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A generalization of the Landau —de Gennes phenomenological theory of smectic-3 liquid crystals is
described. The theory is based on a Landau-Ginzburg free energy that includes local and nonlocal parts.
The local part consists of the isotropic-Ising-model free energy and de Gennes's phenomenological free
energy of the nematic phase. The nonlocal part is derived from the form of two-body contributions to
the free energy in molecular density-functional theories, expanded in gradients of the number density
and orientational order parameter. A mean-6eld approximation to the theory is analyzed by both Lan-
dau expansion and by a full numerical solution, involving Fourier-series representations of the number
density and an orientational order parameter with an appropriately large number of Fourier coeKcients.
The main purpose of the analysis is to show that the smectic phase results from the instability of a uni-

form phase induced by the gradient terms in the free energy, particularly those that couple modulations
in the density and orientational order parameter.

PACS number(s): 61.30.By, 64.70.Md

I. INTRODUCTION

Although smectic liquid crystals have been extensively
studied [1], there is not yet a fully satisfactory under-
standing of these phases. Previous theoretical studies are
mainly of two types: molecular mean-field theories, fol-
lowing the works of MacMillan [2] and Kobayashi [3],
and phenomenological Landau —de Gennes (LdG) theories
[1,4]. A critique of the previous mean-field theories, and
a reformulation of these theories, has recently been given
by Mederos and Sullivan [5].

The Ldo theory is based on the following ideas. The
nematic phase breaks the continuous rotational symme-
try of the isotropic liquid phase in that the molecules
have an average orientation given by the director n. The
degree of orientational order in the direction n is usually
indicated by the order parameter il= (Pz(cosO) ), where
0 is the angle between the molecular axis and the director
n and ( ) denotes a statistical average. The structure of
the smectic-A phase consists of layers parallel to n with
thickness d of the order of the molecular length, so that
the continuous translational symmetry in the direction
parallel to n is broken. Assuming that the layer normal
is on average parallel to the z direction, there is a density
modulation p(r)=pa[1+Re[/(r)e'~']], where g(r) is the
complex smectic order parameter. Here q =2'/d, and
g(r) is assumed to vary spatially on a length scale larger
than d. The LdCx Helmholtz free-energy density, which
includes fluctuations of the director n and of g, is

+
l Vi —iq5n)gl

+ —,'[K, (V 5n) +K&(n.VX5n)

+K3(nXVX5n) ],

where 5n is the director fluctuation about the z direction.
This free energy includes a mean-field contribution in
even powers of the amplitude lgl. Odd powers of f do
not appear because a change in sign, g~ —g, corre-
sponds to a uniform translation of the smectic layers by
d/2. The other contributions in (1.1) depend on gra-
dients of n and g, accounting for the free energy associat-
ed with long-wavelength distortions in these variables
and consistent with rotational symmetry. Many studies
of this model have been carried out [6,7] aimed at deter-
mining the critical behavior at a continuous nematic-
smectic transition, although there is not yet a full con-
sensus on the theoretical predictions of the model.

There are several limitations associated with the LdG
model: (1) As remarked elsewhere [8], the coefficients
that appear in (1.1) are phenomenological and their rela-
tion to molecular properties is not revealed. (2) Only the
6rst Fourier coefficient in the density has been retained.
This limits the application of the theory to the region
near a second-order nematic-smectic phase transition. (3)
The layer spacing d =2m. /q is assumed to be constant (on
the order of a molecular length). A more complete
theory should treat d as a variational parameter. (4) Fi-
nally, and perhaps most importantly, the free energy (1.1)
is considered to involve independent Auctuations only in
the quantities g and n. Fluctuations in the orienta-. .'onal
order parameter il= (P2(cos 8) ) are assumed to be relat-
ed to those in the density in exactly the same way as in
the nonAuctuating state, and have been eliminated by
free-energy minimization [1,4]. Since, as we shall see, a
crucial role in driving the underlying "mean-field" transi-
tion is due to the coupling between g and p, one might
question the validity of this procedure.

