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Electric-field-induced phase transitions in frustrated cholesteric liquid crystals
of negative dielectric anisotropy
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The phase diagram of a large-pitch cholesteric liquid crystal sandwiched between two parallel glass
plates with homeotropic anchoring is determined both experimentally and theoretically. Contrary to
previous experiments [P. Ribiere and P. Oswald, J. Phys. (Paris) 51, 1703 (1990)], the materials chosen
have a negative dielectric anisotropy so that experiments are performed at smaller thickness than the
critical value d, that is necessary to unwind the helical structure completely at vanishing electric field.
The two control parameters are the frustration ratio d/p of the thickness over the quiescent pitch of the
cholesteric liquid crystal and the applied voltage V. The main di6'erence with previous experiments is
that the cholesteric-nematic phase transition can be second order or first order depending on the sample
thickness. There is thus a Landau tricritical point in the phase diagram. Furthermore, we have found a
triple point where the nematic phase coexists with both a translationally invariant configuration and a
periodic structure. A theoretical model, including two order parameters, allows us to calculate the coor-
dinates of these two particular points as a function of the Frank elastic constants as well as the general
aspect of the phase diagram. The agreement between theory and experiment is satisfactory.

PACS number(s): 61.30.Gd, 64.70.Md

I. INTRODUCTION

A cholesteric phase is a nematic liquid crystal that is
twisted in a single direction. Although the cholesteric
and the nematic phases are not thermodynamically dis-
tinct, it is possible to i~duce the cholesteric-nematic
phase transformation at a constant temperature by sub-

jecting the cholesteric to an electric field or a topological
frustration [1—8]. This so-called unwinding transition
has been studied in detail recently, particularly with ma-
terials of positive dielectric anisotropy when the anchor-
ing of the molecules on the limiting glass plates is homeo-
tropic (molecules perpendicular to the surfaces). The
control parameters are then the dimensionless frustration
ratio C =rl/p, where d is the sample thickness and p the
cholesteric pitch, and the applied voltage V (or the elec-
tric field E = V/d). For simplicity, we assume that C )0
in the following. This experiment can be performed be-
tween two parallel glass plates or in a wedge-shaped
electro-optic cell. In this latter case, the sample thickness
variation makes it dificult to determine precisely the
phase diagram in the (C, V) parameter space. We have
thus preferred working between two parallel glass plates.
The experimental setup utilized has been described in de-
tail in Ref. [6]. It allows us to change continuously the
sample thickness with an accuracy of +0.05 pm while
keeping the parallelism between the two semitransparent
electrodes smaller than 2 X 10 rad.

%"ith materials of positive dielectric anisotropy
(e, )0), the molecules tend to align along the electric
field. In this case, three types of solutions have been ob-
served experimentally, depending on the values of C and
V. If the sample is suKciently thin, the cholesteric
unwinds completely at vanishing electric field when

0 &d„leading to a homeotropic nematic phase. If the
sample is thick enough and the electric field not too large,
then cholesteric fingers occur, which can be either isolat-
ed or arranged periodically. Finally, a transient transla-
tionally invariant configuration (denoted by TIC in the
following) can be observed by "quenching" the system
below its spinodal limit. One knows that the order of this
transition depends crucially on the elastic anisotropy of
the materials, a result that has been proved theoretically
[6,9]. Until now, all the materials of positive dielectric
anisotropy used have led to a first-order phase transition.
This result is a consequence of their anisotropy, which is
in general too large (according to the theory) to observe a
second-order phase transition.

In this paper we describe the phase diagram for
cholesterics of negative dielectric anisotropy. In this
case, the molecules orient themselves perpendicular to
the electric field. As in previous experiments, we have
chosen to work in homeotropic anchoring. On the other
hand, experiments are performed below the unwinding
threshold (at vanishing electric field) of the cholesteric
phase, i.e., at d & d, . In this case, it is, however, possible
to recover a chiral structure by applying an electric field.
Contrary to previous experiments, we shall see experi-
mentally that the order of the transition can change de-
pending on the sample thickness. In particular, we shall
show that there exist both a triple and a tricritical point
in the phase diagram. In order to explain this unexpected
richness of the phase diagram, we shall generalize our
previous theoretical model by including two order pa-
rameters.

The plan of this paper is then as follows: in Sec. II we
describe the materials used and the sample preparation.
In Sec. III the different solutions encountered are briefly
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pictured as well as their main geometrical characteristics.
The principle of the mapping to the unit sphere S is re-
called. Section IV is devoted to the determination of the
experimental phase diagram. Finally, Sec. V is an exten-
sion of the model of Refs. [6] and [9] that will allow us to
predict, among other things, the position of both the tri-
critical and the triple point in the phase diagram.

