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Universality in quasiperiodic Rayleigh-Benard convection
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We study universal scaling properties of quasiperiodic Rayleigh-Benard convection in a
'He —superAuid- He mixture. The critical line is located in a parameter space of Rayleigh and Prandtl
numbers using a transient-Poincare-section technique to identify transitions from nodal periodic points
to spiral periodic points within resonance horns. We measure the radial and angular contraction rates
and extract the linear-stability eigenvalues (Flouquet multipliersj of the periodic point. At the crossings
of the critical line with the lines of fixed golden-mean-tail winding number we determine the universality
class of our experimental dynamics using f(a) and trajectory-scaling-function analyses. A technique is
used to obtain a robust five-scale approximation to the universal trajectory scaling function. Different
methods of multifractal analysis are employed and an understanding of statistical and systematic errors
in these procedures is developed. The power law of the inflection point of the map, determined for three
golden-mean-tail winding numbers, is 2.9+0.3, corresponding to the universality class of the sine-circle
map.

PACS number(s): 47.25.—c, 05.45.+b, 67.60.Fp

I. INTRODUCTION

One of the most studied transitions to chaos in dynami-
cal systems is the transition from a quasiperiodic (two in-
commensurate frequencies) state [1—3]. This state can be
an intrinsic two-frequency state where internal oscillatory
modes, characterized by different frequencies, interact, or
it can be a single oscillatory mode that is forced by an
external oscillator of variable frequency and amplitude.
Although the two-internal-mode system is fundamentally
more complicated because there is an additional degree of
freedom relative to the forced system, the two share
many common features. The state of either system is
often completely characterized by the ratio of the fre-
quencies of the two oscillators. This ratio p is called the
winding or rotation number of the state and can be either
incommensurate (ratio of frequencies an irrational num-
ber) or mode locked (ratio of frequencies a rational num-
ber with p = P /Q, P and Q integers). As the coupling be-
tween the oscillators or the nonlinearity of the individual
oscillators increases, more of the available parameter
space is occupied with mode-locked regions. Another
common element is that mode locking arises from the
nonlinearity of the oscillators; a nonlinear oscillator has
an amplitude-dependent frequency and thus can adjust its
amplitude in order to mode lock. Many of these general
features are captured in the simple one-dimensional map
model known as the sine-circle map. This model makes
quantitative predictions about the behavior of certain
scaling exponents at the critical line of the system (the set
of parameter values where chaos first becomes possible).
Some of these predictions are local in the sense that they
apply only at isolated points on the critical line [4—6]
while others are global in that they consider scaling that
extends over the entire line [7,8]. The important question
to be resolved experimentally is whether or not these pre-
dictions are universal; do they apply to any two-

frequency system that undergoes mode locking' This has
been extensively investigated for the forced nonlinear os-
cillator by many researchers using different experimental
systems [2,3]. Typical techniques used to evaluate the
universality class of experimental data are f(a) scaling
spectra [9] and power spectra [10,11]. In this paper, we
describe a test of universal predictions of the circle map
in a system with two internal oscillatory modes. We use
a dynamical technique that differs in spirit from previous
analysis methods.

Owing to experimental difFiculties, experiments involv-
ing two intrinsic oscillators [12—14] have received much
less attention than forced-oscillator experiments. Two in-
dependent oscillators are more complex in principle be-
cause each oscillator can adjust to the dynamics of the
other; an additional degree of freedom is available. In ad-
dition, the size of the radial dissipation is constrained by
the physical system and there is no guarantee that the
dissipation is large (large dissipation is an assumption im-
plicit in the circle-map theory). In forced systems the un-
forced state can be adjusted to provide for strong radial
damping, thereby ensuring close correspondence with the
assumptions of the circle map. Thus the study of two in-
dependent oscillators offers a more severe test not only
for the universality of the theoretical model but also for
the generic nature of the results. In addition to the work
presented here and elsewhere [15,16] on two-frequency
Rayleigh-Benard convection, there have recently been
other experimental studies of systems with two internal
modes with independent frequencies [17,18].

The simple model for quasiperiodicity and mode lock-
ing that incorporates universal features at the transition
to chaos is the sine-circle map given by the mapping of a
circle onto itself:

8„+,=8„+0— sin(2m8„) (modl) .
K
2m'

8103 1991 The American Physical Society



8104 R. E. ECKE, RONNIE MAINIERI, AND T. S. SULLIVAN

This mapping has two control parameters: 0, the bare
winding number, and K, which represents the nonlineari-
ty or coupling. The basic features are presented here
while details can be found elsewhere [4—7]. For E (1
this is an invertible mapping; the mapping is single
valued for forward and backward iterations. The rota-
tion number

p= lim
0„—0()

(2)

deviates from Q, as the nonlinearity K is increased from
zero at fixed Q. In the case of mode locking, p takes on
the value of some rational ratio P/Q, where P and Q are
integers, over a finite interval in Q.

