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Stability of an imploding spherical shell
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It is shown that, in an imploding spherical shell, the surface instabilities are of two different types.
The first, which occurs at the outer surface, is the well-known Rayleigh-Taylor instability. The second
instability occurs at the inner surface. The characteristics of this instability are similar to those of
amplified sound waves in an imploding plasma shell. It is suggested that this instability is driven by the
amplified sound waves.

PACS number(s): 52.35.Py, 52.35.Dm, 47.20.—k

I. INTRODUCTION

Few hydrodynamic problems in laser fusion have re-
ceived more attention in the past than the Rayleigh-
Taylor instability in an imploding plasma shell [1—3].
This instability, if it occurs, does not allow the uniform
implosion that is critical for high-density compression.

The understanding of the Rayleigh-Taylor instability
has not progressed to such a degree that its effect on the
implosion dynamics can be derived from a general
method such as the energy method or the method of ap-
plying the Liouville equation which gives a dispersion re-
lation to examine stability of a system. In the absence of
such a general method, it is necessary to appeal directly
to the available experimental evidence (i.e., the conserva-
tion of mode numbers during an implosion) along with a
simplifying assumption, notably self-similar motion, to
limit the possible form of self-consistent solutions for the
stability analysis.

Most of the previous analyses of the Rayleigh-Taylor
instability have been carried out through the use of po-
tential fiow in a plane geometry [4,5]. The velocity po-
tential fields are the first-order perturbations with respect
to the stationary fiuids, which are subject to a constant
acceleration. It is characteristic of the velocity potential
fields that in the first-order analysis the perturbed Quid
elements must move with the given velocity in two or-
thogonal directions along the interface. The Rayleigh-
Taylor instability is, therefore, driven by a nonuniform
distribution of fiuid elements in velocity space (i.e., the
velocity driven instability).

It has been customary, in the potential Aow theory, to
regard the velocity v, =V/, (x,y, t) as the quantity one
measures experimentally, and to think of the potential

P, (x,y, t) as a convenient, but fictitious, mathematical
construction.

The direct inference from Taylor's analysis to a spher-
ical shell implosion has seemed almost axiomatic
inasmuch as nearly all stability analyses have been car-
ried out in a plane geometry. However, numerical simu-
lations performed by such methods have rarely been able
to implement perturbations consistent with the
Rayleigh- Taylor instability.

It has long been clear that the use of the velocity po-

tential fields as initial perturbations offers at best only an
awkward way of simulating (in all likelihood incorrect or
at best incomplete) the Rayleigh-Taylor instability [6].
Verdon et al. [7] were the first to find that the use of a set
of Lagrangian displacements, one which arises in a natu-
ral way in the numerical simulations of the Rayleigh-
Taylor instability, ofFers a consistent picture of the insta-
bility in linear and nonlinear regimes [7]. It should be
stressed that the use of Lagrangian displacement vectors
is equivalent to the use of velocity perturbations by a fIlow

potential to first order. The need for a more general
method led Book and Bernstein [2] to begin the develop-
ment of a fully self-consistent approach to the problems
of stability of a nonstationary system.

Mathematical difIiculties in dealing with stability
analysis of an imploding spherical shell obscure many
questions of critical importance, such as geometrical
effects on the stability that arise from questionable
Fourier expansions of perturbations. An attempt has,
therefore, been made, based on the mathematical tech-
niques of Bernstein et al. [8], to find improved methods
of obtaining the stability criteria.

A further difFerence between our approach and previ-
ous ones is that it is carried out to apply to a nonstation-
ary system of arbitrary time dependence, rather than just
to those which are, on the average, stationary in time [2].
We have obtained the static limits in terms of the familiar
growth rate in the hope that they may be of help in un-
derstanding the instability problems for a nonstationary
system.

Next we turn to the instability of the inner surface of
an imploding shell. This instability does not occur to first
order in the static limit by any known mechanism, but it
occurs in the presence of sound-wave amplifications
(SWA) in an imploding shell. Several years ago, Book [9]
proposed that amplitudes of sound waves in an imploding
spherical shell can be amplified to the order of a shell
thickness. More recently, the author [10] has shown
that, in an extended model, the amplification of traveling
sound waves takes place in a spherical target by adiabatic
compression of the fluids that support the sound waves.

A more fruitful approach to the question of SWA is,
perhaps, to study the surface instability which is observ-
able and can be offered as evidence for the presence of
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SWA in an imploding shell [11—13].
The instability at the inner surface is uniquely different

from all other hydrodynamic instabilities; it is oscillatory
at early times; the lower mode dominates higher modes in
contrast to the Rayleigh-Taylor instability; the physical
mechanism of the instability resides in the plasma fluid of
the shell as in the case of the shear driven instability in an
electron beam in crossed fields [14]. The physically
different instability at the inner surface and the
Rayleigh-Taylor instability are independent and they do
not interact with each other.