II. SAMPLE PREPARATION

Cholesteric liquid crystals of large pitch are prepared
by adding a small amount of the chiral molecule S811
(from Merck Corp. ) to the nematic mixtures ZLI 2806
(Merck) and Roche 2860 (Hoffmann La Roche). A few
basic parameters of these mixtures are listed in Table I.

The Frank constants K; are given for the nematic mix-
tures. They can be a priori slightly different in the pres-
ence of a small amount of chiral molecules. e, is the
dielectric anisotropy, hn the birefringence and K, (re-
spectively, K2,E3) the splay (respectively twist, bend)
elastic constants (from Merck and Hoffmann La Roche
data).

The natural unconstrained pitch p of these two mix-
tures was measured using the conventional Cano wedge
method. The critical sample thickness d, at which the
helical structure completely unwinds was measured in a
wedge-shaped cell whose surfaces have been treated with
lecithin [7,8).

We refer to Ref. [6] for a detailed description of our ex-
perimental setup. We only mention that the electrodes
have been coated with silane ZLI 3124 (Merck) in order
to obtain strong homeotropic alignment and that a
square wave ac voltage (5 kHz) was used in order to
repress the electrohydrodynamics effects.

III. DIFFERENT TYPES OF SOLUTIONS
AND TOPOLOGICAL REPRESENTATION

As in previous experiments, we have observed three
types of solutions. Each of them can be described by con-
sidering its image onto the unit sphere S . The principle
of this mapping is to associate a trajectory in the real
space with a trajectory on the sphere [6,9,10]. Thus, the
homeotropic nematic configuration is represented by a
point on the sphere, for instance the North Pole [Fig.
1(a)]. Another configuration is the TIC [Fig. 2(a)]: con-
trary to previous experiments on dielectrically positive
materials, this configuration can be stable and not simply
transient. In the case of this solution, the image of any
straight line perpendicular to the glass plates is a closed
loop passing through the North Pole on the sphere [Fig.
1(b)]. This condition ensures that the molecules are
homeotropically anchored on the limiting glass plates.

So far, we have assumed that this curve was a circle. We
have shown too that the nematic-TIC phase transition
could be described satisfactorily by taking as order pa-
rameter the angle between the axis of revolution of this
circle and the south-north axis of the sphere. We shall
see in Sec. V that this is only an approximation. Finally,
we have observed fingers that can be isolated or arranged
side by side periodically [Figs. 2(b) —2(d)]. These fingers
correspond to a double-twist configuration that can be
described by a set of circles on the sphere. We have
chosen circles for simplicity but this is an approximation.
Each of them is the image of a straight line parallel to the
glass plates and perpendicular to the finger axis. If the
finger is bounded by homeotropic nematic, all these cir-
cles must pass through the North Pole. This condition is
not fulfilled in general, so we do not assume that the cir-
cles pass through the North Pole. By contrast, the
centers of these circles lie on a closed curve that always
passes through the North Pole in order to fulfill the con-
dition of homeotropic anchoring on the glass plates [Fig.
l(c)]. As for the TIC, we shall see in Sec. V that this
curve is not necessarily a circle, an assumption that we
previously made in Ref. [6]. This result does not change
the topological properties of the fingers nor their rules of
association [5,6]. In particular, an isolated finger has two
different ends, one of them being sharper than the other.
Two different ends can collapse whereas two identical
ends always repel. Furthermore, a sharp fingertip can
collapse into the side of a finger and forms a T-like side-
branching, whereas a rounded tip is always repelled by
the side of a finger. The rounded tips have been called
normal tips because the twist inside has the same sign
everywhere as that of the spontaneous twist of the free
cholesteric phase. By contrast, there is a region where
the twist changes sign in the sharp tips, which are called
for this reason abnormal tips. In Ref. [6] we have shown
that all these properties can be qualitatively explained by
the topological model used here.

IV. EXPERIMENTAL PHASE DIAGRAM

In order to establish the phase diagram in the (C, V)
plane, we first measured the unwinding critical thickness
d, (at zero electric field) by slowly decreasing the sample
thickness until the homeotropic nematic phase invades
the whole sample. The value found in this way closely
agrees (within 5%) with that given in Table I.

All the subsequent experiments were carried out at
smaller thickness than d„contrary to previous experi-
ments with dielectrically positive materials for which
d & d, . Experimentally, three intervals of thickness must
be considered.

TABLE I. Basic data for the mixtures ZLI 2806 and Roche 2860.