There are two main features of the circle map in the
[IC,QJ parameter space. One is the tongue structure of
resonance horns as K is varied. At K =0 the irrationals
have measure 1 on the unit interval and the rationals,
which make up the resonance intervals, have zero mea-
sure. For K =1 the resonance intervals fill the unit inter-
val and form a fractal set with fractal dimension
dF=0. 870 [7,8]. The transition to fractal scaling at
K = 1 comes from the development of a cubic inAection
point in the circle map. This inAection point also pro-
duces universal scaling dynamics at special irrational
winding numbers. Any irrationals can be written as an
infinite continued-fraction expansion of the form

irrational winding number have been determined, the
comparison between the critical circle-map dynamics and
the experiment can be carried out. We cannot directly
compare the orbit of an experimental Poincare section
with the orbit of a circle map. What are predicted by
universal circle-map theory are coordinate-invariant
quantities of the system. It has been shown by Sullivan
[22] that the Feigenbaum scaling function [23] is the
maximal invariant for a one-dimensional map, of which
the circle map is an example. To establish that a certain
experimental system is in the same universality class as
the sine-circle map, one must determine that experimen-
tal invariants agree with those of the theory. This can be
done by extracting the scaling function from the experi-
mental data and showing that it agrees with the predicted
one. As shown elsewhere [24], the scaling function is ex-
tremely sensitive to noise and drift of the control parame-
ters and is difficult to obtain from experimental data (or
bad numerics). In this experiment we have succeeded in
obtaining the scaling function for a critical Poincare sec-
tion.

If the scaling function is not available, a less sensitive
test of the universality class of a system is its spectrum of
scaling indices, the f (a) curve [9,25]. It can always be
obtained from the scaling function, but the reverse is not
true. The full thermodynamics of the circle map is well

approximated by just two parameters, s, and s2, which
can be obtained from products of the scales of the scaling
function [26]. This two-parameter approximation to the
dynamics of the circle map analytically reproduces the
exact thermodynamics to within l%%uo.

where n, m, r, . . . are integers. This series can be com-
pactly written as ( n, m, r, . . . ). The special irrationals
for universality are those with periodic sequences. The
simplest such expansion is for all the terms to be 1, the
sequence (1,1, 1, . . . ). One can sum this series and ob-
tain the so-called "golden-mean" winding number
ps—= (&5—1)/2. Any winding number which has the
same asymptotic expansion of 1's will be termed a
golden-mean tail, and the dynamics at that winding num-
ber should obey the same predicted scalings. In practice
we only use finite truncations of the series, termed
golden-mean approxirnants.

Comparisons between theory and experiment are not
always straightforward because, in general, the critical
line for a physical system may not be smooth [19—21].
(This does not seem to be as big a problem in forced sys-
tems, where the critical line has usually been approximat-
ed by a simple curve. ) In addition, it is not known how to
map the control parameters of any two members of the
same universality class, so that the K and 0 of the sine-
circle map cannot be easily mapped onto the experimen-
tal control parameters. Nevertheless, certain points of
the parameter space can be identified, such as the cross-
ings of an irrational winding number region and the criti-
cal line. This is the point where the dynamics of the orbit
points of the map become chaotic, and for which there
are theoretical predictions.

Once the intersection point of the critical line and the

II. EXPERIMENT AND DATA

The experiment consists of a solution of 1.46 mol %
He in superAuid He confined in a small-aspect-ratio

convection cell of height 0.80 cm, length 1.60 cm, and
width 1.12 cm. The cell (Fig. 1) has upper and lower
boundaries of copper and sidewalls of low-thermal-
conductance Vespel-22 [27]. Thermal convection is in-
duced by applying a fixed heat current to the top plate
while maintaining the bottom plate at fixed temperature.
The cell is heated from the top because in solutions of
He in superAuid He the thermal-expansion coeKcient is

effectively negative; the lighter He accumulates at the
colder boundary owing to the "heat-Gush" effect, thereby
producing the unstable density gradient necessary for
convection. Near the onset of convection it is believed
that a dilute He —superfluid- He mixture is nearly identi-
cal to a classical single-component quid, while far above
onset the mixing of the hydrodynamic flow should
suppress any contribution due the intrinsic binary char-
acter of the mixture. Details and references to these as-
sertions 'can be found elsewhere [28,29]. In this classical
single-component approximation the convective state can
be parametrized by two dimensionless numbers: the Ray-
leigh and Prandtl numbers. The Rayleigh number is pro-
portional to AT, the temperature difference across the
Quid layer, and is a measure of the drive applied to the
system. It is defined as R =ggd b, T/vv, where g is the
acceleration of gravity, P is the effective thermal-
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FIG. 1. Low-temperature convection cell.

expansion coeKcient, d is the cell height, v is the kine-
matic viscosity, and ~ is the thermal difFusivity. For
time-dependent states above the convective onset the
Rayleigh number is time dependent owing to the
constant-heat-How boundary condition at the top plate.
Therefore the reported value of Rayleigh number, typi-
cally normalized by the critical Rayleigh number
R, =2000, are time-averaged quantities. The other di-
mensionless parameter in the problem is the Prandtl
number Pr=v/~. In the He —superAuid- He mixtures
Pr is a strong function of the mean temperature T and
is varied in these measurements over the range
0.06 & Pr &0.07 by varying the temperature over the
range 0.83 & T & 0.87 K.