In this paper we shall present a theory which over-
comes some of the difficulties noted above. In particular,
we shall derive a "Landau-Ginzburg" free energy for a
liquid crystal which contains coupled gradients in all the
relevant variables p, g, and n. This free energy is derived
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by reference to previous molecular density-functional
theories, although we believe its form to be of more gen-
eral validity. In this paper, we limit the analysis of the
free energy to a mean-field treatment. The main purposes
are to demonstrate (1) how the gradient terms in the free
energy lead to instability of a uniform phase with respect
to formation of a smectic phase and (2) that this instabili-
ty depends crucially on coupling between density and
orientational order parameters [9].

The theory is presented in Sec. IIA. Section IIB
discusses calculational details, in particular, on obtaining
numerically exact solutions of the theory in contrast with
the more common analyses using low-order Fourier
series. The application of a Landau expansion of the
smectic free energy is described in Sec. II C. Numerical
results are given in Sec. III, while Sec. IV contains a clos-
ing discussion.

instability of the uniform (isotropic or nematic) phase
with respect to formation of a modulated phase.

We shall proceed by dividing the Helmholtz free ener-
gy F into local and nonlocal parts

F=FI +FNI

The local free energy FI is in turn given by

FI =Fo,I. +F~,I. .

(2.3)

(2.4)

Here FoI and F~ I are isotropic and anisotropic local
free energies, respectively. This separation of the local
free energy into isotropic and anisotropic contributions is
consistent with approximate molecular density-functional
theories [10]. For simplicity, Fo r is modeled by the stan-
dard quartic-order Landau-Ginzburg free energy describ-
ing liquid-vapor phase separation in an isotropic fiuid,

II. THKC)RY

A. Free-energy functional

The form of the theory that we are seeking is motivat-
ed by the well-known Landau-Ginzburg free energy (or
"Hamiltonian") for a system characterized by a single or-
der parameter P(r),

F]o=f«[—,](V'P) +f1.($)],

Q= ~(3nn —I),
2

where

]1=(P2(cos9))= f dc@f (8)P2(cos8),

(2.2a)

(2.2b)

where 0 is the angle between the molecular axis and n,
and Pz is the second Legendre polynomial. We shall as-
sume throughout this paper that Q has the uniaxial form
(2.2), although strictly speaking this is true only if the
system is nonuniform in a single direction coinciding
with n.

What distinguishes the smectic phase from nematic
and isotropic phases is the existence of nonvanishing gra-
dients of p(r) and Q(r). Therefore we identify the local
free-energy density fI with that describing bulk nematic
and isotropic fluids, and which exhibits local (or possibly
global) minima appropriate to these phases. The nonlo-
cal gradient terms in the free energy should then be such
that under appropriate conditions, those terms led to an

where fI (P) is usually given by the local free-energy den-

sity of the uniform phase. In the case of a smectic phase,
the free energy should be functional of two fundamental
order parameters, the number density p(r), and the orien-
tational order parameter tensor,

Q= f den f(co)q= ,' f den f—(co)[3e(co)e(co)—I], (2.1)

where e(co) is a unit vector along the symmetry axis of
the molecule, I is the unit tensor, and f (co) is the normal-
ized distribution function of the molecular orientation,
the latter denoted by ~. A bulk nematic phase usually
has uniaxial symmetry with respect to the director n, in
which case Q becomes

FO I = f dr fo I = f dr —(T —T, )(p —p, )

(2.5)

where T and p are the temperature and density, respec-
tively, T, and p, are the liquid-vapor critical temperature
and density, and a and b are constants. The anisotropic
local free energy is modeled after de Genne's free energy
[1] for nematic liquid crystals

Fg r. = f« f„I.=f«p(&gg' —&g]1'+Cgrj'),
(2.6a)

where g is the nematic order parameter. Following de
Gennes, the temperature dependence of 8& and C& is
neglected, while usually A& is taken to vary linearly with
temperature. A slightly more general model is one in
which A& varies linearly with both temperature and den-
sity [10]

Ag Ao+ A&T A2P (2.6b)

where the one-particle probability density p(r, .co;) varies
with position r; and molecular orientation co;. The in-
teraction potential V(r]2, co„co@) depends on the separa-
tion vector r,2=re —r, and the orientations cu, and co2 of
the molecules.