Basic
mixture

Roche
2860
ZLI
2806

S811
(wt. %%uo)

0.796

0.792

0.086

0.044

—4.2

—4.8

Kl
(10 ' N)

15.7

K2
(10 ' N)

6.63

7.8

K3
(10 ' N)

12.7

15.4

(pm)

16.1

15.7

d.
(pm)

14.3

14.6
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FIG. 1. Representation on S (right) and on the real space (left) of various configurations. (a) Homeotropic nematic. The image of
a straight line perpendicular to the plates is reduced to the North Pole. (b) Configuration translationally invariant in the (x,y) plane
(TIC). The image of a straight line perpendicular to the plates is a closed curve passing through the North Pole. (c) Cholesteric
finger parallel to the x axis. The image of a straight line perpendicular to the finger axis and parallel to the plates is a circle whose
center is labeled P. The point P describes a curve passing through the North Pole.
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(1) For thickness d ranging approximately from 0.7d,
to d„the phase transition is first order. This can be
clearly established by switching on the voltage V from
zero and by observing how the texture changes. In this
manner, one can distinguish five solutions according to
the final value of the voltage, namely the following.

(i) For V ( V2, a stable homeotropic nematic phase.
(ii) For V2 ( V & V„isolated fingers growing from

their two ends into the nematic phase [Fig. 2(d)].
(iii) For Vi ( V & Vo, a periodic pattern of fingers

which grows by forming circular domains (Fig. 3). In or-
der to maintain a constant mean wavelength within each
domain, the fingertips split at regular intervals of time.
In this region of the phase diagram, the fingers seem to be

FIG. 3. Circular domains growing in the homeotropic
nematic phase. The fingers grow radially and split at their ends
in order to maintain a constant wavelength. This growth mode
leads to numerous edge dislocations in the periodic pattern of
fingers. Mixture ZLI 2806+ S811, V =0.8 V, C =0.895, crossed
polarize rs.

separated by thin bands of homeotropic nematic phase.
(iv) For Vo& V& VOD, a periodic pattern of fingers

which develop from a transient spatially homogeneous
TIC (Fig. 4). This TIC occurs spontaneously immediate-
ly after switching on the voltage (a few hundredths of a
second), whereas the subsequent periodic modulation
occurs after a much longer relaxation time (a few
seconds). Near Vo, the fingers are separated by homeo-

(b)

200 pm

FIG. 2. Diferent textures observed in an electric field in the
mixture Roche 2860+ S811 between crossed polarizers. (a) TIC
developing at high voltage: V=2.4 V, C =0.76. (b) Periodic
structure observed near the transition to the TIC. V=2.2 V,
8=0.76. (c) Periodic pattern of fingers with homeotropic
edges. V=1.3 V, C =0.76. (d) Isolated fingers in coexistence
with homeotropic nematic. V =0.62 V, C =0.822.

200pm

FIG. 4. Homogeneous development of a transient TIC and
its subsequent evolution in ZLI 2806+S811 for C =0.895, be-
tween crossed polarizers; (a) immediately after switching on the
voltage (from 0 to 1.2 V); (b) 3s later, a periodic modulation
occurs; (c) 6s later, the system has reached equilibrium.
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tropic regions which progressively disappear when one
increases the voltage [Figs. 2(c) and 2(b)].

(v) For V & V~, the TIC occurs as a whole and
remains stable without modulating spatially [Fig. 2(a)].

By decreasing the voltage suddenly from a value V con-
tained between Vz and Voo (finger region) it is possible to
define a new limit V3 & V2 below which the fingers im-
mediately disappear, whereas between V3 and V2 the
fingers are metastable and slowly shrink by becoming
shorter.

The curves V, (C ) (i =00,0, . . . , 3) have been graphed
on the phase diagrams of both mixtures in Fig. 5. Each
line has a clear significance in the language of phase tran-
sitions. Thus, V2 is the critical line on which the nematic
and the cholesteric phases coexist. V3 and Vo are the spi-

o
o&o

voo

(D

Cg

O)
Vo

nodal limits of both phases while Voo characterizes the
finger-TIC transition. Finally, Vi is the limit between
two growth modes of the fingers (either isolated with
stable ends or forming a periodic pattern with ends that
split easily). Let us now describe what happens at smaller
thickness.

(2) For thickness d ranging approximately from 0.55d,
to 0.7d„the phase transition is second order. Thus,
there exists a tricritical point situated at 0.7d, where all
the lines V, (C) (except VOD) converge. In this range of
thickness, the nematic state is stable below Vo. Between
Vo and Voo, the stable solution is a periodic pattern
which always develops in a homogeneous way from a
transient TIC. This structure is less regular than before.
Its wavelength is large near Vo and decreases at increas-
ing voltage (Fig. 6). Above Voo, the TIC is stable as pre-
viously.