The condition for the occurrence of the Rayleigh-
Taylor instability is well known, but the physical mecha-
nism by which the inner-surface instability evolves from
stable modes to unstable modes is not understood. A
possibility of occurrence of the second type of instability
was first proposed by the author and Suydam [13] in our
stability analysis of an imploding cylindrical plasma shell.
However, it was not possible to see the physical mecha-
nism because of shortcomings in the model. To over-
come this problem, we have developed a model that re-
moves the massless free surface at the inner surface.

We shall devote the remainder of this paper to the
study of instabilities of an imploding spherical plasma
shell and illustrating them in three-dimensional analyses.
In Sec. II we present a detailed derivation of the basic
equations that can be used in the stability analysis for the
Rayleigh- Taylor instability and the instability at the
inner surface. In Sec. III we solve the differential equa-
tion in the displacement vector g' to establish the stability
criteria. The physical interpretation of the instability is
then discussed in Sec. IV. We show there that the
Rayleigh-Taylor instability and the instability at the
inner surface are independent in the linear regime. As a
definite illustration of our stability criteria, we present a
detailed analysis of the Rayleigh-Taylor instability for
specific mode numbers. As a final illustration of the
mechanism for the inner-shell instability we discuss in
Sec. V the result of numerical simulations of SWA.

II. BASIC EQUATIONS

d
(p/p~) =0,

dt
(3)

where y) 1. Here the notations are standard and the
plasma fluid is assumed to be initially isentropic.

The stability analysis of an imploding plasma shell in
the Lagrangian representation has a number of appealing

In this section we shall present a detailed derivation of
the basic equations. Although this has been discussed
previously [10], a number of its more interesting aspects
have evidently been left untouched.

As in the previous analysis [10], the equations that de-
scribe an imploding spherical plasma shell are the follow-
ing:

d
p v= —Vp,dt

d p+ pV'. v =0
dt

properties [6] as we shall see. One of the most important
of these is that it is extremely simple to incorporate the
stability problem in the Lagrangian codes. It can also
help in visualizing the growth of an instability in numeri-
cal simulations, but we may have to find appropriate
boundary conditions for the Rayleigh-Taylor instability.

In the following, we assume that, in the Lagrangian
representation, all quantities are functions of ro, the ini-
tial position of a fluid element, and of t, the time. We
may further require that the position of a Quid element is
given to the first order in the displacement vector g by

r =R(ro, t)+ g(ro, t),

where R(ro, t) describes the unperturbed trajectory of a
Quid element at t.

By using the displacement vector introduced in Eq. (4)
we may easily derive from the continuity equation Eq. (2)
the perturbed density [13]

P«+ C) =S o(1 Vz C—) =so. +ai
Evidently if we limit our calculations to the Rayleigh-
Taylor instability, which is the velocity-driven instability,
the plasma density must remain unperturbed by the dis-
placement vectors. This condition can be satisfied by the
requirement that V./=0. This is the only constraint
needed in order to obtain, in the first order of g, the sta-
bility criteria for the instability. It may be helpful to note
that the condition V /=0 is essentially equivalent to
boundary conditions of reflecting surfaces since the con-
dition does not allow any form of waves in the fluid ex-
cept at the surfaces. Thus this condition leads to stand-
ing waves at the inner and outer surfaces.

There are certain problems for which it is advanta-
geous to derive the above equation in quite a different
manner from that shown in Ref. [13]. An example is the
stability analysis of a relativistic electron bear+ penetrat-
ing into plasmas in which the equation of motion for a
single electron in the beam can be solved to first order.
In that case, the perturbed electron beam density can be
derived from the equation of continuity and the equation
of motion [15]. The result depends on the linear pro-
cedure with respect to the displacement vector and is
quite different from Eq. (5), which was derived in a
heuristic manner [13].

For the present hydrodynamic problem, it seems to be
natural to use Eq. (5) for the perturbed density since the
unperturbed quantities are not time independent and
solutions of the form e' ' for the perturbations are not al-
lowed. It is exactly because of the time-dependent char-
acter of the unperturbed motion that the concept of
growth rate of an instability in an imploding shell is no
longer applicable to a nonstationary system.

By substituting Eq. (5) into the equation of state Eq.
(3), we can easily express the perturbed pressure in terms
of the displacement vector. The result can be written in
the form

p (R+g) =p (R)(1—y Vz g').