Defining new coordinates r and R by

r=r, 2,
R= —,'(r, +r2),

and doing a Taylor-series expansion in powers of r we
get, to quartic order,

We now consider the nonlocal part of the free energy
in Eq. (2.3). We base our analysis of this part on the typi-
cal form of two-body contributions to the free energy
occurring in mean-field density-functional theories
[5,8, 10]:

FN] = ,' f dr]d—co]f dr2dco~(r]co]) V(r]2, co],672)p(rico~),

(2.7)
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FNL= ,' —fdco, dco2 fdRdr V(r, co„co2)[p(Rco, )p(Rco2) —
—,'Vp(R(oi)Vp(Rco2)+ —,', V p(Rcoi)V p(Rco2)], (2.8)

where V —=r.VR. In the above expansion, several integra-
tions by parts in R (neglecting surface contributions)
have been performed, and the symmetry V(r, co„co2)
= V(r, co2, co, ) has been assumed.

We write

F~,wL Fw, NL+F~, NL ~

(2) (4)

F(2)
ANL 1 dr/ dpdz

2 dz dz
dn
dz

(2.14)

(2.15a)
V(i' coi co2) = Vp(r )+ Vg (I' coi co2) (2.9)

where Vp(r) is an isotropic interaction energy which de-
pends only on the separation distance r =

~
r ~, and

Vz(r, coi, co2) is an anisotropic interaction which depends
on the molecular orientations co; as well as the separation
vector r. Consider 6rst the contribution of the isotropic
potential; upon substituting Vp(r) into (2.8), we obtain for
the isotropic nonlocal free energy

Fp NL= 2 fdRI Ap (R) +B [Vp(R)] +C[V p(R)]

(2.10a)

FATAL M(4)

2
dz

dz

(2.15b)

(2.16a)

(2.16b)

where g=gp. The elastic constants L „L2,M&, and M2
are given by

vr f—dr r [g2(r)+ —,",g3(r)+ ,', g4(r)], —

1.2= — f dr r g, (r),

where M, =—f "dr r [g2(r)+ —',gi(r)+ —,",g4(r)], (2.16c)

A = f dr Vp(r),

8 = —,' f dr r Vp(r)—,

C=—„',f dr r Vp(r),

(2.10b)

(2.10c)

(2.10(l)

and p(R) = f dco p(Rco) is the angle-averaged density.
The first term in Fo NL, involving Ap, can be absorbed
into Fp L [Eq. (2.5)] and the remainder gives the isotropic
nonlocal free energy. For a bulk smectic phase it is ap-
propriate to assume spatial variation along the z direction
only, in which case the free energy per unit area is given
by

Fo,NL
2 '2

,'fdz -a P +C
2 dz dz

(2.11)

where henceforth A denotes the cross-sectional area of
the system.

Consider now the anisotropic part of the interaction in
(2.9); following Ronis and co-workers [8] we model this as

V„(r,~„~z)=g i(r)rr:(qi+q2)+8 z(r)qi. q2

+g3(r)(rr:qi)(rr:q2)+g4(r)r qi q2 i

(2.12)

where r =r/r, and

q; =q(co; ) = —,'(3e;e; —I), (2.13)

where e, is the unit vector along the symmetry axis of
molecule i. The potential defined in Eq. (2.12) is the most
general anisotropic potential one can construct that is
linear in each q;, and is equivalent to an expansion up to
second-order spherical harmonics of both coi and co2 [11].

Substituting Vz into (2.8) and assuming spatial varia-
tion in the z direction only, we obtain for the anisotropic
nonlocal free energy

M~= f dr r g, (r) .
105 o

(2.16d)

The above derivation assumes a constant director n along
the z axis, and spatial variation of p and q only in this
direction. This is appropriate to a mean-field description
of the smectic phase. For treatment of fluctuations, one
would have to allow for arbitrary spatial variation of p, g,
and n. We shall not consider this extension in the present
work, but leave that as an important area for future
study.