(3) Finally, for thickness smaller than 0.55d„the tran-
sition is still second order, with the stable solution above
Vo now replaced by the TIC. One notes that the lines Vo
and Voo meet at d =0.55d, . This particular point is a tri-
ple point of the phase diagram, where the nematic phase
coexists with both the modulated texture and the TIC.
These results are summarized in Fig. 5 where we have
plotted the phase diagrams corresponding to ZI.I 2806
and Roche 2860.

0

Mixture ZLI 2806
p ~ 15.7 pc%

0.5
I

0.6 0.7

C = d/p

I

0.8

V3

71

1.0

0
o o 0 o

O u oo

V

V1 (b)

0.4 0.5 0.6
t: =d/p

V2
I

0.8 0.9 1.0

(c)
1.5- o0
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ca 1.0-
O

0.5—

0.0-,
0.4

I

0.8
I

0.5 0.9
I I I

0.6 0.7 1.0
C d/p

FIG. 5. (a) Experimental phase diagram for ZLI 2806+S811.
(b) Experimental phase diagram for Roche 2860+S811. (c)
Theoretical phase diagram (calculated with E3$ 1 92,
E» =2.37, and 2 = —0. 142).

200 pm

FIG. 6. Periodic pattern when the transition is second order
(Roche 2860+S811, C =0.65, crossed polarizers). (a) V=1.35
V. (b) V=1.5 V. (c) V=1.9 V. Note that the wavelength de-
creases when the voltage increases.
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V. THEORETICAL CALCULATION
OF THE PHASE DIAGRAM

In this section we show how to calculate a phase dia-
gram in the (C, V) plane. We first describe the director
field for the TIC. Then, we construct a periodic pattern
of fingers by modulating the TIC. Thus, it is possible to
pass continuously from one to the other, as is observed
experimentally. Then, we calculate the elastic energy,
which allows us to predict the transition order. Finally,
we draw up the phase diagram.

A. Topological model and nature of the transition

We give first a general expression for the director field
which is compatible with the topological considerations
of Sec. III.

I. Director geld

We assume that the anchoring energy on the electrodes
is infinite. Thus, the director n is parallel to e, on the
plates at z =0 and d. We denote Z =7rz /d. Any transla-
tionally invariant configuration in the horizontal plane
can be described by the general director field n,

n„=sina(Z)sinP(Z),
n =sina(Z)cosP(Z),

n, =cosa(Z),

where a is the angle between n and e, and p the angle be-
tween the projection of n in the (e„,e„)plane and e„[Fig.
l(b)].

The experiment shows that the optical contrast of the
fingers gradually vanishes when the voltage increases,
leading to a TIC. This suggests that the fingers-to-TIC
transformation is continuous.

It is possible to construct a periodic pattern of fingers
from a TIC by using a mapping to the sphere S . We
know that the director field nT, C(z) is represented by a
closed curve on 5 . Let P be a point on this curve corre-
sponding to some value z =zo. In order to modulate this
structure in the y direction and to construct a periodic
pattern of fingers parallel to the x direction, we transform
each point P into a circle of increasing radius. One such
circle represents n(zo, y) inside a finger. In addition,
traversing a single finger in real space is equivalent to go-
ing once around this circle in S [Fig. 1(c)]. If all these
circles pass through the North Pole (for the same value of
y), each finger is bounded by homeotropic nematic phase.
The condition of passing through the North Pole is not
imposed in the following.

According to this general construction, the coordinates
of n are

n„=cosPsiny sinky —cosa sinP siny cosky

+sina sinp cosy,

n = —sinPsiny sinky —cosa cosPsiny cosky

2. Calculation of the average free energy

In order to calculate the finger free energy, we use the
Frank formula

f =
—,'K, (V n) + 2E3(q+n VXn) +—,'IC3(n p, p'Xn)

2
(E n) (4)

where q =2m. /p is the spontaneous twist of the quiescent
cholesteric phase and the K s are the elastic modulus.
We shall neglect the bulk electric field inhomogeneities as
well as Aexoelectric effects and conduction.

From formulas (2) and (4), one can calculate the aver-
age free energy F per unit area in the horizontal plane of
the cholesteric. A tedious calculation gives

'2
F k k H=C — J —2—I+

E2q q q 2C

M+AV N
C

with

d d q

p 2 77

We have

4~ E2

=Ki2Ii4+ Ii3+Ii7+K33 Ii6+Iis ),

I =Ii2,
J =Kiz(I, +I4)+Ii+I~+%32(I3+I6),
L =I(3,
M T(IC ipI7 +I8 +E3PI9 +Iio +K3PI„)
N =I)9,

K)
K)2=

2

K3
32

2

where k is the wave vector (k =2m/A, and A, is the finger
width) and a, P, y three angles defined in Fig. 1(c).

The homeotropic boundary conditions impose

a(Z =0)=a(Z =7r) =0,
y(Z =0)=y(Z =7r) =0 .