In order to solve the equation of motion for a fluid ele-
ment, we must first find the variation of the velocity due
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to the displacement g', which is given by

v(R+ g') =v(R)+ g'=v(R)+ g+ v(R).Vtig.dt Bt
(7)

R (ro, t ) =rof(t ), (9)

where R is the radial position of a Quid element at t and
ro is its initial position.

The simplest of the physical eft'ects contained in Eq. (9)
is the self-similar motion of the isentropic Auids under
consideration. This hypothesis is a well-known and ex-
tremely powerful method of obtaining self-consistent
solutions for hydrodynamic equations, but it prescribes
the time-dependent external pressure. This is because the
conservation of mass and Eq. (9) determine the time-
dependent density profile, which in turn determines the
time-dependent pressure profile through the equation of
state Eq. (3). This constraint implies that the adiabatic
compression by the external pressure in the form of a
shock wave by an ablation process must match the
prescribed pressure profile; this may be a diScult task.
The dynamical behavior of an imploding shell is thus
governed by the three basic hydrodynamic equations
(1—3) and Eq. (9). It is reasonable to assume, however,
that by varying the pulse profile of a laser beam, we may
approximately satisfy this requirement.

From the above discussion and using Eqs. (2), (3), and
(9), the time-dependent density and pressure profiles can
be obtained as

An interesting feature of perturbations like Eq. (7) is
that a proper set of Lagrangian displacement vectors can
introduce the velocity perturbations consistent with the
Rayleigh-Taylor instability. The perturbed velocity term
in Eq. (7) is of particular interest in the stability analysis
because of an explicit dependence on g in the perturba-
tion expansions. The similarity of Eq. (7) to the first-
order potential Aow is obvious when we note that if we
choose g=(g (x,y t), g~(x, y, t)) and set v(R)=0 in a
plane geometry, v, =V/, (x,y, t) is equal to the perturbed
term in Eq. (7). It would have taken a good deal of physi-
cal insight to see that a potential Aow approach is essen-
tially equivalent to the use of Lagrangian displacement
vectors [7].

In order to obtain the equation of motion to first order,
we need to expand the differential operator with respect
to r to first order in g, which is given by

V =Vs Vzg'V~.

This is obtained by the usual chain rule of differentiation.
In the earlier paper [10], we discussed the self-

consistent solution of Eqs. (1—3) by introducing Sedov's
hypothesis of uniform self-similar motion [16]. In the I.a-
grangian representation it can be written as

(12)

where the subscript in r is dropped.
Here we shall first study a density profile that is sym-

metric with respect to the inner and outer surfaces, one
that does not introduce a mathematical singularity in the
first-order equation and removes the unphysical massless
surface. We may then form the density profile with finite
density at the inner and outer surfaces with a prescribed
pressure profile. The most general density profile that
satisfies Eq. (12) takes the form

po(r)=[pr+ '(r' r' )/—(r+ —r' )

(13)

where r+ and r are the outer and inner radii of the
shell, po(r+)=p+, and po(r )=p . If we substitute Eq.
(13) into Eq. (12), we find that p+ and p must satisfy the
following relation, which is the condition appropriate to
the modeling of an imploding plasma shell:

( —1)
(

2 2 )/( 2 2
)
—t2 (14)

f ( t) = —[(2/a)( f —1)]'i, (15)

where a =3(y —1) and the initial conditions f (0)= 1 and
f(0)=0 are used.

For y =—', , the solution of this equation is easily found
and is given by

f (t) (1 t2)1/2 (16)

It is worth noting that f(t) approaches infinity asf (t) +0 for all y values. —In this sense it follows that in
the limit of very small f (t), which corresponds to a com-
pletion of an implosion, the model breaks down. Thus,
the assumption we have made in defining the model, that
the self-similar motion is a reasonable description of an
imploding plasma shell, is a strong one. However, it can
be fairly well fulfilled in much of the imploding process
provided that a laser pulse is designed accordingly.

In order to study the stability of the prescribed unper-
turbed motion we obtain the first order equation in g.
This calculation is tedious although it is straightforward.
The result may be written

where c+ =yp+ /p+ =aypr+ ' and e =yp /p
=pypr '. Note that Eqs. (13) and (14) imply that the
pressure profile remains unchanged in space during the
entire implosion process; only the time-dependent part
f (t) varies.

