment of u/(kpTd})/>=Vv2, and the
dotted curve is for u/(kyTd})/?=V"3. (b) Magnified compar-
ison with the HNC asymptote, Eq. (7.3), using Eq. (7.2b)
(smooth curves).

ing the dipole moment is to smooth the oscillations,
which could have been expected on fairly general grounds
for slowly varying potentials. The inset to the figure
shows that the pressure becomes highly repulsive just be-
fore fluid is completely excluded from between the walls.
The asymptotic behavior of the pressure is shown in Fig.
3(b). Here there is a qualitative difference between dipo-
lar and pure hard-sphere fluids. The latter oscillate about
zero, whereas the pressure at large separations in a dipo-
lar fluid is attractive, on average, and reasonably well de-
scribed by Eq. (7.3).

These results may be contrasted with the traditional
Hamaker or Lifshitz theories for the van der Waals force.
In essence these correspond to extrapolating the smooth
asymptotes shown in Fig. 3(b) into contact. The present
theory gives a molecular prescription for calculating the
Hamaker constant H. Explicitly, using Egs. (7.2a) and
(7.3), one finds that

H=—6mpkgTkr'A

_ 3kpTp, e—1 O€_
8 e(e+1) | 9p; r
_ 3(kBT)2 €e—1 | dlne (7.4)
8pkr €+1 | 3P |, )
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Here we have used Eq. (55) of Ref. [37] to obtain the final
convenient form. This expression for the Hamaker con-
stant is exact for solvents modeled as rigid dipolar parti-
cles and contained between inert walls. For water, the
measured logarithmic pressure derivative of the dielectric
constant and the isothermal compressibility are tabulated
[38,39]. Using these, we obtain H=1.56X10"2! J as the
Hamaker constant for water between inert walls at 25 °C.
For the dipolar fluid of Fig. 3 with the reduced dipole
moment of V'3(e=49.2), the Hamaker constant from Eq.
(7.4) is H=6.99X 102! J, which is about 4 times smaller
than predicted by the HNC approximation, Eq. (7.2b).
These values are comparable to those often used for
hydrocarbon-water systems [40].

Besides providing a microscopic basis for the Hamaker
constant, which may be used to estimate the long-range
part of the van der Waals force, the present theory also
correctly takes into account molecular size, predicting
that the pressure is oscillatory, for example. A further
important achievement is that the theory properly de-
scribes the behavior near contact. The traditional
theories predict a monotonic attraction which diverges at
contact (adhesion), whereas these results show that there
is a very steep repulsion before wall-wall contact is at-
tained, and that in fact the surfaces are likely to sit in one
of the minima in the free energy, separated by several sol-
vent diameters.

VIII. CONCLUSION

The wall-wall Ornstein-Zernike equation derived in
this paper should prove useful because it allows the in-
teraction free energy between planes—a quantity of im-
portance both conceptually and practically—to be readi-
ly calculated using the standard techniques of statistical
mechanics. Further, the rigorous microscopic derivation
of the Derjaguin approximation also given here will en-
able theoretical results for walls to be applied to experi-
ments on curved surfaces with some confidence. If neces-
sary, both the Derjaguin and HNC approximations can
be systematically corrected, as was discussed in the text.

The pressure between hard walls in a hard-sphere fluid
was found to be oscillatory, with the period slightly
greater than the hard-sphere diameter. Good agreement
with simulation data was observed, and the HNC results
were only marginally changed by inclusion of the wall-
solvent bridge function. Of academic interest is the fluid
excluded region, and here a detailed analysis of the error
in the HNC was given. It was demonstrated that this
particular route to the bulk pressure would yield only the
first virial coefficient.

Asymptotic analysis of the Lennard-Jones fluid re-
vealed a long-ranged (inverse cubic) desorption near an
isolated hard wall, and an attractive interaction free ener-
gy decaying with the second power of separation between
two identical half-spaces. The latter was discussed in
terms of the well-known van der Waals attraction, and
hence a quantitative microscopic basis for the Hamaker
constant in terms of Lennard-Jones parameters is now
available. The full result will enable the calculation of
the van de Waals force between surfaces in polarizable
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fluids down to molecular separations, an unresolved
problem in the traditional Hamaker or Lifshitz theories
which are really asymptotic in nature.

Results for dipolar hard spheres between hard walls
were also given. It was found that the dipole moment
smoothed the oscillatory pressure compared to the pure
hard-sphere result. At larger separations the attractive
net pressure decayed as an inverse cubic—the van de
Waals attraction for a polar fluid. These represent the
first theoretical results for the interaction between walls
in a molecular fluid. This may become the major applica-
tion of the present theory, since there appears no compa-

rable alternative for describing the forces between sur-
faces across fluids composed of nonspherical molecules.
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