One finds again the TIC-director field by putting y =0 in
(2), whereas fingers with homeotropic edges correspond
to a=y.

+sina cosp cosy,

n, =sinu siny cosky +cosa cosy,

(2) aild

I, = ,'f Sdz-.
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The terms 2; are listed in Appendix A and depend on
a,P, y and their derivatives with respect to Z, a, /3, and
y-

In order to calculate the amplitude of the solution in the
vicinity of the transition, we search for it in the form

3. Euler equations: Determination of the spinodal
limit of the nematic phase

At equilibrium, the free energy F is minimum. Writing
F in the form F = —,

' J0 V dZ yields the following Euler
equations:

A =cxoslnZ

2C

os1IlZ

(10)

for Oe [a,P, y] .dP
dZ Qg

(6)

aK =o; 4A V ———4C
32 K32

2

yK3~=y 4AV +2C — (I+K,2)—k 4C

This system has a nontrivial solution satisfying the
boundary conditions as soon as

4C2
4A V = —K32+

32

This relation defines a critical voltage
1/2C'+

4A %32 A
Vo(C)=

These equations are simple when a &(1 and y (& 1 and
read [from Eqs. (5) and (6)]

2

&32

These functions are solutions of (7). The choice of the
constant in the P expression is justified in Appendix B.

We then expand F to fourth order in ao and yo, which
are the two order parameters of the transition. Indeed,
the nematic phase corresponds to uo=yo=0 whereas
aoWO, y0%0 describes fingers, the TIC corresponding to
aoAO, y0=0. One notes that ao=O and yo&0 lead to
k =0 [see Eq. (9) and Appendix A], corresponding to a
TIC. Furthermore, when k =0, n(a, P, O) and n(O, P, a)
are related to one other by a single rotation around the
north-south axis, whence F(a,P, O)=F(0, /3, a) and both
cases eo =0 and yo =0 represent the same TIC
configurations after minimizing in k. We note that the
free energy contains only even terms according to Eq. (9).
One then obtains to fourth order

F
=vcxo+vyo+B~o+Byo+ C~oyo .

K2q

The coeScients v, B, and C only depend on C and V and
on the material constants.

above which the nematic homeotropic state is unstable.
Thus, the curve V = Vo(C') represents the spinodal limit
of the nematic. In the vicinity of V = Vo(C ), a=aosinZ
and y=yosinZ with k —+0. This means that the finger
width diverges near the spinodal line which is also the
critical line when the phase transition is second order.
Experimentally, we have indeed observed that the wave-
length increases near this line when the transition is
second order (between 0.55d, and 0.7d, ).

5. Order of the transition and calculation
of the tricriticaI point

4. Symmetries and development of the free energy
as a function of the order parameters

Minimization of the free energy with respect to k gives

F
@

(I+H/2C) M+AV N
K,q

' J +'+ e 8 =
2

(12C —12C~K32+Ki2K32)
32CK'„(I +H/2C )with k =q J (9)

and

The order of the transition can be found from Eq. (11).
Since v=O on the spinodal line [ V= Vo(C )], it is deter-
mined by the fourth-order terms in (ao, yo). It is easy to
see that the transition is first order if B & 0 or C +2B & 0
and second order otherwise. More precisely, if B &0, the
nematic-to-TIC transition is first order, whereas the tran-
sition from nematic to fingers with homeotropic sides
(ao=yo) is first order if C+28 &0.

In addition, we have calculated the coe%cients v, B,
and C near the spinodal limit V= Vo(C ). We find from
(9)

64CK32( —3—Kiz+K3z) cos (m'C /K3z)C+28 =— + (12C —12C K32+K)2K32) .
m(1+K,2)(2C —3K32)2(2C+3K32) (28—K32) (2C+K32) 16CK32

(13)
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One can easily check that C (48 so that C+28 (0 when 8 (0. The transition is consequently first order if
C+28 (0 and second order otherwise. For C+28 =0, the transition order changes.

By taking the values of the elastic and electric constants given for the nematic mixture Roche 2860, namely
K,2=2.36 and K32=1.91 (see Table I), one finds a tricritical point for C =C =0.841. This value is slightly greater
than the experimental one ( C *=0.7).

6. Nature of the solution for a second ord-er phase transition and position of the triple point

In this section we assume that the transition is second order, i.e., C (C . The question is to find which of the solu-
tions, the TIC or the fingers, is more stable. We have looked for the minima of the free energy (11). These are given in
Table II.

By comparing the free energies, we see that the fingers solution is more stable if C &28, whereas the TIC is more
stable when C )28. The triple point is given by writing C =28. From (12) and (13), one calculates

648K 32 ( —3 —K i2 +K32 ) cos( m C /K3$ )
C —2B =— + (12C —12C K32+Ki2K32) .