For the time-dependent part that is the solution of Eq.
(12) one may easily obtain the first integral as

p(ro t)=po(ro)f(t) (10) 2 2f' r "g= (r r, )Vo'+(y —1)or—

p(ro, t)=po(ro)f (t)

It is then clear from the equation of motion Eq. (1) that
for the unperturbed motion we may write or

+rXto+(r V)g, (17)
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f3'r "g=V — ( r —r, )V g'+ g' r —g' Vr,z

2
(18)

III. SOI.UTIONS OF THE FIRST-ORDER EQUATION

In the preceding section we have derived the
differential equation linear in g to examine stability of an
imploding spherical shell. For surface instabilities, it be-
comes possible to reduce the equation to a considerably
simpler form. To be consistent with Taylor's analysis [4],
we look for a solution with the boundary conditions that
at the surface the perturbed fluid elements may be treated
as incompressible and irrotational, V g'=0 and V Xg'=0.
We shall, therefore, seek a solution in the form g'=Vy,
where the potential function y is the solution of Laplace's
equation 7 y=O.

This form is one that clearly shows similarities between
the potential flow calculations and the corresponding
ones using the Lagrangian displacement vectors. The use
of the potential function y offers insights into the reason
why the calculations based on the displacement vectors
are the same as in the potential flow approach, even
though the former calculations appear to be far more
complex. Viewed in mathematical terms, the use of the
Lagrangian displacement vectors in this way makes it
possible to study a velocity-driven instability like the
Rayleigh-Taylor instability for a nonstationary system.
We shall see that the stability criteria are obtained quite
conveniently through use of Eq. (17) and vector spherical
harmonics.

A solution of Laplace's equation can be found explicit-
ly in given coordinates by separation of variables and is
given in spherical coordinates as

~=a,.[Q~+(t)r'+Q' (t)r-"+"]Y; (e, y) .

Since very little is discussed about the potential func-
tion of y, some insight may be gained by examining the
form it takes on in one of the completely solvable prob-
lems. Near the origin which corresponds to the initial
position of the inner surface, the second term diverges as
r "+". The potential is therefore much too strongly
singular for higher modes at the origin to permit a short
wave perturbation. Indeed for the instability at the inner
surface, as we shall see, the lower modes dominate the
higher modes in agreement with SWA [10].

It may be worth noting, for its mathematical interest,
that as we have seen the Rayleigh-Taylor instability is a
velocity-driven instability which was introduced through
use of a potential function. In velocity potential fields
[4], Quid elements are moved by the perturbed velocity
along the tangential plane at the interface. The per-
turbed velocity which corresponds to the gradient of flow
potential may be constructed immediately from a poten-

where o =V g', co= V X g', and

r, =(c+r cr—+ )/(c+ —c ).

The linear analysis we have presented in this section has
been intended to provide a self-contained presentation for
the stability analysis in the following sections.

where

M' +k™+0™ (20)

a, =e„Y, (e,y),

a2=rV Y( (8,$),

a, =r X VYi (0,$) .

The constraint implicit in Eq. (19), that the expansion
must depend analytically upon the time t, is what renders
this expansion unique. The virtue of an expansion
scheme in which the coefficients Q+(t) are uniquely
determined by Eq. (17) is self-evident. Substitution of Eq.
(20) into Eq. (17) together with Eq. (19) yields

f'" "(t)Q+(t)+ [—,'+(l+ —,')]Qi+(t) =0.

Setting aside for the moment the general solutions of Eq.
(21), we may ask how the solutions of Eq. (21) can be re-
lated to the stabihty of a stationary spherical plasma shell
subject to a constant acceleration. The answer for this
simple case may be seen without performing any detailed
calculations.

If we define the effective acceleration of the shell as

g(t) =R (t) = rf(t) = rf—
then Eq. (21) can be rewritten in a more familiar forin,

Q+(t) — + l+- Ig(t)l Q~(t) =0.
2 2 R(t) (22)

For t ((1 we may take R (t) and g(t) as constants. The

tial field. In practice, of course, we may not often know
the form of a potential field that gives the desired velocity
perturbations, and so the potential flow approach has a
limited use for the study of the Rayleigh-Taylor instabili-
ty. In the Lagrangian representation, however, the per-
turbations can be constructed from Eq. (19). The three
orthogonal displacement vectors, two of which give the
tangential fluid motion, and the third of which gives the
radial perturbation at the surface of a sphere, are re-
quired to examine stability of an imploding spherical
shell; they will be introduced in a manner to be consistent
with Taylor's analysis [4].

As indicated in the Introduction, the use of potential
fields in describing the perturbations shows similarities
between the calculations based on the Lagrangian dis-
placement vectors and the corresponding ones with a po-
tential flow. While these similarities make applications of
the displacement vectors particularly clear, they must not
be interpreted as indicating that a potential flow ap-
proach, which is useful only for a static problem in plane
geometry, is any sort of adequate substitute for a nonsta-
tionary system.