The mean-field-type expression (2.7) on which the
preceding analysis was based is usually considered to be
valid only for long-range interaction potentials
V(r, 2, co„co@). This excludes, in particular, the contribu-
tions of short-range repulsive interactions. Generaliza-
tions of (2.7) which account for the latter effects can be
formulated in terms of the Ornstein-Zernike direct corre-
lation function [12]. The simplest modification of the
preceding results suggested by such analyses generalizes
the elastic constants 8, C, and L

&
to M2 to become func-

tions of the local density p [12(a)]. For simplicity, and
also because we find this to be of most relevance (see Secs.
III and IV), we shall apply this modification only to the
isotropic nonlocal free energy Fo Nz. To full quartic or-
der in the density gradient, and assuming spatial varia-
tion along the z direction only, this generalizes the earlier
expression (2.11) to [12(b)]

Fp NL
d

8 (p) dp + (C(p) d'p
dz

2 dz 2 dz2

G(p) dp
12 dz

(2.17)

Here B(p), C(p), and G(p) are functions of the density

p, and now contain both the eAects of isotropic attractive
interactions [as in (2.11)] and density-dependent repulsive
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e6'ects. We shall approximate these by the phenomeno-
logical expressions

B(p)=B.+B,p+B2p'.

C(p) =Co+ C,p+ C2p

(2.18a)

(2.18b)

B. Method of solution

where Bo to C2 are constants. For simplicity we shall set
G =Go thus neglecting any density dependence of this
coefficient in (2.17).

To summarize, the Helmholtz free energy is given by
Eqs. (2.3)—(2.8), (2.14), (2.15), (2.17), and (2.18), where
FNL =Fo NL +Fg NL The fact that FNL is expanded only
up to quartic gradient terms limits the applicability of the
theory, in principle, to long-wavelength modulations.

In these equations M is some appropriately large trunca-
tion index, q =2m/d where d is the smectic layer spacing,
po is the average number density, and qo is the mean
orientational order parameter. Using the definition

g =gp, it follows that

7)=7)o+ y 71 cos(mqz), (2.23c)

where each g can be expressed as a function of g ~ and

p ~ for I' ~ m.
For the uniform (isotropic and nematic) phases, with

constant density and order parameter, the total free ener-
gy per volume equals fo L +f~ L, where the latter free-
energy densities are given by Eqs. (2.20a) and (2.20b).
For the smectic phase, characterized by periodicity d, the
free energy per volume is evaluated from

(2.19)

where

fo I = (p —I)'+ —(p —1)(t —1), b
(2.20a)

By defining reduced temperature t = T/T„and choos-
ing appropriate units for density p, order parameter g,
and for the various material constants in the free energy
derived previously, the latter can be expressed as

= J dzlfo I.(z}+fw I (z)+fw, NL(z)+f w, NL(z)]

F 1f=— —dz f (z),
V d o

(2.24)

using the total free-energy density defined in (2.19) and
(2.20). Substituting (2.23) for p(z), i1(z), and r)(z), the in-
tegration in (2.24) can be done analytically. At fixed
mean density po and temperature t, the free energy f is
minimized with respect to q, go, g, and p using a
quasi-Newton method. We have used M as large as 10,
although for most purposes of interest it was found that
M=4 is sufticient. First-order phase coexistence boun-
daries have been calculated by equating the grand and
chemical potentials of the coexisting phases.

(a,t+ I —yp) g2 —2r]'+g4 (2.20b)
C. Landau expansion

T

B(p) dp C(p) d p + Go dp
2 dz 2 dz 12 dz

4

fA, NL
(2)

2
d'g dp

2 dZ dZ
de
dz

(2.20c}

(2.20d)

fA, NL
(4)

2 dz2 dz

'g

dz2
(2.20e)

p po

(2) the nematic phase with

p po~ '9='9o ~

(3) the smectic phase with

(2.21)

(2.22)

where g=gp, and B(p) and C(p) are given by (2.18),
with appropriate rescaled coe%cients Bo to C2.

The theory is analyzed by comparing the free energies
of the following phases.