~(1+Ki2)(2C' —3K32) (2C+3K32) (2C —K32) (2C+K32) 16CK32

(14)

We denote by C+ the solution to this equation. The
voltage value at the triple point is given by V = Vo(C+)
[Eq. (8)]. One can also verify that C+28 )0 at this
point, which ensures that the transition is second order,
as assumed a priori at the beginning of this calculation.

For the Roche product and from Table I, one calcu-
lates C+ =0.763, a value that is larger than the experi-
mental one. In conclusion, we have found theoretically
both a tricritical and a triple point in agreement with ob-
servations. We could show (but this is cumbersome) that
an expansion of a, p, y at the higher orders does not
change Eqs. (13) and (14) giving the triple and the tricriti-
cal points.

With reasonable values of elastic constants, one can fit
the spinodal line V = Vo( C ) and the tricritical point with
experimental results. As an example, for K&&=1.55 and
K32=1.88, the tricritical point is at C =0.687 and the
triple point at C =0.631.

B. Theoretical phase diagram

1. Construction

The director field chosen is the same as before [Eq. (2)].
In order to calculate numerically the energy of the vari-
ous solutions, we have chosen the angles a, p, and y as
follows:

a =aosinZ,

p = fpslnZ

'Tl

P —=0,
2

2C K32

(sin a+K3zcos a)(sin y+K32cos y)

This choice is not completely arbitrary. Indeed, a and y
vanish on the plates (Z =O, rr), and P respects the follow-
ing symmetries: a~—o, , y~ —y, a+-+a+ n m,

y~y+nm. In addition, after minimization with respect
to k, one must have F(a,P, O) =F(O,P, a). Consequently,
the function P(a, y ) that minimizes F must satisfy equali-
ty P(O, a) =P(a, O). Finally, the expression chosen for P
reduces to the exact solution of the second Euler equation
(6) in the case of the TIC as y =0.

We have then calculated the free energy F(ao, yo)
when the two order parameters vary from 0 to m. /2. We
recall once more that the two particular solutions ao 0
(with k =0) and ye=0 correspond to the TIC, whereas
any solution with aoyoAO describes a periodic pattern of
fingers.

The constants E &2, E32, and A =e, /4~ K2 have been
chosen in order to best fit the experimental data, more
precisely the tricritical point and the spinodal line of the
nematic phase [V= Vo( C )]. The values obtained in this

TABLE II. Different solutions found when the transition is second order. Note that k =0 when
a0=0 [see Eq. (9) and Appendix A] and that the two TIC's are the same.

0
++—v/28

jo

+&—v/28
0

Solution

Nematic

TIC

Free energy

—v /4B

+&—v/(C'+2@) +&—v/(C +2@) Fingers with
homeotropic sides

—v /(C+2B)
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TABLE III. Comparison of manufacturer data and theoretical values of the mixtures Roche 2860 and ZLI 2806.

A(V )

Nematic
mixture

Roche
2860

ZLI
2860

Fit

1.55

1.62

Manufacturer
data

2.37

Fit

1.88

2.26

Manufacturer
data

1.92

1.97

Fit

—0.149

—0.116

Manufacturer
data

—0.142

—0.138

2. Results

Let us consider, for example, the case C =0.8 (Fig. 7).
For this value, the phase transition is first order. Accord-
ing to the voltage value, one finds different solutions that
can be described as follows.

For 0 ~ V & V3 [11] only the homeotropic nematic
liquid crystal is stable.

For V3 & V & V2, another local-energy minimum ap-

0. 32 V, C = 0. 8, Spacing: 0. 01 1.05 V, C = 0. 8, Spacing: 0.01

0.71 V, C = 0. 8, Spacing: 0. 0025 1.12 V, C = 0. 8, Spacing: 0. 01

0. 84 V, C = 0. 8, Spacing: 0.005 1.4 V, C = 0. 8, Spacing: 0. 02

way have been reported in Table III where they are com-
pared with those given in Table I.

pears, which corresponds to metastable fingers. This
zone disappears when the transition is second order.

For V2 & V & Vo, the periodic fingers become more
stable than the nematic state, which is still a local
minimum.

For Vo & V& Voo, the nematic phase is unstable and
the fingers are stable.

For V) Voo, the TIC is stable.
These limits have a clear physical significance. Indeed,

the lines V= V3 [11] and V= Vo are, respectively, the
spinodal limits of the periodic fingers and of the nematic
phase. On the other hand, the line V= V2 is the critical
line where the fingers and the nematic phase have the
same energy. Finally, the fingers disappear above
V = Voo and are replaced by a TIC.