The time-dependent functions Q+(t) defined in Eq.
(19) must clearly satisfy Eq. (17), just as the spatial part
does. In view of Eqs. (17) and (19), we may introduce a
set of three orthogonal vector spherical harmonics which
permits us to write the displacement vector as [17,18]
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equation is then reduced to an eigenvalue equation with
implicit boundary conditions V g'=0 at the surfaces. The

1COy t
solutions are given by a simple form ae * with the ei-
genvalues co~+ = [ + ( l + —,

'
) +—,

' ](g /R ). If any co+( l ) is neg-
ative, the corresponding co+(l) is imaginary and the sys-
tem is unstable to the perturbations.

It is clear from this simple analysis that in the static
limit the Rayleigh-Taylor instability occurs at the outer
surface, but it is only for the mode number l ~2. This
value corresponds to the lowest bound for which the
geometrical explanation can be found. The growth rate
of the Rayleigh-Taylor instability can be written explicit-
ly

where

and

(2+ id+ )a= —+
4 4a

(2 i—d~ )b= —+
4 4a

C =——1
2'

a=3(y —1),

y~ —z =[(l+ ~~) 3](g/R) (23)
d+ = [8a[—'-I-(l+ —')]—(a+2) ]'i

Qp(t) =c,P~(l, y, t)+c~Q~(l, y, t}. (24)

Here

where l & 2.
It is important to note that the mode number l is a con-

served quantity and that the wave vector k = l /R is also
conserved in the eigenvalue equation. The growth rate
shows that the larger the mode number, the faster the in-
stability grows; the short wave grows faster than the long
wave. Furthermore, we notice that the shell is stable to
the Rayleigh-Taylor instability for the mode l =0, and
marginally stable for the l =1 mode in agreement with
anticipation.

In contrast, the inner surface remains stable for all
mode numbers, as we might have expected from the
analysis of SWA [10]. Thus we see that Eq. (22) correctly
describes the stability of a spherical shell, just as one
might have seen in a correct stability analysis of a sta-
tionary shell.

Let us return to Eq. (21). The general solution is readi-
ly found for the prescribed motion by using Eq. (15) and
is given in terms of two linearly independent hyper-
geometric functions [19],

Since our boundary conditions are appropriate for
rejecting surfaces which lead to standing waves, we
would find standing waves at the surfaces, but the wave
vector kz=l/R (t) is time dependent. We then face the
following question: how can this wave be expressed in
terms of conventional standing waves? This question
may not have a definite answer unless the eikonal treat-
ment [20] of surface waves is carried out; but, it is clear
that since the wave vector depends on time explicitly the
solution does not have a spherical wave expansion.

Now we come to important differences in stability
analyses for a nonstationary system. The differences be-
tween the conventional waves and the present surface
waves have two causes: one is the time-dependent wave
vector by the conservation of mode number l during the
implosion, and the other is that the medium which sup-
ports the waves is being compressed and is accelerated by
the time-varying external pressure.

To incorporate the proper geometrical effects, we cal-
culate the asymptotic limits, aug umented by
kz= 1/R (t) ~ 1/f (t). The mode number l will be as-
sumed to be a conserved quantum number during the im-
plosion. In the limit t~ 1, calculations leads to the sim-
ple results,

P~(l, y, t)=~F, (a, b, c;1—f (t) } (25) lim[V+(l, y, t)/f (t)]=a'+f + +c—c,t~1 (27)

and

Qg(l, yt)=(1 —f )~F, (a+ —,', b+ —,', c+1;1 f (t} }, —
(28)li m[9~(l, y, t) /f (t)]=b~+f + +cc.

(26) where

Ed

2(x

(2 id~ )r —+ (29)

and

b~ =ir1

2
3 (2 id+) —

3r —+ r ——
4 4

(2+id~ )
(30)
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This prescription for handling the geometrical conver-
gence eC'ect ensures only the consistency for a nonstation-
ary system; the simple form of the asymptotic limit is at
best incomplete and somewhat arbitrary. Had we started
this calculation by incorporating the geometrical eFect in
Eq. (19) as a direct product and making the observation
for a conservation of the mode number, we should have
come to the same result. The virtue of the asymptotic
limits is that they permit discussion of general features of
instabilities in a nonstationary system. We should there-
fore regard Eqs. (27) and (28) as no more than a crude,
simple model.

It may be natural at this point to ask the meaning of
the stability criteria. The results given in Eqs. (27) and
(28) suggest that there is, in fact, a substantial ambiguity
involved in speaking of the instability. We must notice,
however, that the structure of the asymptotic form with
the geometrical e6'ects was dictated by experience with
the Rayleigh-Taylor instability in the static limit. Al-
though the role of a wave vector is ambiguous in this
analysis, the geometrical convergence efTects such as con-
servation of both mass and the mode number 1 are self-
evident. One of the essential respects in which the
present stability analysis di6'ers from the conventional ap-
proach for a stationary system is that the time-dependent
displacement vector is found by solving the equation of
the displacements as the initial and boundary-value prob-
lem.