(1) The isotropic (liquid and vapor) phases with
f f"=&opi+)'—opi+0 (pi» (2.25)

where f is the free energy per unit volume of the nemat-
ic phase. It has been shown in previous works [13,14] on
smectic liquid crystals that the coefficient ao depends
only on coupling between the leading-order Fourier com-
ponents p, and g, while yo depends additionally on cou-
pling to the second-order components p2 and g2 as well as
go

—go&. In particular, one finds

When the nematic-srnectic phase boundaries are either
second order or weakly first order, they can be deter-
mined approximately (or exactly when they are second
order) by a Landau analysis. This is based on expanding
the smectic free energy f (p„pp . .. i)o i)i g2

' ' ) at
fixed po, t, and period d =2ir/q about that of a nematic
phase characterized by a nonzero value go& of only the
mean orientational order parameter go. On eliminating,
by minimization of f, all order parameters pz, .. .,

go
—

qo&, g&, g2, . . . , in terms of the fundamental Fourier
component p„ the Landau expansion reduces to the ex-
pected form

p=po+ g p cos(mqz},

M
/=7)o+ y 7J cos(mqz)

m=1

(2.23a)

(2.23b)

o.'——' v
O 2 MPlP1

T/] g]

where

(2.26a)
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2 C 4
&(o)+ q + q

p~p~ pp

2 4
L&q MiqX" X"+ 2+ 2

2 4L2q M2q
XP)g) XPg +

2
+

(2.26b)

(2.26c)

(2.26d)

We note that g'„„' is necessarily positive for the existence
of a stable nematic phase. Inspection of (2.26e)—(2.26g)
then shows that y' ' & 0 and g' „&0. The function
[y' ' —(y'„') /y(„'] is~also required to be positive in order
that the nematic free energy be a concave function of
density pp. The occurrence of a minimum in ap(q) at
non-zero q then requires, in (2.27),

and

(()) ) fp, L fA, La' a'
xPP 2 g 2 g 2

=
—,'[(t —1)+3(p()—1) ]

Pn pv a)t+1+
po
2

(p) &

~ fALa'
90

6 90N +6g 0N (2.26e)

r

p (a) t + 1 —
happ)

6'90N +6'goN
po a

2
(p) i

~ fA, L
Spy

Pnpx a) t +1
6 loN+6'g oN

Po

(2.26f)

(2.26g)

B =Bo+Bipo+B2po

C =Co+Cipo+C2po .

(2.26h)

(2.26i)

(o) 2
(p)—ao 2 happ (o) +

Xnn

C M1 Xpn M2+ —+
4 4 &(o) 2'9'9

[L,—L, (X,(p„)/X(„p„))]'

(o)
8X„~

(o)
Xpq
X(0) 4

(o)
Xp'g

(o)
. Xnn .

q + 0 ~ ~

(o)
Xp 'g

(o)
. Xnq .

(2.27)

In the above expressions, goN is the equilibrium value of
the order parameter in the nematic phase, obtained as a
function of po and t by minimizing the local anisotropic
free energy f~t in (2.20b). The expression for yp is con-
siderably more complex and will not be shown here.

As is well known, (2.25) predicts that a second-order
nematic-smectic transition occurs when ao=0, provided
that yo&0 as well as all higher-order coem. cients being
positive. If yo&0, then the vanishing of ao describes a
supercooling spinodal line for the nematic phase, the true
(first-order) transition from nematic to smectic having oc-
curred at some higher temperature where ao is still posi-
tive. The simultaneous vanishing of ao and yo determines
the location of the tricritical point separating first-order
from second-order nematic-smectic transitions.

To try to obtain explicit insight, we consider a long-
wavelength (small q) expansion of ap, in this case (2.26a)
becomes

coefficient of q &0,
coefficient of q &0 .

