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Theoretical results for the density dependence of the electron affinity
of nonpolar liquids Ar, Kr, and Xe
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Previous simple theories for the binding energy of excess electrons in liquid Ar, Kr, and Xe, which
corresponds to the electron aftinity, could not get good agreement with experimental results for the
whole range of liquid densities. Here, we present an improvement of these theories yielding results for
the electron affinity of liquid rare gases, which agree well with experiments at all densities, including the
solid phase. This theory is quite uriiversal and can also be directly applied to the electron affinity of
liquids of nonpolar molecules.

PACS number(s): 61.25.8i, 71.25.—s, 77.90.+k

I. INTRODUCTION

The observed mobilities of excess electrons in liquid
Ar, Kr, and Xe are rather high [1—5]. From this, on con-
cludes that these electrons are in a delocalized quasifree
state, which is part of a conduction band. In general, the
electron affinity of the liquid corresponds to the bottom
of the conduction band, denoted here as E( —= V, ), and
can be measured from the shift in the threshold of the
photoelectric eFect at immersed metal electrodes [3]. At
low densities, one observes a roughly linear increase in
the electron affinity for an increasing density of the
atoms. At larger densities, a maximum is obtained in the
electron affinity and the electron affinity then decreases
for further increasing densities. Finally, the electron
affinity of the solid rare gas is significantly lower than for
the liquid rare gas.

Previously, Springett, Cohen, and Jortner [6] have
presented a theory for the electron affinity of liquid rare
gases. They have been using a simple continuum approx-
imation for the attractive polarization interaction be-
tween the electron and the rare-gas atoms. The repulsive
interaction has been modeled by a hard-sphere potential
with an adjustable radius R&, which is related to the
strength of the repulsion. In order to avoid numerical
calculation as much as possible, they had to use a very
simple ansatz for the wave function of the electron and
they have made a somewhat rough estimate for its ener-
gy. Further, an inAated solidlike atomic lattice has been
used instead of a more realistic liquid structure. They ob-
tained the correct magnitude for the electron affinity, but
the resulting overall agreement with experiment has been
rather poor. Only a monotonous increase of the electron
affinity has been obtained with increasing atomic density
and the experimentally observed maximum could
effectively not be reproduced. Note that this theory
wrongly gives a higher electron affinity for the solid rare
gases than for the liquid. The disagreement is especially
strong for argon [1,4,7].

The properties of excess electrons in liquid He and Xe
have also been examined in a computer-simulation work
[8]. It has been found, in agreement with the experiment,

that excess electrons mix with the xenon atoms and that
no separation occurs. This is in contrast to the results for
liquid helium, which forms a void bubble containing the
excess electron [6]. However, no reliable results for the
electron affinity have been obtained.

Quite recently, Plenkiewicz, Plenkiewicz, and Jay-
Gerin [9] have obtained theoretical results for the elec-
tron affinity of liquid Ar and Kr, which are in good
agreement with experiment. However, their work re-
quires a high-precision atomic pseudopotential, which
has to be determined for each element or molecule sepa-
rately and which demands a considerable amount of nu-
merical calculations. They have been using a realistic
model for the liquid structure only for the calculation of
the polarization interaction. Then, somewhat incon-
sistently, they have determined the electronic wave func-
tion and energy E using the same Wigner-Seitz approxi-
mation for the unit cell as Springett, Cohen, and Jortner
[6], which corresponds to an inflated solidlike atomic lat-
tice instead of a more realistic liquid structure.

We propose an improvement of earlier theories using a
numerical solution for the electronic wave function and
energy. In addition, a more realistic model is used for the
structure of the liquid. Thus, reasonably good agreement
is obtained with the electron affinity for all densities of
the liquid. Note that we retain the simplicity of
Springett's theory. Thus this theory for the density
dependence of the electron affinity can be applied quite
easily to any nonpolar liquid.

II. THEORY

We first discuss the theory for the electron affinity of
solid rare gases. Then we present the atomic structure of
the liquid and its inAuence on the electron affinity.

