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We have studied electrically driven convective flow in thin, freely suspended films of smectic- 4 liquid
crystal. Here we report measurements of the two-dimensional velocity field of this flow as the driving
voltage is varied. Our results are well described by the first few terms of an appropriate mode expansion
over a range of the experimental control parameter, from the onset of convection to the appearance of
unsteady flow substantially above onset. The behavior of the mode amplitudes near onset indicates that
the bifurcation to convection is forward. We also present measurements of the current through the film,
which show an enhanced charge transport due to convection, and measurements of the pattern wave-
length at and above onset. We argue that a reduction in the onset wavelength observed above a cutoff
frequency is related to the relaxation time of the charge distribution in the film.

PACS number(s): 47.65.+a, 61.30.—v

I. INTRODUCTION

Extended nonlinear dissipative systems exhibit progres-
sively more complex spatial and temporal patterns as
they are driven further and further out of equilibrium by
externally imposed stresses. Rayleigh-Bénard convection
is perhaps the best known example [1-4]; other well-
studied fluid-dynamical systems include Taylor-Couette
flow [1,5], and electroconvection in nematic liquid crys-
tals [6,7]. In these systems, the experimental boundary
conditions and the physical properties of the working
fluid are well known and well controlled, allowing close
contact with theoretical work. As the general three-
dimensional case is rather complex, it is interesting to
consider systems in which constraints due to boundary
conditions or symmetry considerations lead to simple
patterns. In previous publications [8—10], we have re-
ported on experimental studies of the onset of pattern-
forming flow in a new system—electroconvection in a
thin, freely suspended film of smectic liquid crystal. As
described elsewhere [10], the unique properties of the
smectic phase constrain the film to behave as an isotro-
pic, two-dimensional fluid. A simple two-dimensional,
steady-flow pattern occurs in the film when a large
enough electric field is applied in the plane of the film.
This pattern becomes unsteady at higher applied volt-
ages. In this paper, we present further results concerning
the onset of convection in this system, as well as measure-
ments of the convective velocity field in the steady-flow
regime.

Smectic liquid crystals are highly anisotropic materials
in which orientationally ordered long molecules arrange
themselves into layers [11,12]. Our experiments were
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performed on a smectic-4 material, in which the long
axis of the molecules is perpendicular to the plane of the
layers. In this phase, the liquid crystal behaves like an
isotropic liquid for flows in the layer plane, but like a
plastic crystal for flows perpendicular to the layers
[12-14]. Smectic liquid crystals very easily form stable,
freely suspended films, containing an integer number of
smectic layers [15]. Such a film, which is supported only
at its edges, can behave as a nearly ideal two-dimensional
liquid. A substantial body of work has explored the
structure and thermodynamics of smectic films [15-18],
particularly those of the smectic-C phase, in which the
molecules are tilted with respect to the layer normal.
While molecular alignment due to flow has been observed
in smectic-C films [19], our experiments are the first to
take full advantage of the two-dimensional nature of
smectic films for the study of hydrodynamic stability.
The hydrodynamic flow we observe in our smectic-4
films does not involve molecular reorientation and need
not cause changes in the film thickness [9,10].

The behavior of smectic films may be contrasted with
that of soap films, on which a number of hydrodynamic
experiments have been performed [20-23]. A soap film is
essentially a water film stabilized by monolayers of soap
molecules on its free surfaces. The behavior of a flowing
soap film is rather complex [22] due to internal motions,
thickness changes, and variations in surface tension.
Soap films are also somewhat difficult to handle experi-
mentally because they drain rather rapidly and lose water
by evaporation. Smectic liquid crystals, on the other
hand, are nearly pure materials with no significant vapor
pressure. Smectic films can flow without deformation of
the free surfaces and hence without changes in surface
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tension. Internal flows which would cross smectic layers
are strongly suppressed by the structure of the film.
Smectic films are therefore much closer to ideal two-
dimensional incompressible fluids than soap films, and
their dynamical behavior should therefore be of some in-
terest.

Our experimental apparatus has been described else-
where [9,10]. Briefly, it consisted of a rectangular
smectic-A film suspended between two 15-um electrode
wires and two thin glass wipers used to draw the film, as
shown in Fig. 1. The long edges of the film were support-
ed by, and in contact with, the electrodes, while the
wipers supported the ends. The length L and width d of
the film were adjustable; in most of our experiments,
L ~20mm and d =2 mm. We have also observed similar
convective flow in annular films suspended between elec-
trodes in the form of concentric circular knife edges [10].