(2.27a)

(2.27b)

III. RESULTS

We first summarize the results of the Landau expan-
sion for a second-order nematic-smectic transition. For
all results reported in the following, we use b =1 (this
gives a zero-temperature isotropic liquid-vapor coex-
istence at pp=O and 2), a =0.292 235 8, a, =0.4, P=0.01,
and y=0. 608311. We vary the phenomenological con-
stants associated with the nonlocal part of the free energy
fNi. In particular Bp,B„B2 alld Cp Ci C2 are used to
manipulate the shape of the second-order lines, which is
expected to be similar to that obtained by Mederos and
Sullivan [5]. Figure 1 shows the second-order line for
Bo 1, Bi 1.5, B2= —1.64, Co=0. 368, C, = —0.223,
C2 =0.25 L i =0.028 Mi =0 M2 =0 Go =0 and L2
varying from —0.15 to —0.08. The second-order line is
superimposed on the vapor-nematic-isotropic phase dia-

It is necessary that the elastic constant L i be positive for
the stability of the nernatic phase. This is established by
examining the stability of the nematic phase with respect
to inhomogeneity in the nematic director, which has been
examined in previous works [15]. For now, we shall also
assume that B,C &0. Under these conditions, the only
way to satisfy condition (2.27a) above is if the elastic con-
stant L2&0. Since L2 is the coefFicient of the term
(dp/dz)(dg/dz) in (2.20d), Lz (0 is consistent with the
hypothesis that it is the coupling between the modula-
tions in density and orientational order parameter that
drives srnectic formation.

Condition (2.27b) is favored by having positive values
of the elastic constants C Mi and M2 although the last
term involving L, and L2 could lead to a violation of that
condition. In this case, analysis based on a small-q ex-
pansion of ao breaks down.

The variables B and C, as given by (2.26h) and (2.26i),
are functions of po. In the above stability analysis we
have assumed that they are positive. In obtaining the
phase diagram, we shall use B and C to manipulate the
shape of the second-order nematic-smectic transition line.
This means that some of the constants Bo,B„B2,and
Co, Ci, C2 may have negative values. This raises the pos-
sibility for the existence of a plastic crystal phase which is
a one-dimensionally modulated phase with no orienta-
tional order (il =0).

Although the analysis in this section suggests the ap-
propriate signs for the phenornenological constants, it
does not give numerical values. An estimate of these
values can be made by considering specific microscopic
models [16].
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FIG. 7. Full temperature-density diagram at L2 = —0.08, in-
cluding the smectic(S) phase.

Lz= —0.08 the nematic-smectic phase boundary is en-
tirely second order, as is predicted by the Landau expan-
sion.

At L2= —0.08 there is a nematic-isotropic liquid-
vapor triple point at t =—', and a critical end point
(smectic-nematic-vapor) at r =0.305. At 1.2 = —0. 15
there are two triple points, smectic-isotropic liquid-vapor
at t =0.82, and smectic-nematic-isotropic at t = 1.35. As
far as we are aware, none of these phase transitions in-
volving vapor has been directly observed in experiments.
Experiments on liquid crystals are usually performed un-
der a fixed atmospheric pressure, although there are
several exceptions [17—19]. We know of only one in-
stance where a pressure-induced smectic-nematic-
isotropic triple point in a pure compound has been ob-
served [19],although this phenomenon should not be un-
common. Data given by Shashidar and Venkatesh [18]
suggest that such a triple point may occur in the cyano-
biphenal series nCB for n + 9.

We have not examined the stability of the smectic
phase with respect to three-dimensional crystallization.
We expect the solid phase to preempt much of the phase
domain in Figs. 6 and 7.

Another feature of interest is the behavior of the equi-
librium smectic period d =2m. /q, where q is the equilibri-
um smectic wave number. As expected, this is always a

2.0

decreasing function of the mean density po, as is shown in
Fig. 8. On the other hand, at fixed density the period de-
creases with increasing temperature, as is observed in
Fig. 9. This behavior was also found in Ref. [5]. Such a
tendency has indeed been observed experimentally [20]
and previously ascribed to increasing orientational disor-
der with increasing temperature.

We close this section by discussing the possibility for
the existence of a plastic crystal, i.e., a one-dimensionally
modulated phase with no orientational order. From Fig.
1 one can see that a nematic-smectic second-order line
with a sufficiently large slope will intersect the isotropic-
nematic transition line and hence lead to a plastic crystal
phase at high density. By analyzing the long-wavelength
expansion of the coefficient uo [Eq. (2.27)], we find that
this should occur if B2 —12C2) 0. Figure 10 shows the
second-order line for Bo= 1, B,= 1.5, B2= —1.45,
CO=0. 368 C& = 1 ~ 81 C2 =0.15 L& =0.04 and
Lz = —0. 16 superimposed on the nematic-isotropic phase
diagram. As can be seen, the second-order line will even-
tually intersect the nematic-isotropic coexistence curve
giving rise to a plastic crystal phase. In connection with
earlier remarks in this section, however, such a transition
is probably unstable relative to three-dimensional crystal
formation.
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IV. DISCUSSION
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vapor-isotropic-nematic phase diagram.