To underscore the correctness of Eqs. (27) and (28), we
will analyze the Rayleigh-Taylor instability in some de-
tail, and show that the geometrical convergence e6'ects
are properly incorporated in the stability criteria.

IV. PHYSICAL INTERPRETATION OF
THE FIRST-ORDER ANALYSIS

In the preceding sections we have derived the stability
criteria for the Rayleigh-Taylor instability and the insta-
bility at the inner surface of an imploding shell. It has
been customary, in discussions of the instabilities, to re-
gard gaei' as the exponentially growing amplitude of a
perturbation, and to take y as the growth rate, but this
has little bearing on the present analysis except for the
static limits.

In this section we shall show how the Rayleigh-Taylor
instability, which is located at the outer surface and
which is independent of the internal dynamics of an im-

ploding shell, can be related within the framework of a
compressible Quid model to the classical Rayleigh-Taylor
instability. Such an analysis may indeed help to convince
of the correctness of the present analysis, but it still
leaves open serious questions of consistency, and risks
overlooking an important, new physical mechanism. The
need for a more consistent, clear picture has led us to de-
velop the Lagrangian code which, as we have seen in Ref.
[10],has clarified many of the unsettling issues.

Let us first examine once more the stability at early
times. In the short-wavelength limit, the growth rate of
the Rayleigh-Taylor instability is given by Eq. (23),

I
1'~r=~go~ ~ =~ga~~e. (31)

This is the growth rate of the classical Rayleigh-Taylor
instability of static media; it is independent of density
profile, thickness of a shell, and y. We also notice that
the perturbations on the inner and outer surfaces behave
independently since the mode Q

'
( t ) is oscillatory.

Furthermore, one can show from Eq. (15) of Ref. [10]
that sound waves are oscillatory at early times. This
analysis suggests that while the Rayleigh-Taylor instabili-
ty is independent of the internal dynamics of fluids, the
instability at the inner surface may not be.

Let us focus on the specific modes and first consider
the l =0 mode. For y (—,', the limits of %+If (t) and

0+If (t) are finite. Hence the l =0 mode at the outer
surface is stable, which one would have normally expect-
ed since the mode corresponds to a uniform radial pertur-
bation. We see, therefore, that there is no inconsistency
in the analysis. On the other hand, if y (—,', F If (t) and
6 If (t) diverge asymptotically, which signals instabili-
ty. This analysis shows that the two surface waves do not
interact with each other or the Quid does not mediate the
interaction between the waves in the linear regime.

A more significant property of the Q+ (t) is that for the
1 = 1 mode both F+ If (r) and 6+ If (r) weakly diverge
in the asymptotic limit and thus the Rayleigh-Taylor in-
stability, which is marginally stable in the static limit,
occurs for the mode number / = 1. It is the unique excep-
tion in that the mode number h =1 corresponds to the
displacement of the center of a shell without perturbing
the surface. In the static limit, the instability grows
linearly in time and thus it tends to move the shell away
from the center of an imploding device.

The asymptotic limits tend to enhance the degree of
divergence when the geometrical correction is made to
the calculations of Q+(r). By itself, Eq. (24) is inadequate
to explain the l = 1 mode, which was marginally stable in
the static limit, and becomes stable in the asymptotic lim-
it. This is not surprising, since the conservation of mode
number was not explicitly incorporated in the analysis
and the time-dependent wave vector does not play any
precise role in an implosion dynamics; Eq. (21) is no
longer an eigenvalue equation. The specific mode l =1
we have discussed is, of course, an elementary one, but
should serve to illustrate some of the points noted earlier
regarding the consistency with the classical Rayleigh-
Taylor instability. It is worth noting, in particular, that
the asymptotic limits of the quotient Q+ (t)If (t) predict
the correct stability criteria which play much the same
role in these calculations as the stability criteria in the
analyses based on the energy method; they are only indi-
cative of the instability of a system.

It may be of interest to note that while the Rayleigh-
Taylor instability is weakly unstable for the / = 1 mode,
the inner surface, as is shown later, remains unstable for
the same mode. We then face the question: if the l =1
mode corresponds to a displacement of a shell as a whole,
how does the inner surface become unstable? The fact
that the stability of the inner surface has this property
should not be a surprise in view of the way the displace-
ment vectors are determined by Eq. (4). The displace-
ment of the outer surface with the / =1 mode does not,
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therefore, imply the absence of a local perturbation in
Quids since the Inagnitude of the displacement vectors are
different at different positions in the shell.