The  material wused in this work  was
4,4' —n —octylcyanobipheyl (8CB) doped with 7.5£0.2
mM /1 tetracyanoquinodimethane (TCNQ) to control the
nature of ionic species present in the liquid crystal
[10,24]. The films in which convection was studied had a
uniform thickness of between 20 and a few hundred
smectic layers, where the layers have a thickness of 3.16
nm [25]. Since these films are on the order of one wave-
length of visible light thick, they show brilliant interfer-
ence colors when observed under reflected white light. A
change in film thickness of a single layer is observable by
eye as a change in the film color; thus the uniformity of
the film thickness can be determined to within a single
layer from the uniformity of the film color. If some care
is taken to avoid excess liquid crystal on the electrodes
and wipers at the edges of the film, an initially uniform
film can be driven into very rapid convection without
thickness change. This is a unique feature of the smectic
phase, in which the layer structure constrains the flow to
remain in the plane of the layers. The film thickness s
was determined with single-layer resolution from mea-
surements of the reflectivity of the film at six wavelengths
of an argon ion laser [10,26,27]. Flow visualization was
accomplished by dusting the film with fine powder and il-
luminating it with the laser; the motion of the flow visual-
ization particles was observed with a low-power micro-
scope [10].

In our previous work [9,10] we discussed some charac-
teristics of this system close to the onset of convection,
which we briefly summarize here. Below a critical volt-
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FIG. 1. A schematic view of the film holder, showing the
coordinate axes, the length L and width d of the film and the
wavelength A of the vortex pattern.
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age V,, there is no flow. At V, steady convective flow be-
gins; within the resolution of our visual determination of
V, the onset is nonhysteretic. The flow pattern consists
of a series of vortices of alternating vorticity; the wave-
length of the pattern in the x direction (see Fig. 1) is
equal to (1.30+£0.05)d. At a higher voltage, on the order
of SV,, a transition to unsteady flow occurs. With a dc
applied field, the wavelength of the pattern is indepen-
dent of voltage up to this transition.

With an ac applied voltage the flow periodically rev-
erses direction at the applied frequency. The peak veloci-
ty of the reversing flow increases as the voltage is in-
creased above onset. The critical voltage increases with
both frequency and the film thickness s. ¥, also increases
with, but is not proportional to, d, as shown in Fig. 2.
The wavelength of the pattern at onset retains its dc
value up to a frequency w’, above which the wavelength
decreases continuously until at frequencies o >>w’ the
pattern at onset consists of two lines of small vortices lo-
calized along the two electrodes. This change in the pat-
tern appears to be a consequence of the finite relaxation
time of the charge distribution, as discussed below. As
the voltage is increased above onset at frequencies above
', the pattern wavelength gradually increases to its dc
value [10].

The remainder of this paper is organized as follows. In
Sec. II we write down and discuss the electrohydro-
dynamic equations relevant to this system. A stability
analysis of these equations is beyond the scope of this pa-
per; our purpose in Sec. II is to make clear the mecha-
nisms of charge creation in the film and to suggest direc-
tions for future theoretical work. In Sec. III we present
our experimental results, beginning with measurements
of the current-voltage characteristics of the films. These
data provide information about the degree to which the
film can be described as an Ohmic conductor. The de-
crease of the pattern wavelength with frequency is exam-
ined next, and explained qualitatively as a consequence of
exceeding the relation frequency of the charge distribu-
tion in the film. Finally, we present measurements of the
complete flow velocity field as a function of applied volt-
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FIG. 2. The critical voltage at dc as a function of film width
for a film of thickness 10712 layers.
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age. The modal structure of the flow field is obtained by
a fit to an expansion in terms of eigenfunctions relevant
to our geometry and boundary conditions. The voltage
dependence of the amplitudes of the various modes has
the form expected for a forward bifurcation when the di-
mensionless stress parameter is chosen to be quadratic in
the applied voltage. Section IV is a brief discussion of
our results and future prospects for study of this system.

II. EQUATIONS OF MOTION

In this section we write down the electrohydrodynami-
cal equations pertaining to this system. Similar systems
of equations have been derived for a variety of electro-
convecting systems [28-34], and in some special cases
linear and nonlinear stability analyses have been carried
out. In this section we attempt a very general discussion
intended to clarify the mechanism of the convection and
to serve as a basis for discussion of our observations. A
complete stability analysis should be possible for our sys-
tem, but for the present we content ourselves with some
suggestions as to how one might proceed.

The body force responsible for the fluid motion in our
films is due to an electric field acting on regions of
nonzero space-charge density, which arise due to spatial
separation of ions dissolved in the liquid crystal [12].
Charge may be transported by a combination of migra-
tion, diffusion, and convection. The mobility and
diffusion coefficient of liquid crystals are anisotropic in
general, and in certain nematics these anisotropies are re-
sponsible for the creation of space charge, and hence con-
vection [6,7,11,12]. Our observation that the alignment
of the smectic molecules does not change under convec-
tion indicates that this process cannot be relevant to our
case. We therefore treat the mobility and diffusion
coefficient as scalars. Typical values of these properties,
which we use in our discussion, are [35] u~ 107 19m?/Vs
and D ~ 10712 m? /s, respectively.