In addition to a global measure of the temperature field
from the time dependence of the top-bottom temperature
difference, a thermal probe measures a localized region of
the Bow. Measurement of the dynamics of the system at
a single point is adequate to characterize the dynamical
state because in small-aspect-ratio convection the
sidewalls severely constrain the spatial structure of the
Quid How, leaving only temporal degrees of freedom. A
gold-iron therrnocouple, whose current is sensed by a
super conducting-quantum-interference-device ammeter,
measures the local temperature gradient near the center
of the cell top plate with temperature sensitivity of
0.3X10 K /&Hz [28]. We denote the measured tem-
perature difference at the local probe as 5T(t). Since we
measure temperature differences of the local probe rela-
tive to a thermal average over the top plate rather than
absolute temperature, there is some rectification of the
time series for oscillations that are syrnrnetric with
respect to the probe. This leads to an artificial enhance-
ment of the second harmonic of the time series. This is
not an intrinsic problem but does produce effects that
confuse the interpretation of the data somewhat. To
eliminate this problem we filter the data digitally to
reduce the large second-harmonic peak.

From the filtered time series the phase-space attractor
is constructed using standard dynamical-systems tech-
niques of delay coordinates [30—32] with mutual informa-
tion determination of the delay [33]. We also construct
Poincare sections as the interpolated intersections of tra-
jectories of the dynamical state with a plane in the
delay-coordinate phase space. The location and orienta-
tion of the plane is variable so that we can choose sec-
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FICz. 2. Phase diagram of convective states in parameter
space of the Rayleigh number and the Prandtl number. Regions
are described in the text.

tions with the minimum of overlappings and projection
singularities which can arise in delay coordinate recon-
structions of dynamical attractors. For convenience we
normalize the delay coordinates 5 T ( t +n T ) by the size of
the attractor so that the new coordinates X(t +nr) vary
between —1 and 1.

We have made a detailed study of the dynamics and
mode locking of two intrinsic modes of thermal convec-
tion sma11-aspect-ratio Rayleigh-Benard convection in a
dilute solution of He in superfluid He [15,16,34,35]. In
the parameter space of Rayleigh number R and Prandtl
number Pr regions of different convective behavior exist
(Fig. 2). For small R, the Quid conducts heat diffusively.
At R =2000 there is a supercritical (continuous) transi-
tion to steady convection [28], where the Quid motion is
believed to be two convection rolls oriented parallel to
the short side of the rectangular convection cell.

The first time dependence begins at the transition to
periodic oscillations of frequency f, . This transition is a
forward Hopf bifurcation [36—38] and the onset value de-
pends strongly on Pr. Another Hopf bifurcation at
higher R gives rise to a second frequency f2, incommens-
urate with the first. This second mode is only weakly in-
teracting with the initial limit-cycle mode, and not until
there is a discontinuous transition to a different second
mode does measurable mode locking occur. The physical
mechanism for this transition is not known. Within a re-
gion of parameter space above the discontinuous transi-
tion, quasiperiodic (incommensurate frequencies), mode-
locked, and chaotic states exist. As in the theoretical
model, the state of the dynamics is often well represented
by the winding number W=f2lf, , where f—, and f2 are
the fundamental frequencies determined from spectral
analysis of time-series data. (W is related to p in the
theory as discussed below). Figure 3 is a typical quasi-
periodic time series and power spectrum in which many
distinct peaks are observed. Each peak can be written as
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a sum, difference, or harmonic of the two fundamental
peaks. In Table I the fundamental frequencies and some
of the other peaks are compared with the decomposition
into combination frequencies. The mode-locking struc-
ture know as the "devil's staircase" is constructed from a
sequence of such spectra as a function of R at fixed Pr.
This structure is illustrated in Fig. 4 for experimental
data and is qualitatively similar to the circle-map version.
(Note that the range of experimentally accessible winding
numbers, 1/8 ( W(2/11, is substantially less than 1.)
By making a series of such measurements at different
values of Pr, the locking regions in the IR, PrI parameter
space are determined (Fig. 5). The tongues are seen to
broaden as Pr decreases (this is why we plot 1/Pr in Fig.
5) while the value of the winding number is controlled
primarily by changing R. A simple qualitative mapping
of the control variables R and Pr onto the circle-map
variables of K and 0 assigns R the role of Q and Pr that
of 1/K. In general, one is not guaranteed such a direct
relationship and more quantitative comparisons are
inadequate.