So far, we have assumed in our calculations that the
fingers form a periodic pattern (called sometimes finger-
print pattern). The experiment shows that isolated
fingers, rather than a periodic pattern, grow near the crit-
ical line V= V2. As in Ref. [6], one can distinguish
theoretically these two kinds of solutions. In particular,
it is possible to show that the width of isolated fingers be-
comes infinite for an intermediate voltage ranging be-
tween Vo and V2. Experimentally, and for some dynami-
cal reasons that are still unexplained, the periodic pattern
occurs when the width of an isolated finger equals rough-
ly 1.4 times the wavelength of the corresponding periodic
pattern. This criterion allows us to calculate the line
V= V).

In conclusion, we have all the tools necessary to calcu-
late a phase diagram [11](Fig. 5). Except for the line Voo
separating the TIC from the periodic pattern, there is
good agreement with experiment. The disagreement con-
cerning this line is perhaps due to inhomogeneities of the
electric field in the bulk which are important when the
distance to the spinodal line V = Vo is large.

VI. CQNCI. USIQN

FICx. 7. Isoenergy lines (in units of K2q) as a function of ao (x
axis) and yo (y axis) for various values of the voltage. ao and po
are in the range from 0 to m/2. The voltage (in volts), the frus-
tration ratio C, and the spacing (in units of E2q) between two
isoenergy lines are given in this order at the top of each graph.

We have shown that the phase diagram of a dielectri-
cally negative cholesteric liquid crystal sandwiched be-
tween two glass plates with homeotropic anchoring had a
Landau tricritical point and a triple point. By generaliz-
ing the model of Ref. [6] with two order parameters ao
and yo, we were able to explain the general properties of
this phase diagram and to calculate analytically the coor-
dinates in the (C, V) plane of these two special points.
One of the major advantages of this model is to permit a
rigorous calculation of the director trajectory on 5 for
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K32 = —3 —5K,2+ 2( 3+ 10K i2 +7K i2 )
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FIG. 8. Lines in parameter space of elasticity constants
separating regions of different nature. In region I the transition
is first order and the fingers are more stable than the TIC. In re-
gion II it is second order with fingers, whereas it is second order
with TIC in region III. For the significance of the different
lines, see text.

the TIC. In particular, we no longer assume that this tra-
jectory is a circle passing through the North Pole (as as-
sumed in Ref. [6]). On the contrary, we show that the
real curve has, in general, an angular discontinuity at the
North Pole that is characterized by the difference
p(n ) —p(0), which depends on the chirality of the liquid
crystal.

It is also possible to use this more rigorous model for
establishing the theoretical phase diagram of materials
with positive dielectric anisotropy at d )d, . One can
show that the results found in this way are not very
different from those found previously and that the phase
diagram is qualitatively unchanged.

One can also calculate analytically, at zero electric
field, the demarcation curves of regions in parameter
space (Ki2, Ksi) of elastic constants where the nematic-
cholesteric transition is Grst or second order. These re-
sults are summarized in Fig. 8. Three curves must be
considered: curve 1,

%32 =
—,'K)~+ 1;

curve 2,

K32 = —15—17Ki2+2(63+ 138Ki2+ 75K i2 )'

These express the conditions B =0, C +2B =0, and
C —28 =0, respectively.

Curve 1 has already been calculated in Ref. [9]. Below
this line the nematic-TIC transition is second order,
whereas it is first order above. On the other hand, curve
2 is the curve below which the nematic-Gnger transition is
second order and above which it is first order. This curve
was calculated numerically in Ref. [9] with an approxi-
mate model and was found to be slightly shifted with
respect to the exact result given here. Finally, curve 3 al-
lows us to compare the energy of the TIC and the fingers.
Below this curve, the TIC is more stable than the fingers,
whereas the contrary is true above. This result is strictly
valid only as the transition is second order, but we expect
it to be true also when the transition is first order (a nu-
merical calculation has confirmed this result). One can
thus divide the (Kiz, Ki2) plane into essentially three re-
gions. Below curve 3 (region III), the transition is second
order and the TIC is the most stable solution. One can
show that, in this region, the TIC occurs at C =K&z/2
and is represented near to the transition by a circle
tangent to the North Pole on S which is swept out at
constant velocity. Between curves 3 and 2 (region II), the
transition is second order but the fingers are now more
favorable energetically than the TIC. Finally, above
curve 2 (region I), the transition is first order with fingers.