The source of ions in the bulk liquid crystal, in the ab-
sence of fields, is the electrochemical dissociation of im-
purities or dopants. This is described in the simplest case
by the equilibrium reaction.

kd

AB=AT'+B 7!, (1
where k; and k, are the rate constants for dissociation
and recombination, respectively. In our doped material,
A and B are almost certainly the 8CB itself and the
TCNQ dopant; AB is the charge-transfer complex
8CB:TCNQ. However, we have also observed convection
in undoped samples of commercial 8CB, in which the
ionic species are unknown.

Denoting the number density of the undissociated
species AB by c, the number densities of the ions by 7
and n_, their mobilities by p, and p_, and their
diffusion constants by D and D _, the continuity equa-
tions for the number densities are

on
V(xniu,E—D Vn, +niv)+—§=kdc—k,n+n_ ,

()
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where v is the fluid velocity and E is the electric field.
The terms in parentheses are the ion fluxes due to migra-
tion, diffusion, and convection, respectively. The
different signs of the migration term reflects the fact that
the two signs of charge migrate in opposite directions.
The terms on the right-hand side of Eq. (2) are source
terms due to the chemical reaction, Eq. (1). The space-
charge density g and electric current density J are given
by

g=eln,—n_) 3)

and
J=e(n,p,+n_pu )E—e(D,Vn,—D_Vn_)+gv,
(4)

where e is the magnitude of the electronic charge, so that
the continuity equation for charge,

V.J_f__ag_:o , (5)
ot

is obeyed. Note that migration contributes to J even in
regions where the space-charge density g is zero, whereas
convection contributes only where g is nonzero.

Due to the presence of charges in the film the electric
field E which appears above is not simply the applied
field. E is the self-consistent solution of the above equa-
tions and the equations of electrostatics,

V-eE=g¢q (6)
and
VXE=0. (7)

Here € is the dielectric permittivity, which for simplicity
we treat as a scalar equal to €, its component perpendic-
ular to the layer normal. Introducing the electric poten-
tial ¢ through E=—V¢, Eq. (6) becomes the Poisson
equation,

Vip=—q /€ . (8)

The flow velocity v=(u,v,0), where we assume no flow
in the direction perpendicular to the film plane, is
governed by the Navier-Stokes equations

Y vV

ot =—VP+yV?v+qE, )

p

where p is the mass density and P is the pressure. In gen-
eral the viscosity is anisotropic but the layer structure of
the smectic and the thinness of the film restrict the flow
so that the viscosity 1 is essentially equal to 75, the
viscosity component related to shears within the layer
planes. In 8CB, 1;~0.1 kg/ms [14,36] and p=1.0X 10
kg/m? [37]. The incompressibility of the flow gives

V-v=0. (10)

We now consider the appropriate boundary conditions
on the dynamical variables v, n, and ¢. At the elec-
trodes, rigid boundary conditions apply and v=0. Equa-
tion (10) leads to an additional boundary condition on the
derivatives of v, i.e., Ou /0x =dv /dy =0 at the electrodes.
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The free surfaces have free-slip boundary conditions,
k-v= 0, where k is the unit normal to the surface. Since
the experiments indicate that the position of the free sur-
face is unaffected by the flow, we can neglect any
surface-tension effects.

If we assume an infinitely long film, no boundary con-
ditions are needed for the ends. The ion densities n are
zero in the empty space outside the film, but the fields are
not; this aspect of the system prevents it from being treat-
ed as completely two dimensional. The film suspended
between the wire electrodes constitutes a capacitor partly
filled with dielectric, with discontinuities in the permit-
tivity € at the free surfaces of the film, so the fields there
are subject to the matching conditions

k-(eE;—¢€E,),=0 (11)
and
kx(E,—E,),=0, (12)

where €, is the permittivity of free space, and E; and E,
are the fields inside and outside the film, respectively.
The subscript f denotes values at the free surfaces of the
film.

Denoting the applied voltage by ¢, the boundary con-
ditions on ¢ at the anode (a) and cathode (c) are

$a=Tdo/2,
$e=—90/2,

while at the free surfaces the flux of each ion across the
surface is zero. These fluxes are given by the quantities in
parentheses in the continuity equation, Eq. (2). Thus

k-(tnip B, —D Vn,+nyv),=0 (14)

(13a)
(13b)

at the free surfaces. The convection term k-v is zero be-
cause of the boundary conditions on v. The resulting
conditions on n . at the free surfaces,

tnok(usE),=k-(DyVny), , (15)

describe the formation of charged diffusion layers near
the free surfaces having a characteristic thickness
equal to the Debye screening length
Ap=[eD/(n pu,+n_p_)]'"% These layers play an im-
portant role in producing the convection we are studying,
since they are regions of nonzero space charge; it is on
these regions that the electric field acts to drive the flow
through the body force term in Eq. (9). For our films, Ap
can be of order the film thickness, so these charged layers
may extend a considerable way into the film.