Rare-gas atoms condense in a face-centered-cubic
structure, which is a dense packing of spheres. The elec-
tron at the bottom of the conduction band has a wave
function of wave vector k=0, thus both the electronic
potential and wave function have the full symmetry of
the atomic lattice and they need only be discussed in one
elementary cell around one of the atoms. This cell is
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roughly approximated by a sphere of radius R„which
has the same volume. If p is the density of the atoms,
then

1/3

f (r)= sin[a(r —Rh)], which obeys the boundary condi-
tion at the center of the cell. The boundary condition at
the surface [Eq. (6)] determines Ir via the nonlinear equa-
tion

R, = 3

4~p tan[a(R, —Rh )]=aR,

V (r)=
for r (Rz

0 for r)R„, (3)

where RI, is an adjustable parameter. With these approx-
imations the electronic potential is

V(r)= V„(r) ,'ae r ————,'e (1 e')R, —

The electronic wave function f is roughly spherically
symmetric in the cell around r =0 and we can use an ap-
proximate form P=f (r)/r. The—energy E of the electron
is then determined by the Schrodinger equation

d +V(r) f(r)=Ef(r)
2m dp

The electronic potential V(r) = V„(r)+ V (r) consists of a
repulsive interaction V„(r) of short range with the atom
at r=0 in the same cell and a polarization interaction
V (r) with the atoms of polarizability a. As proposed by
Springett, Cohen, and Jortner [6], we decompose the po-
larization interaction into an interaction with the atom
(at r =0) in the same cell, which has a potential—

—,'ae r, and an interaction with all other atoms out-
side the cell. The polarization outside the cell is estimat-
ed by approximating the liquid as a dielectric continuum.
The dielectric constant e is obtained from the Clausius-
Mossotti relation [10]as

4mpo.

1 —4m.pa/3
and the polarization energy of the dielectric [11] is ap-
proximately —

—,'e (1—e ')R, '. Note that this result is
equivalent to the corresponding expression used by
Springett, Cohen, and Jortner [6]. The repulsive interac-
tion is not well known and is often, as a somewhat crude
approximation, replaced by a hard-core repulsion

1 —e, '
U+ e=

2R, J d3r r
—

4~q~2

x

12' 2e
7R4

which gives the approximate result
—1

E=—T+U= — v — e
12m

e
2m 7R 4 2R,

Note that this overestimates the magnitude of U at high
atomic densities, because the density of the excess elec-
tron close to the atom is overestimated (see Fig. 1). Simi-
larly, the magnitude of U is underestimated at low atomic
densities in comparison to a more exact calculation.

To calculate the electron amenity of liquid rare gases,
one has to make a model of its atomic structure. In the
simplest approximation, which has also been used by
Springett, Cohen, and Jortner [6] and Plenkiewicz, Plen-
kiewicz, and Jay-Gerin [9], the high density p of the solid
is simply replaced by the lower density of the liquid.

and the resulting estimate for kinetic energy T of the
electron is T =

—,'A ~ m '. This approximation is quite
good at high densities p, such that the spatial variation of
V(r) is small in comparison to T. But even using this an-
satz, it is not possible to obtain an analytical result for
the expectation value U of the potential energy V, be-
cause of the r term. Therefore Springett, Cohen, and
Jortner assumed (somewhat arbitrarily) that the density

of the electron is roughly constant in the region
R, /2(r (R, and zero for r (R, /2. Thus they obtained
the estimate

together with the appropriate boundary conditions.
Periodicity demands that the normal component of the
gradient of f vanishes at the surface of the cell, thus we
obtain the condition

g(R, )-=— + f (R, )=0 .
f«) 1 d

Rh

The appropriate boundary condition around the center of
the cell is f (Rz ) =0, if a hard-core repulsion [Eq. (3)] is
used. Alternatively, regularity at r =0 results in the con-
dition f (0)=0 for a general finite repulsive potential V„.
Note that Eqs. (1)—(6) determine the electron amenity of
solid rare gases only up to the unknown parameter R&.

The eigenvalue problem defined by Eqs. (5) and (6) can
only be solved numerically. Springett, Cohen, and
Jortner propsoed an approximate analytical function

low atomic density high atomic density

FIG. 1. Illustration of the density of the excess electron (con-
tinuous line) around a rare-gas atom at r =0. RI, is the radius of
the hard-core repulsive potential and R, is the radius of the unit
cell. The dashed line represents the approximation used by
Springett, Cohen, and Jortner (Ref. [6]) for calculating the po-
larization energy.
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Thus the atomic lattice of the solid is just expanded. It
should be noted that this is a very unrealistic model for
the liquid structure, which is even in contradiction with
the lack of rigidity of the liquid phase. In fact, a decrease
of the density of a liquid is mainly due to a decrease of
the average number of nearest-neighbor atoms of an atom
and the increase of average bond lengths is rather small.
Thus we propose an alternative model, which approxi-
mates the effect of a decreasing atomic density p as being
due to an increasing number of vacant lattice sites.