The results above fulfill the main objective of this pa-
per, namely to demonstrate that a properly formulated
Landau —de Gennes theory can self-consistently predict
the formation of the smectic phase. A key result of the
work is that stability of the smectic phase is primarily
determined by the elastic constant L, 2, as anticipated in
Sec. II C and demonstrated in Fig. 1. Recall that L2 is
the coefficient of the term (dp/dz)(dg/dz) in the nonlo-
cal free energy f~ Ni [see Eq. (2.20d)], and so the results
support our claim that the formation of a smectic phase
is due to coupling between gradients of the density and
orientational order parameters. In microscopic terms,
the constant 1.2 is related to the potential g, (r,z) [see
(2.12) and (2.16b) as well as the potential V3(r,z) in
Mederos and Sullivan [5]], which couples the relative
orientation of the molecular axes and the intermolecular
vector r, 2 and favors side-by-side alignment of parallel
rodlike molecules.

Our work also indicates that density-dependent isotro-
pic elastic constants 8(p) and C(p) in the nonlocal free
energy fo Ni, which are related to short-range repulsive

interactions, are necessary for the formation of a smectic
phase, although we have not presented extensive data on
this point. Basically, if 8 and C are kept constant, in-
dependent of density, it is found that the temperature
along the nematic-smectic phase boundary is always a de-
creasing function of the mean number density po, which
we consider to be unphysical behavior. This is mainly at-
tributed to the local isotropic free energy fo I, which is
an increasing function of density [see (2.20a)] and hence
tends to destabilize the smectic at high density. In gen-
eral, the results obtained here are qualitatively consistent
with those from the theory of Mederos and Sullivan [5],
on which the present theory was largely based.

The importance of coupling between density or transla-
tional and orientational order in smectic liquid crystals
was first pointed out by de Gennes [1,4]. Two aspects of
this coupling have usually been emphasized, namely (i)
determining the order of the nematic-smectic transition,
and (ii) specifying the layer direction in the smectic
phase. What has not previously been demonstrated, how-
ever, is how such coupling is necessary to drive smectic
formation in the first place, which has been the focus of
this work. Contributions relevant to aspect (i) above are
contained in the quartic Landau coefficient yo defined in
(2.25).

Aspect (ii) above is related to the elastic energy for dis-
tortion of the smectic layers introduced by de Gennes
[1,4]. A full analysis of this eff'ect in the present context
requires generalizing this work to the treatment of fluc-
tuation e6'ects. This, in turn, requires generalizing the
derivation of the gradient terms in the free energy to al-
low for arbitrary spatial variation of p(r), g(r), and the
director n(r). While an analysis of the resulting theory is
not expected to be easy, a feasible initial aiIn should be to
obtain a generalization of the Ldg free energy in Eq. (1.1)
exhibiting rotation-translation coupling eFects that are
possibly "hidden" in the latter expression. Conceivably,
this study could reveal new types of fluctuation terms
which are relevant to continuous nernatic-smectic phase
transitions.

The type of translational-orientational coupling dis-
cussed here has also been found essential for the oc-
currence of surface-induced ordering and of preferred
molecular orientations [21] at liquid-vapor and nematic-
isotropic interfaces of nernatic liquid crystals [10,22—24].
An important extension of this work is to the treatInent
of such interfacial phenomena when smectic phases are
involved. We note that previous studies [25,26] of smec-
tic ordering at liquid-vapor interfaces have modeled the
interface using an inpenetrable wall in place of the coex-
isting vapor. The present theory, in principle, allows for
the occurrence of a di6'use liquid-vapor interface charac-
terized by continuous variation in the density and orien-
tational order parameter.
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