Space-charge layers can also be produced at the elec-
trodes. The boundary conditions on n, at the electrodes
may involve the creation or destruction of ions due to
electrochemical reactions which can be important at dc
or very low frequency [12,24,38]. The flux of ions of each
type entering or emerging from each electrode is given by
an expression similar to Eq. (14), but with k the unit nor-
mal to the electrode and with a flux which may be
nonzero:

k-(tnip,B—D, Vni+nyv), . =FZ, (16)
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at the electrodes. Again, the convection term is zero due
to the boundary conditions on v. The fluxes F,fc are in
principle calculable from a knowledge of the electro-
chemical reactions in the system. The diffusion term in
Eq. (16) allows for the variation of n, inside diffusion
layers on the electrodes; the thickness of these layers is
also of order A, provided that the electrochemical reac-
tions do not violate electroneutrality.

Diffusion across the width of the film takes place over
time scales of order 7, =d?/D ~10°%s for d =1 mm. This
is much longer than the duration of any of the experi-
ments, and so diffusion on the scale of d can be neglected.
Diffusion over smaller distances, of order s or Ap, is,
however, important, since it leads to the formation of the
diffusion layers at the free surfaces and the electrodes,
and it is these regions of charge separation that interact
with the field to cause the convection. If diffusion is
neglected in Eq. (16) [30,39], the boundary conditions on
the fluxes are equivalent to simply specifying the values
of n, and n _ on each electrode.

The boundary conditions on ¢ and n, at the elec-
trodes independently specify the voltage across and the
current through the film. The relation between the two,
which is non-Ohmic in general, depends on the details of
the electrochemistry. The simplest case, which occurs at
low voltages, is that in which the electrochemical pro-
cesses do not greatly affect the diffusion layers on the
electrodes. In this case electroneutrality is not
significantly violated and the interface behaves like an
Ohmic contact. At higher voltages, the current is limited
by the rate of diffusion of carriers through the layers, and
saturation occurs. At still higher voltages, the electrical
neutrality of the bulk liquid is violated and the electrode
can act as an injector of charge [38,40]. In all of these
cases, detailed analysis of the electrochemistry can be
avoided by treating the fluxes at each electrode as in-
dependent parameters [30].

In summary, the equations describing our system are
the continuity equations for the number densities n [Eq.
(2)], the Poisson equation [Eq. (8)], the Navier-Stokes
equations [Eq. (9)], and the incompressibility condition
[Eq. (10)], along with the appropriate boundary condi-
tions on ny, ¢ and v at the electrodes and the free sur-
faces.

Solution of these equations is unfortunately rather
difficult. The equations simplify somewhat in the limit of
fast chemical reactions and small charge separations, as
discussed in Appendix A. In this limit the film can be
treated as a uniform conductor of conductivity
o=e(p,n, +pu_n_), and the equation of charge con-
tinuity becomes

%+V-(aE+qv—DVq)=0 , (17)
where we have set D . =D _ =D for simplicity.

The hydrodynamic part of the problem, Egs. (9) and
(10), could be simplified by treating the film as a two-
dimensional liquid. The body force term in the Navier-
Stokes equations would then involve a three-dimensional
electric field acting on a two-dimensional charge distribu-
tion, so the electromagnetic part of the problem remains
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three dimensional. Nonetheless a solution of this system
of equations should be possible. We do not attempt one
here, but use the equations as an aid to understanding the
behavior of the convecting films.

III. RESULTS

A. Current-voltage characteristics of the films

When convection is present in a film, charge transport
is assisted by flow, and the effective resistance of the film
decreases. The onset of convection is thus marked by a
change in slope on a plot of the current through the film
as a function of the applied voltage. In addition,
current-voltage measurements can be used to extract in-
formation about the total charge and degree of charge
separation in the film. These properties affect the extent
to which the film can be modeled as a uniform conductor.

The currents involved are very small, on the order of
10-100 pA; to measure them we used a current-to-
voltage converter based on the AD549 electrometer
operational amplifier with a Victoreen 102 G feedback
resistor. Guard electrodes and shielded triaxial cables
were used to minimize leakage currents.

Figure 3(a) is a plot of current versus applied voltage
for a typical film. This plot was made by applying a very
low frequency (~4 mHz) sine wave voltage to the film,
and waiting several periods for the initial transients to die
away. The small hysteresis loop evident in the figure is
due to the capacitance of the film and stray capacitances
in the electrometer which make the current slightly out
of phase with the applied voltage.

Below the onset of convection the film behaves ohmi-
cally. The increased charge transport due to convection
appears in Fig. 3(a) as an abrupt increase in the slope.
Figure 3(b) shows the same data with a linear fit to the
data for ¥ <V, subtracted. The kinks signaling the onset
of flow occur at the same point for increasing and de-
creasing voltages, indicating that the bifurcation is for-
ward and confirming the visual observations reported
previously [8—-10]. Above ¥V, the convection current car-
ried by the film is roughly linear in V' —V_.

Determining ¥, from the current-voltage curves is po-
tentially more accurate than the visual method described
in detail in Ref. [10], for frequencies close to dc. Howev-
er, this method is not useful for frequencies above about
100 mHz, where the capacitive effects which cause the
hysteresis in Fig. 3(a) make the kink in the current-
voltage relation at the critical voltage difficult to locate.