In this model, the basic lattice itself is kept constant at
the density p, of the solid rare gas and the relative num-
ber of occupied lattice sites is simply given by p/p, . The
energy of the electron is obtained as a correctly weighted
average, E = (w, E, +w, E, )/(w, +w, ), where E, is the
electronic energy at an occupied lattice cell, E, is the en-
ergy at a vacant cell, and w, and w, are corresponding
weights, which are composed of the relative numbers of
occupied sites (p/p, ) or vacant sites (1 —p/p, ) and the
density of the electron at each of these sites. The lattice
is the same as for the solid, thus an elementary lattice cell
is approximated by a sphere of radius

1/3

R, = —'
(9)

4~p,

R

w, =4m I [f(r)] dr .
p Rh

(10)

Note that the Clausius-Mossotti relation depends only on
the validity of the Lorentz-Lorentz relation [11],thus Eq.
(2) for the dielectric constant remains a valid approxima-
tion. The electronic potential V at a vacant site results
from the polarization of the surrounding atoms and is ap-
proximately constant, V—= —

—,'e (1—e ')R, '. Thus we
assume, as an approximation, that the wave function g is
constant in vacant cells. From continuity at the bound-
ary between cells it follows that g( r)

R, 'f(R, )=const. —This results in

w„= 1 — R, [f(R, )]
3 p~

and

E„=—
—,'e (1 e')R, — (12)

Obviously, this ansatz for the wave function P is not very
accurate, but we argue (based on the Rayleigh-Ritz varia-
tional principle) that the resulting energy E should
represent a rough upper limit for the energy of the excess
electron. Noting that E, —E, is independent of p, we
rewrite E as

w0
E(p) = (E E)——'e (1—e ')R—

w+w S
0 U

(13)

which is independent of the actual atomic density p of the
liquid.

The energy E, at an occupied cell is calculated from
Eqs. (2)—(6) and (9) and the weight w, results from the
wave function g=f (r)/r as—

The qualitative dependence of the energy E on the densi-
ty p follows directly from this equation. The first term
represents the interaction of the excess electron with an
atom in the same elementary cell (if occupied) and makes
a positive contribution to E. The second term is the po-
larization energy of the surrounding environment and
makes a negative contribution. At low densities p the
second term is larger in magnitude than the first one and
both are roughly proportional to p. Thus the electron
affinity ( —E) first increases linearly with p. At high den-
sities, the second term saturates and the first term contin-
ues to increase, thus the electron affinity has a maximum
and then decreases for further increasing densities. Fur-
ther, we note that the results of Eq. (13) depend mainly
just on the electron affinity of the solid, its atomic density
p„and the polarizability o. of the atoms or molecules.
Then, the details of the atomic pseudopotential only have
a small infiuence on the electron affinity via Eq. (10) and
the result of this model is quite universal.

III. RKSUI.TS

We use in our calculation the following parameters.
The polarizability of a xenon atom is 4.04 A, 2.48 A for
a krypton atom, and 1.64 A for an argon atom [12]. The
radius RI, of the hard-core repulsion has been adjusted,
such that our calculation reproduces the electron affinity
of solid rare gases as measured in the experiment [7].
The energy E of the excess electron is —0.57 eV at a tem-
perature of 160 K in solid Xe, —0.4 eV at 114 K in solid
Kr, and 0.0 eV at 82 K in solid Ar. The atomic densities
of the solid are obtained from an appropriate extrapola-
tion of experimental results [13] as 1.58X10 cm for
Xe, 2.01 X 10 2 cm for Kr, and 2.46 X 102 cm for Ar.
This determines uniquely RI, for each element, the result-
ing values are 1.152 A for Xe, 0.982 A for Kr, and 0.883
A for Ar. Note that these values are somewhat smaller
than values suggested previously [5] and which have been
obtained from Springett's theory.

The results of our calculation for the energy E of an ex-
cess electron in liquid Xe, Kr, and Ar are given in Figs. 2,
3, and 4, respectively, together with the experimental
measurements of various groups. The continuous line is
obtained using the vacancy model [Eqs. (9)—(13)] and the
dashed line is obtained using the model of the expanded
solid [Eqs. (1)—(6)] for the structure of the liquid. The
dotted line results from the approximations [Eqs. (1), (7),
and (8)] introduced by Springett, Cohen, and Jortner [6].
Our calculation agrees qualitatively and quantitatively
rather well with the experiments. The linear increase of
the electron affinity (A—: E) at small densities, it—s max-
imum at larger densities, and its decrease towards the
high density of the solid are obtained correctly. Quanti-
tatively, the agreement is especially good for Xe. For Kr
and Ar, there seems to be a systematic deviation between
experiment and theory. This could be due to the actual
atomic structure of the liquid, which deviates from the
simple models presented here. Note that the experiments
have been done at rather high temperatures. Thus, large
local Auctuations of the atomic density become possible.
These fl.uctuations should have a strong effect on the en-
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FICx. 2. Dependence of the energy E of excess electrons in
liquid Xe on the density of atoms p. Calculated results: The
continuous line refers to the vacancy model [Eqs. (9)—(13)], the
dashed line to the expanded lattice model [Eqs. (1)—(6)], and the
dotted line to previous calculations [approximation by
Springett, Cohen, and Jortner, Ref. [6], and Eqs. (1), (7), and
(8)]. Experimental results are given by circles, Ref. [S].