For more general cases, we may examine the asymptot-
ic limits Eqs. (27) and (28) for l 2. The limits behave as
f ' when f(t)~0, where ~=(a 2—+id+)l4. A de-
tailed study of the limits shows that the larger the values
of I and y, the faster the mode grows, which is consistent
with the classical Rayleigh-Taylor instability.

Although this consistency is extremely helpful in the
analysis, and offers insights into the nature of the
Rayleigh-Taylor instability, one must not lose sight of the
fact that the present analysis for a nonstationary system
is quite different from that of a stationary case. The
asymptotic limit only signals an instability just as the sta-
bility criteria one obtains by using the energy principle

The time-dependent behavior of the Rayleigh-Taylor
instability in a compressible Quid model can be under-
stood by noting that the effective acceleration increases in
time as f ' 3r+ '. Note also that, in a converging
geometry, the wave vector ks = I/8 (t) increases as

f '(t), since the mode number i is a conserved quantity.
But this effect has been incorporated in the stability cri-
teria by taking the limit of Q+(t)/R (t). We remind the
reader that the growth rate depends on the wave vector,
not the mode number at any given instant.

Next we consider, as above, the asymptotic limits of
both 9 If and 0 /f of Q' (t) modes. For i ~ 1 and

y & 5/3, the limits again diverge; the degree of the diver-
gence is not as severe as that of the Rayleigh-Taylor in-
stability. We now pose the question: Why does the spe-
cial value of y determine the stability and not other
values? How does the initially stable mode evolve to an
unstable mode? To see the physical significance of the y
value, we note that when y & —', , sound waves are
amplified during the course of an implosion. Further-
more, the divergence factors in Eqs. (10) and (11) are the
same as in the case of sound-wave amplifications [see Eqs.
(20) and (21) of Ref. [10]]. Moreover, Fig. 1 of this paper
and Fig. 2 of Ref. [10] show a remarkable similarity be-
tween the coefficients of amplification factors ~a' (y)~
and

~
a (l, y, p„)~. In both cases, the instabilities grow fas-

ter for the smaller mode number l. The same similarity
persists between b' (y ) and b (I,y, p„).

This identical behavior suggests that the instability of
the inner surface may be considered to be due to internal
sound waves which act as the source of the surface wave,
and that the dynamics of this instability lies in the plasma
Quid of the shell just as for the shear driven instability of
the electron beam in crossed fields [14]. Note also that
the absence of amplified sound waves implies a stable
inner surface; they are not really separable.

It should be stressed that all the discussions of this sec-
tion are based on the linear stability analysis for an im-
ploding spherical shell. Such an analysis is valid only if
the time scale of the growth of instabilities bears an ap-
proximate relation to other time scales (e.g., an implosion
time) of the system. For example, in the short-
wavelength limits, the Rayleigh-Taylor instability will
grow fast and quickly reaches a nonlinear regime at about
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FIG. 1. The absolute values of a' (y) for y=
3 3 and 2

plotted against the mode number l = 1 —50.

the time when the wavelength becomes roughly equal to
the wave amplitude. The initially isentropic Quid then
becomes turbulent Qow through the nonlinear process
and the short waves dissipate in the form of energy dur-
ing the implosion. In the nonlinear regime, all three
waves, the sound wave and the two surface waves, are no
longer independent; they may couple together through a
three-wave interaction mechanism. Turbulent Qow is
beyond the scope of the present work and we refer the in-
terested reader to the many available papers on the sub-
ject [21].

V. DISCUSSION AND CONCLUSION

If the proposed mechanism is correct, why then does
the I =0 mode at the outer surface remain stable when

3
while the same mode at the inner surface becomes

unstable? To answer this question and to see if the above
is the only mechanism that drives the instability at the
inner surface, we have carried out numerical simulations
using a one-dimensional Lagrangian code written
specifically for this purpose. The code solves the equa-
tion for mass conservation, the energy equation, the
equation of state, and the equation of motion for the plas-
ma Quid with the prescribed time-dependent external
pressure. We have also taken the initial density profile
given by the equation for po(r).

The simulations show that the perturbations give rise
to traveling sound waves that propagate toward the inner
surface in much the same way as a surface wave in a
moving Quid. However, the velocity of the sound wave is
so much less than the velocity of the Quid that the
reQected sound wave at the inner surface does not reach
the outer surface. Because of a pressure gradient across
the Quid layer, we do not observe the standing sound
waves as in a stationary Quid; the velocity of the sound
wave decreases as it propagates toward the inner surface
since the Quid, which supports the sound waves, is being
adiabatically compressed. The traveling sound waves are
thus amplified by superposition and localized near the
inner surface. As the sound waves reQect from the inner
surface, they perturb the surface, which is an observable
instability of the inner surface.