While precautions were taken to exclude leakage
currents through cable insulation, etc., it was not possible
to eliminate currents through the excess liquid crystal
which wets the film holder around the edges of the film.
This wetting layer usually contains more material than
the film itself. The current through this layer can be es-
timated by measuring the conductance of films of
different lengths but the same width and thickness, in the
Ohmic regime below the onset of convection. The prop-
erties of the smectic films make it possible to increase the
film length without thickness change by slowly moving
the wipers to draw material out of the wetting layer. Pro-
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FIG. 3. (a) The IV curve of a typical film. The small hys-
teresis loop is due to capacitive effects. (b) The same data with a
linear fit to the data with ¥ < ¥, subtracted, so that only the ex-
tra current due to convection remains. The transition to con-
vection occurs at the same voltage for increasing and decreasing
voltages. (c) The conductance of a film with a constant thick-
ness of 12242 layers and width 2.1+0.1 mm, as a function of its
length L. The nonzero intercept is a measure of the current
flowing around the edges of the film.
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vided this process does not significantly reduce the
volume of the wetting layer, the leak path can be modeled
as an L-independent conductance G, in parallel with the
conductance of the film. The film itself may be modeled
as a slab with effective conductivity o .4 and conductance
Gy =0 Ls /d, so that the total conductance

O S
d

G =G+ L (18)

is linear in L. Figure 3(c) shows the conductance deter-
mined from the slopes of current-voltage curves below
the onset of convection, as a function of L, for a film of
12242 layers thickness. The intercept at L =0 indicates
that for this particular film, about half of the total
current when L =20 mm was due to leakage around the
ends of the film.

Below the onset of convection the film behaves Ohmi-
cally. The slope of the line in Fig. 3(c) gives an effective
conductivity 0.4=(6.6+0.3)X107% Q7 'm~!. This
effective conductivity is an average over the entire film.
The local conductivity

oc=e(u,n,+u_n_) (19)

may vary with position due to the rearrangement of
charge by the applied field, electrode reactions, or, for
V> V,, convection. We argue in Appendix A, however,
that o./0=1 to a very good approximation in our ex-
periments.

From the measured value of 0.5 we can calculate the
screening length Ap; we find A =30 nm, or approximate-
ly ten smectic layers. We observed convection in films
with 2Ss/Ap $15. Thus although the film is a conduc-
tor, it is not electrically neutral over a substantial frac-
tion of its thickness due to the screening layers at the
nearby free surfaces.

Any additional charge due to injection at the elec-
trodes would be superimposed on that due to the charged
diffusion layers. The Ohmic behavior of the film below
V. shows no sign of the saturation expected if the current
were diffusion limited. One cannot conclude from this
alone, however, that injection is not present at dc [38]. In
more weakly doped and undoped samples, the current-
voltage curves, which were for those samples rather ir-
reproducible, do show significant nonlinearity [8] which
may be due to injection effects. However, our previous
results with ac fields and blocked electrodes [9,10] sug-
gest that, at least for those cases, injection is not neces-
sary for convection to occur, the charged diffusion layers
alone are sufficient to drive convection.

B. Pattern wavelength

The dependence of the pattern wavelength at onset on
the frequency of the applied field was discussed briefly in
Ref. [10] and above. The frequency o' at which the pat-
tern wavelength starts to decrease depends on both the
width and thickness of the film, as illustrated in Fig. 4,
which shows the reduced wavelength A/d at onset as a
function of frequency for several films of fixed width and
a range of thicknesses. This behavior can be interpreted
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FIG. 4. The reduced wavelength A/d vs frequency for films
of width 2.20 mm and three different thicknesses: B, 68 layers;
0O, 102 layers; A, 143 layers.

as a consequence of the finite relaxation time of the
space-charge distribution in the film.

The relaxation time of a region of space charge in a
three-dimensional conductor is 73=¢€/0, which for our
material is on the order of 1073 s. However, our film can
only be treated as a bulk liquid on length scales <s, while
the convection involves charge separations on the scale of
d >>s; on this length scale the film may be treated as a
two-dimensional conducting sheet with a surface conduc-
tivity proportional to s. A charge distribution of charac-
teristic size 8 in such a sheet relaxes with a characteristic
time [17,41]

€d

To(8)= ) (20)
SO

which is a factor of 10? to 10° times slower than 73, and is
therefore comparable to the period of the applied field
used in our experiments. If the frequency w of the ap-
plied field is such that w7,(8)>>1, there will be
insufficient time for the charge distribution to develop
structure with a length scale of order 8. In particular, a
pattern with wavelength A will be accompanied by a
charge distribution with scale §~A~d. It follows that
below a cutoff frequency

o'=71;d)=(m0/€y)s /d , (1)

the pattern can develop as it does at dc, with A=1.3d.
We show in Fig. 5 a plot of @’ vs s/d; the predicted pro-
portionality is confirmed within the experimental scatter.