In the future, it would be important to explain why
curve V = V00 is so different experimentally and theoreti-
cally. Two physical phenomena may play an important
role: the anchoring energy of the molecules on the sub-
strate that we assumed to be infinite in our calculations
and the local distortions of the electric field in the bulk of
the sample which must be important as one moves away
from the spinodal line V = Vp ~ One way to know wheth-
er distortions of the electric field are pertinent in explain-
ing this disagreement would be to use a material with a
very small dielectric anisotropy. Such an experiment is
currently in progress. Finally, we plan to study the dy-
namics of these patterns and in particular the TIC-finger
transformation beyond the spinodal line V = V0, by using
our two-order-parameter model.
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APPENDIX A: TERMS 9; APPEARING IN THE FREE ENERGY QF FINGERS

S,=sin y cos a,
22=sin ycos y+2 sin a —5 cos y sin a+3 cos y sin a,
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23=sin y —sin a+4sin acos y —3cos y sin a,
2~=sin psin asin y,
25=sin Psin a( —2+5cos y —3cos y),
26=sin Psin a(1 —4cos y+3cos y),
27= —,'[a (cos a+2 cos y —3 cos a cos y)+6ay sina cosa siny cosy+y (2 cos a+cos y —3cos a cos y)],
2 =a ( —,

' —
—,'cos a —

—,'cos y+ —,'cos y cos a+ —,'cos y ——', cos y cos a) —ay sina cosa siny cosy+ —,'y sin a,
2 =a ( —', —

—',cos a —
—,'cos y+ —,'cos y cos a —

—,'cos y+ —',cos y cos a) —2ay sina cosa siny cosy

+—,'y (sin a —cos y+3 cos y cos a),
=p ( —,'+ —,'cos a+ —,'cos a+ —,'cos y+ —,'cos y cos a ——", cos y cos a+ —,'cos y ——", cos y cos a+ —", cos a cos y),

S»=P ( ,'+ ,'—cos—a——',cos a+ —,'cos y —3 cos y cos a+ —",cos y cos a —
—',cos y+ —",cos y cos a ——", cos a cos"y),

2,2=2 cosPsina sin y,
J'i3 =P(1+cos a+cos y —3 cos a cos y ),
Si4= (a cosa sin y+ y sina siny cosy )sinp,

Si5=( —a cosa sin y cos y+y sina siny cosy)sinp,

S,s=asinpcosacos y sin y,
2,7=PsinacosP(1+cos a —6cos acos y —cos y+5cos y cos a),
S,s=psinacosp( —cos a —cos y+6cos acos y+cos y —5cos y cos a),
Si9=2—2cos a cos y —sin a sin y .

APPENDIX B: CALCULATION OF P(m. /2)
NEAR THE SPINGDAL LINE

~) H
2C

I+ H
28

The system of Eqs. (2) does not define entirely p, since
it is necessary to calculate the constant term b =P(m /2).

Equation (9) gives

thus

HI + =Ircos(b +y) .
2

F(a,P, y, b)=

2

[+f(a,p, y)) .

e

p I( p b)+ H(arP~y~b)
7

2

J(a,P, y, b)

For b =m /2, the symmetries of a, y, P,

a(m. —Z) =a(Z),
y(m —Z) =y(Z),
P(m. —Z) =P(Z),

For a second-order transition, a « 1 and p « 1 in the
vicinity of the transition, and J does not depend on b to
be second order in (a, y). Thus at lowest order, J does
not depend on b and F is proportional to (I +H/2C ) .

One can establish that

give I =0 and H=0. Therefore y=0 and I is minimal
for b =nm, n HZ. This explains our choice: b =0. The
direction of modulation of the TIC is therefore parallel to
the horizontal projection of the director n in the median
plane of the sample, i.e., in the Y direction.
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532 10 Pardubice, Czechoslovakia.

[1]M. Brehm, H. Finkelmann, and H. Stegemeyer, Ber. Bun-
senges. Phys. Chem. 78, 883 (1974).

[2] T. Harvey, Mol. Cryst. Liq. Cryst. 34, 224 (1978).
[3] M. J. Press and A. S. Arrott, J. Phys. (Paris) 37, 387

(1976).
[4] M. J. Press and A. S. Arrott, Mol. Cryst. Liq. Cryst. 37, 81

(1976).
[5] A. Stieb, J. Phys. (Paris) 41, 961 (1980).
[6] P. Ribiere and P. Oswald, J. Phys. (Paris) 51, 1703 (1990).
[7] S. Pirkl, Cryst. Res. Technol. 26, 371 (1991).



ELECTRIC-FIELD-INDUCED PHASE TRANSITIONS IN. . . 8209

[8] S. Pirkl, Cryst. Res. Technol. 26, Kl 1 1 (1991).
[9] F. Lequeux, P. Oswald, and J. Bechhoefer, Phys. Rev. A

40, 3974 (1989).
[10]F. Lequeux, J. Phys. (Paris) 49, 967 (1988).
[11]The spinodal limits for isolated fingers and periodic pat-

terns are not exactly identical. In the theoretical phase di-
agram, we consider the case of isolated fingers because the
fingers are separated from each other by homeotropic
strips as they disappear.