That such a surface instability does not occur in the
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absence of SWA can also be seen from the case of an ex-
ploding cylindrical shell [22,23], in which neither SWA
nor a surface instability at the outer surface occurs.

Similar but two dimensional (i.e., r and 8 components)
calculations were performed for an imploding cylindrical
shell [13,23]. The stability criteria were similar to those
of the spherical shell implosion problem, but with the
critical value of y, =2. The difference in y values can be
easily understood by noting that for an ionized gas the ra-
tio of specific heats y =(2+ n ) In, where n is the degree of
freedom.

In spherical geometry, we have carried out a fully
three-dimensional stability analysis by taking
g = ( g„,gg, g& ), which allows a fiuid element to undergo
three-dimensional displacements from its equilibrium po-
sition. Therefore, y, should take two different values:

3
for the imploding spherical shel 1 in which n =3

and y, =2 for the imploding cylindrical shell in which
n =2. However, this argument begs the question wheth-
er the macroscopic description of a plasma can employ
the concept derived in a microscopic picture of an ion-
ized gas (e.g., charged particles).

If we define the displacement vector g' as the ensemble
average of displacements of charged particles from their
equilibrium positions, then the above argument is correct
since the degree of freedom in translational motion of
charged particles remains the same in both descriptions
of the system. By the equipartition theorem, the ratio of
specific heats is determined solely by the degree of free-
dom for translational motion of charged particles (e.g. , an
ideal gas) [24]. Note also that if the plasma were magnet-
ized, the above argument would not be valid due to gyro-
motion of charged particles in an applied magnetic field.
Furthermore, in a cylindrical shell, the system is assumed
to be translationally invariant with respect to z.

In both analyses, we have been able to obtain analyti-
cally tractable solutions for complex hydrodynamic prob-
lems by employing the elegant method of Sedov [16],
which restricts the underlying implosion dynamics. In
particular, the external pressure is self-consistently deter-
mined by Sedov's similarity hypothesis and the equation
of state. It is thus not surprising to find the same p'he-

nomena in both cylindrical and spherical shell implo-
sions, which imply no change in implosion dynamics.

Finally, we turn to an experiment of observing the de-
velopment of an instability of the type discussed here. A
cylindrical shell imploded by an ion beam or a laser beam
is ideally suited for a study of this instability. Observa-
tion of the instability along the axis of a cylindrical shell
is obviously much easier, technically, than simultaneous
observations of a spherical shell in various directions by x
rays to see the instability [25—27]. Furthermore, the
spherical geometry makes it impossible to directly ob-
serve the instability. This difhculty stems from the fact
that an I number of x-ray sources is required to obtain a
spatial resolution for a wave with the wave vector

ks=I/R (see Refs. [26] and [27]). Furthermore, quanti-
tative x-ray Gash photography cannot resolve the void at
the center of a spherical shell, due to quantum effects
such as Compton scattering, pair production, and pair
annihilation [27].

The end view of an imploding cylindrical shell is amen-
able to direct observation of the inner surface by optical
diagnostics [28,29]. Moreover, the end view provides
clean data devoid of effects due to ablation processes.
Unfortunately, this does not give precise information
about the density profile of a shell. By means of Abel's in-
version [27], a side view could, in principle, provide the
density profile. However, in the presence of ablation pro-
cesses, the experiment of measuring soft-x-ray emission
from the plasma shell would be a dificult task.

In summary, we have demonstrated that in the static
limit the stability analysis gives the correct growth rate
for the Rayleigh-Taylor instability. This analysis brings
to light many similarities between the Rayleigh-Taylor
instability for a stationary system and the corresponding
calculations for a nonstationary system. The static limits
provide insights into the reasons why the stability criteria
for a nonstationary system are the same as for a station-
ary case, even though the two approaches are quite
different.

We have shown, as simple illustrations, that the
Rayleigh-Taylor instability does not occur for the modes
l =0, 1. This demonstrates that the fundamental charac-
teristics of the instability remain the same in both station-
ary and nonstationary systems. It is intuitively clear then
that the convergence effect and the time-dependent ac-
celeration do not affect the nature of the Rayleigh-Taylor
instability at any instant during the implosion process.

We would like to emphasize that the instability at the
inner surface will occur for any imploding plasma shell
that is adiabatically compressed by a slowly increasing
external pressure, regardless of the geometry. Further-
more, we find it remarkable that the instability has been
observed in the experiment with an aluminum plasma
shell [28]; there is evidence for a critical y value above
which the instability does not occur and which should
mark the beginning of full ionization of a metal [30]. The
stability issue of fusion targets still remains of great in-
terest, and it merits further experimental study on a cy-
lindrical shell which would provide insight into implosion
dynamics.
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