For w R ', the oscillating charge distribution at onset
can only sustain patterns with wavelength A< A(w),
where

’

Mo) o
d o

Above o' the wavelength deceases more rapidly than pre-
dicted by the simple argument leading to Eq. (22). A
more detailed theoretical analysis of the system is re-
quired to explain the details of the wavelength selection
processes taking place in this parameter range.

(22)
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20 and
l v(x,y)=3 B;;C;(y)cos[(2j —1)p(x —x,)] . (25)
16 T hj
7 where M;(y) and the Chandrasekhar function [42] C;(y)
= 12 . are defined in Appendix B. p=2mwA/d is the pattern
'_g | wave number in the x direction, B,-j are the mode ampli-
"3 | tudes, and x, is an arbitrary origin. These expansions are
8 derived in Appendix B. A standard Levenberg-
7 Marquardt nonlinear minimization method [43] was used
4 . to minimize y?. Each fit involved about 400 measured ve-
| locity components at scattered locations; that is, the data
were not interpolated onto a grid before fitting.
O I Il 1 1 1

0 20 40 60 80 100 120

s/d {layers/mm)
FIG. 5. The cutoff frequency o’ at which the pattern wave-
length starts to decrease, as a function of the ratio of film thick-
ness to width. The line is a fit to the plotted data.

C. The velocity field

The two-dimensional nature of the velocity field makes
it particularly suited to quantitative flow visualization.
In this section we present measurements of the velocity
field for a film at dc, for voltages between ¥, and the on-
set of unsteady flow. We measured both x and y com-
ponents of the velocity over the whole width of the film
for a three-vortex-long section near the midpoint. From
these data it is possible to determine the harmonic con-
tent of the flow pattern and to study the growth of the
harmonic components as the voltage is increased above
onset.

The velocities were obtained from analysis of time-
exposed photographs of the flowing films with the flow
visualization particles illuminated by a laser beam
chopped at a known frequency. A typical such photo-
graph is shown in Fig. 6(a). The positions of the end
points of the streaks were digitized, and several adjacent
streaks were used to find each velocity vector and an esti-
mate of its uncertainty. Figure 6(b) is a vector plot of the
velocity data obtained in this way from the photograph in
Fig. 6(a).

The x and y components of the velocity field were fitted
to the first few terms of an expansion in a set of orthogo-
nal functions consistent with the rigid boundary condi-
tions on the flow at the electrodes, the symmetry of the
vortex pattern, and the incompressibility condition, Eq.
(10). Both x and y components of v were simultaneously
fitted by minimizing the quantity

XZZZ[

n

2

un——u(x,,,y,,) vn_v(xnayn)

Uu"

o

Up

(23)

where u,to, and v,*o, are the measured velocity
components at position (x,,y,). u(x,y) and v(x,y) are
given by the expansions

sin[(2j —1)p(x —x;)

ulx,y)= > B;M(y) — (24)
Iy 4 (2j—1)p

Just above ¥V, the pattern is very well described by a
single mode, that is, only B, is significantly different
from zero. As the voltage is increased, higher modes be-
come significant; just below the appearance of unsteady
flow a satisfactory fit requires two modes in the y direc-
tion and three in the x direction, i.e., B,ﬁﬁO for i=1,2
and j=1,2,3.

Figures 7(a)-7(c) and 8(a)-8(c) show fits to com-
ponents of the velocity just above ¥, and just below the
appearance of unsteady flow, respectively. Since the ve-
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0.8
(b) «— 10mm/s
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0872 ‘ 0 ' 1.2
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FIG. 6. (a) A streak photograph of the convection pattern
close to the onset of unsteady flow. (b) The vector velocity data
extracted from (a).
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FIG. 7. The fit to the measured velocity field just above the
onset of convection using the expansions (24) and (25). Since
the fit is two-dimensional, the data from a narrow strip are com-
pared to the fit along the midline of the strip. (a) v vs x /d along
the line y=0. (b) v vs y /d on the boundary between two vor-
tices. (c) u vs y/d on a line cutting through the center of a vor-
tex. In each case the flow is well described by the lowest mode
of the expansions.
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FIG. 8. The fit to the measured velocity field just below the
onset of unsteady flow. (a)—(c) show the fit and data along the
same lines as in Fig. 7. The presence of higher modes in the
flow pattern is evident; the flow tends to become concentrated
around the peripheries of the vortices.
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locity data are obtained from the photographs at scat-
tered (x,y) points, we have shown the fit along certain
lines of symmetry of the flow pattern, together with data
falling within a narrow strip around the lines. We em-
phasize that the fits were to both components of the com-
plete two-dimensional velocity field simultaneously. The
figures show only one line of the fit and a small fraction
of the data used to obtain the full fit. The presence of
higher modes well above onset is evident from Fig. 8.