FIG. 4. Dependence of the energy E of excess electrons in
liquid Ar on the density of atoms p. Calculated results are
presented in the same way as in Fig. 2. Experimental results are
given by circles (Ref. [16]),squared (Ref. [4]), and triangles (Ref.
[3])

ergy of the excess electron, mainly due to the strong
repulsive interaction. On the other hand, fluctuations
might also be enhanced in the presence of excess elec-
trons.

Note that we obtain a rather good agreement with the
theoretical results of Plenkiewicz, Plenkiewicz, and Jay-
Gerin [9], although our atomic potentials are rather
difT'erent and our model requires significantly less compu-
tational work. In contrast, the approximations made by
Springett, Cohen, and Jortner [6] lead to an unsatisfacto-
ry agreement with experiment. The electron affinity is
both strongly underestimated at low densities and overes-

timated at high densities for any reasonable choice of the
parameter R h of the repulsive interaction. Thus, not
even the maximum of the electron affinity at liquid densi-
ties could be reproduced.

In Fig. 5 we present theoretical results for the electron
affinity of liquid Xe using the soft interaction potential
between excess electrons and atoms proposed by Coker,
Berne, and Thirumalai (see part II of Ref. [8]). Their po-
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FIG. 3. Dependence of the energy E of excess electrons in
liquid Kr on the density of atoms p. Calculated results are
presented in the same way as in Fig. 2. Experimental results are
given by circles {Ref. [S])and squares (Ref. [7]).

FIG. 5. Calculation of the energy E of excess electrons in
liquid Xe making use of the interaction potential proposed by
Coker, Berne, and Thirumalai (Ref. [8]). The short-dashed line
indicates the results for the vacancy model [Eqs. {9)—(13)] and
the dotted line refers to the expanded lattice model [Eqs.
(1)—(6)]. Here, the original potential [Eq. (14)] has been used in
both cases. Using the modified potential [Eq. (1S)], one gets re-
sults indicated by the continuous line in the case of the vacancy
model and the dashed line in the case of the expanded lattice
model. Experimental results are given by circles (Ref. [S]).
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tential has been given in the analytic form

2

2r (C+r )
(14)

tron affinity of small clusters of xenon atoms [14,15].
Note that we do not use a similar cutoff'as in Eq. (15) to-
gether with the hard-core repulsive potential [Eq. (3)] be-
cause this does not make a significant change in our re-
sults.

8
r (C+r )

1

(r2+D2)2 (15)

where D is an adjustable parameter. A similar cutoff has
also been used by Plenkiewicz, Plenkiewicz, and Jay-
Gerin [9]. The upper set of lines has been obtained using
the value D =0.41 A, which results in a good agreement
with the experiment. Note that the results given by the
vacancy model (solid line) are almost identical to the
respective results in Fig. 2, in spite of the different atom-
ic potentials. This demonstrates the universal behavior,
which we expect on the basis of Eq. (13). Finally, we con-
clude that the repulsive part of the interaction potential
of Eq. (14) is too weak and that appropriate corrections
are necessary. This might explain some of the differences
between the results of two recent calculations on the elec-

The parameters 8 and C define the repulsive potential
and they have been determined by extensive numerical
calculations. Using this potential instead of the terms
V„(r) ,'e —ctr—inEq. (4), we obtain the lower set of
lines. Clearly, the electron aSnity is strongly overes-
timated at high densities. One reason for this problem
might be that Coker, Berne, and Thirumulai have not
used a sufficiently strong cutoff for the polarization term—

—,'e ar at small r. To examine this further, we have
made a second calculation with the slightly modified po-
tential

IV. CONCLUSIONS

Using a rather simple model, we have calculated the
electron amenity of liquid rare gases and its dependence on
the atomic density. The results agree rather well with the
experiments. Thus, we expect that this model for the in-
teraction between electrons and rare-gas atoms could also
be used to examine the properties of excess electrons on
clusters of rare-gas atoms. Additionally, this theory can
also be used to examine the electron a%nity of liquids of
nonpolar molecules.

A similar calculation using an interaction potential in-
troduced by Coker, Berne, and Thirumulai for excess
electrons at xenon atoms results in electron aSnities that
are far too large. Based on this result, we expect that us-
ing this potential the electron aftinity of larger clusters of
Xe atoms is overestimated as soon as the excess electron
is localized inside the cluster. Thus, this potential should
be corrected before it is used for other calculations.
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