The variation of the fitted mode amplitudes with the
applied voltage is shown in Figs. 9(a) and 9(b). Figure
9(a) shows the behavior of the amplitudes B,;, and the
B,; are shown in Fig. 9(b). The data indicate that the
flow velocity grows smoothly from zero at the onset of
convection. Figure 10 shows the data for the B; plot-
ted against the dimensionless stress parameter
e=(V/V,)>—1.

In analogy with the analysis of velocity fields measured
for Rayleigh-Bénard convection [44] and Taylor vortex
flow [45,46], we expect the amplitudes B;; to behave
close to the bifurcation as &//?, where € is an appropriate
dimensionless stress parameter. Here we take €=e.

2.5 T T T T T D
L] B” (O) /‘/
20  * Bi2 //‘ 4
- * Bz y
~ .
E 15 | o .
e 7
7
S A
210 r ' T
g el =
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» e
// ’A_,rk’*/ ___,,_.”‘"0”
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voltage (V)
0'3 T (b)l T T T
| =Bz [
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R K T —
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FIG. 9. The amplitudes B;; as a function of applied voltage.
(a) By;. The dashed lines are fits to Eq. (26) discussed in the
text. (b) The higher-order amplitudes B,;.
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FIG. 10. The amplitudes B, B,,, and B3 vs the dimension-
less stress parameter €=(V /V,)>—1. The dashed lines are the
same fits shown in Fig. 9(a).

Since our data cover a fairly large range of € above the bi-
furcation, higher-order corrections to this behavior are
also expected to be significant [45,46]. We therefore
fitted our data for By; to the functions

Bi;=a;e/*(1+bje) , (26)

with a;,b; (j=1,2,3) and ¥V, free parameters. Prelimi-
nary fits to all three sets of amplitude data indicated that
b3, and any higher-order terms, were statistically
insignificant. Fixing b, to zero and performing a weight-
ed fit with the remaining six parameters free gives

B,;=(0.576+0.016)€e!?[14(0.012+0.001)e] , (27)
B,,=(0.042+0.004)e[1+(0.013+£0.010)¢] , (28)
B3=(0.0043+0.0005)e2 , (29)

with ¥, =8.751+0.13 V. These fits are shown as dashed
lines in Figs. 9(a) and 10, and describe the data well. The
value of ¥, found in this way is consistent with that
found from visual observations of the onset of flow [10].

IV. DISCUSSION AND CONCLUSION

We have investigated some features of electrically
driven convection in a thin film of smectic- 4 liquid crys-
tal. The submicrometer thickness of the film makes this a
delicate convecting system: from our estimate of the
charge density we find that an excess charge of only
10’e /mm? and an applied voltage of order 10 V is
sufficient to generate flow velocities of approximately 10
mm/s.

Measurements of the current through the film show no
hysteresis at onset, supporting our earlier visual observa-
tions that the bifurcation to convection is forward
[8—10]. The same conclusion can be drawn from our
direct measurements of the velocity field. We were able
to fit the amplitudes of the various modes in the pattern
to an expansion in powers of € of the form used to de-
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scribe other systems that display a forward bifurcation,
using e=(V /V,.)?—1. Several spatial Fourier modes are
present in the pattern when, at voltages around 5V, a
transition to unsteady flow occurs. We were unable to
characterize this unsteady flow quantitatively using our
simple flow visualization technique.

Under ac driving voltages, the pattern wavelength at
onset decreases above a certain frequency. This behavior
can be interpreted in a straightforward way as a conse-
quence of driving the film at frequencies close to the in-
verse of the charge relaxation time. Because of the re-
stricted geometry of the film, this time is a factor of
s /d ~ 103 slower than the bulk relaxation time.

Several future experiments suggest themselves. In-
teresting behavior is expected in films with thicknesses
near the Debye screening length. This can be varied by
changing the dopant concentration in the liquid crystal.
The regime of unsteady flow remains unexplored; a better
probe of the flow velocity, such as laser doppler velo-
cimetry, is needed to understand this region. Studies of
the stability boundaries of the flow in the voltage—wave-
number plane, and of wavelength selection would be
interesting—the wave number can be altered experimen-
tally by slowly moving one of the wipers while the film is
convecting. Finally, the experiments could be repeated
using a smectic-C material; in this case a coupling of the
flow to the molecular orientation is expected [11,12,19].
It would then be possible to visualize the flow by studying
the light transmitted through a film placed between
crossed polarizers, instead of using suspended particles.
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APPENDIX A

In this appendix we consider the conductivity of the
film in the experimentally relevant case of fast chemical
reactions, and argue that the film can be treated in this
case as a uniform conductor. The effective conductivity
measured in Sec. III A is an average over the whole film,
while the local conductivity given by Eq. (19) may vary in
space. To compare these two quantities we use indirect
estimates of the carrier densities n, based on the mea-
sured values of the effective conductivity and convective
contribution to the current discussed above.

For an applied voltage of ¢,=0, the system is in ther-
modynamic equilibrium, so the time derivatives and

fluxes in Eq. (2) are zero and n . satisfy
kyc=k,n n_ . (A1)

Since the film is everywhere electrically neutral when
¢o=0, the equilibrium number densities of the ions are

ny=n_=V'kyc/k,=ng . (A2)

We assume that the dissociation of charge-transfer com-
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plexes is weak so that ¢ >>n,, and that ¢ is uniform in
time and space throughout the film. For small applied
voltages, we expect that n, =~n_ ~n.,. Then the liquid
can be described by a uniform effective conductivity
given by

Oer=2eNolh , (A3)

where we have put u=p , =u_. Using the typical value
of u~1071 m?/s given in Sec. II, and the measured
value of 0 ., we find ., ~ 102 m >,

Next we can get a crude estimate of the degree of
charge separation—i.e., the magnitude of g —when the
film is convecting. As shown in Fig. 3(b), convection
produces an excess current of order 10 pA. If we assume
q =g, sin(2mx /L) and v =v, sin(27x /A ), take as dimen-
sions L =10 mm, s=0.3 um, and A=2 mm, and, using
Fig. 7, take vo=1 mm/s, we get this current if g ~7
C/m3, or of order 10%% /m>.

Finally, we can estimate the rate of the
dissociation/recombination reactions that generate the
charges in the film. Suppose that an excess number of
dissociated pairs is produced in a region. In the absence
of any ion flux from outside the region, the charge distri-
bution will relax by recombination with a characteristic
time [47] 7, =(k,n.q )1, The rate constant k, may be es-
timated from Langevin’s formula [30,47] to be k, =eu /¢,
so 7,~1073s. Thus on the time scale of our experiments
the dissociation/recombination reactions can be con-
sidered infinitely fast, so that

n+n_=n§q (A4)

and the source term on the right-hand side of Eq. (2) is al-
ways zero. In this approximation, it is easy to show using
Egs. (19) and (A3) that the local conductivity and the
space-charge density are related by

o=(o2+u’qH? . (A5)

Using the estimates of n. and g discussed above, we find

2 _1=~107%,
Creﬂ"

(A6)

so that the film is well described as a conductor with a
uniform conductivity o 4.

APPENDIX B

The flow velocity is governed by the equations and
boundary conditions presented in Sec. II above. Taking
the film to be infinitely long in the x direction, we can ex-
pand the x dependence of v=(u,v,0) in terms of sines
and cosines in x. For the y dependence we use the Chan-
drasekhar functions [42]

sinh(S3,,y) _ sin(S,,»)

m )= SnnB,, /2)  sin(B,,/2) B
and
_ cosh(a,,y) cos(a,,y)
Cnly)= cosh(a,, /2) cosla,,/2) ’ (B2)
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which satisfy the experimentally appropriate boundary
conditions
ds, (£1)

dy

_dC,, ()

1
C,(+1) 5

=85, (+

N

(B3)
at the electrodes. Here «,, and 3,, are the mth roots of
tanh(B/2)— tan(B/2)=0 (B4)
and
coth(a/2)— cot(a/2)=0 . (B5)

Measuring distance in units of d we can write down ex-
pansions for u and v:

ulx,y)= 3 Ay;Si(y)sin[(2j —1)p(x —x,)],  (B6)
kj

vix,y)= ZB,-J-Ci(y)cos[(2j~1)p(x —x4)] - (B7)
iLJj

The coeflicients 4;; and B;; are related by

8a} B}

ai —B;

This expression results from imposing the incompressibil-
ity condition, Eq. (10), on Egs. (B6) and (B7), equating
coefficients, and expanding dC;(y)/dy in terms of S, (y).
The term in large parentheses in Eq. (B8) is the matrix
element of the expansion, which can be found by several

1
6= j—1p =B

i

. (B8)
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integrations by parts, as described by Chandrasekhar
[42].

Substituting Eq. (B8) into Eq. (B6) and rearranging
gives Egs. (24) and (25), with

M= LIl (B9)
Y= 2 Y.
k a}t—Bf' -

In restricting the expansions to include only odd har-
monics in x, we have assumed that adjacent vortices have
a reflection symmetry, i.e., that

u(x+A/2,y)Y=—ul(x,y) (B10)

and

vix+A/2,y)=—v(x,y) . (B11)

This assumption reduces the number of parameters in our
fits, but prohibits any asymmetry between anode-to-
cathode and cathode-to-anode flows that may arise due
to, for example, unipolar injection of charge at one elec-
trode. Our data show no evidence for such asymmetry;
this is consistent with our other observations that the bi-
furcation to convection is forward.

To fit our data, we restrict the i and j sums in Egs. (24)
and (25) to the first few terms. The sum over k in Eq.
(B9) is not restricted since it contains no adjustable
coefficients, it simply defines a new function of y with in-
dex i. This sum converges rather slowly; for large k, the
terms behave as k ~2. To evaluate the sum to within
1073, which is more than sufficient for our purposes,
about 200 terms must be included.
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FIG. 6. (a) A streak photograph of the convection pattern

close to the onset of unsteady flow. (b) The vector velocity data

extracted from (a).