The boundaries of the regions where quasiperiodic and
mode-locked states are observed are higher-dimensional
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FICz. 4. Experimental devil's staircase of mode-locked inter-
vals for 1/Pr=14. 9, slightly above criticality. Prominent lock-
ings are indicated.

attractors for large R/R, and the simple quasiperiodic
state with no mode locking at smaller R /R, [15,34,35].
An important characteristic of the theory is the critical
line, where certain critical scaling behavior is expected.
In the complex experimental parameter space of R and
Pr one needs a way to define and locate such a line if it
exists. Below we discuss how we accomplish this experi-
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FIG. 5. Experimental regions of mode locking in the 1/Pr
and R /R, parameter space. The dashed lines represent the hys-
teretic discontinuity at low R/R„ increasing R/R, (small-
dashed line), and decreasing (large-dashed line), and the transi-
tion to high-dimensional chaos at large R /R, (dash-dotted line).
For 1/Pr~ 15, there is structure in the tongues not shown on
this global plot.
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TABLE I. Quasiperiodic frequency decomposition showing
the deduced combination of the fundamental frequencies f, and

f2, the measured frequency and the calculated frequency for a
given combination.

Combination

fI —6f2
2

gf2 —fI
2fz
9f2 —fI
3f2
I0f2 —fI
4f2
fI —2f2
5f2
fI fZ—

f (measured)

0.062 573 55
0.101 240 70
0.1'39 908 20
0.202 481 48
0.241 148 92
0.303 722 00
0.342 390 28
0.404 962 85
0.467 536 36
0.506 203 57
0.568 775 89
0.607 443 63
0.670 01778

f (calculated)

0.062 573 58

0.139907 82
0.202 481 40
0.241 148 52
0.303 722 10
0.342 389 22
0.404 962 80
0.467 536 38
0.506 203 50
0.568 777 08
0.607 444 20

mentally. First we describe simple quasiperiodic and
mode-locked dynamics that occur in a region of parame-
ter space in our Quid system that is far below criticality.

One can construct the dynamical state of a system
composed of two nonlinear, interacting modes of oscilla-
tion in a three-dimensional phase space consisting of nor-
malized delay coordinates X(t+nr) of the local-probe-
temperature oscillations. The trajectories in this phase
space lie on a manifold that is topologically equivalent to
a two-dimensional torus (in practice the torus is often
quite distorted). To better understand the dynamics one
constructs a two-dimensional mapping (Poincare section)
of the plane by plotting the interpolated intersections of
system trajectories with a two-dimensional surface. We
use a planar surface oriented in such a way as to produce
the "best" mapping, i.e., one that avoids crossings, kinks,
etc. In this way we can avoid distortions due to the im-
perfect embedding of delay coordinate schemes [30—32].

Note that our method of generating a Poincare section is
more general than the stroboscopic technique used in
forced oscillator experiments. In the subcritical regime,
this Poincare map will form a smooth one-dimensional
curve di6'eomorphic to a circle. In Fig. 6 an example is
shown for experimental data in which the dynamical
state is very close to a period-2 resonance. A one-
dimensional return map is constructed by parametrizing
the iteration of points on the circle by an angular coordi-
nate 0, producing a circle map 8„+&

as a function of 8„
[Fig. 7(a)]. The rotation number of this Poincare section
is di8'erent from W obtained from the frequency spectrum
because of the ambiguity in choosing the plane of the
Ponicare section that cuts the torus. It is operationally
easier to produce a section by cutting through the minor
axis of the torus, thereby producing a rotation number p
that is related to W by p= 1/W mod1. The state
represented in Figs. 6 and 7 has %=2/13 corresponding
to p=1/2. In this and all future Poincare sections we
shall refer to p as the appropriate winding number. To il-
lustrate the tangent bifurcation structure of mode locking
we plot in Fig. 7(b) the second-iteration map for the data
in Fig. 6, for which the dynamics is close to a period-2
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FIG. 7. Return maps for (a) first iteration 0„+& vs O„and (b)
second iteration 0„+2 vs 0„ for experimental data near locking
to a period-2 resonance.
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locking. (For a period-q locking a tangent bifurcation
will occur in the qth iterate map. )

III. TRANSIENT DATA AND ANALYSIS

A major problem in experiments on quasiperiodicity
and mode locking with two intrinsic frequencies is how to
define the critical line in the real experimental parameter
space. In the circle map, criticality comes about when
the map becomes noninvertible at a cubic inAection
point. In the more general case of a two-dimensional
map one can think of criticality as resulting from a loss of
smoothness or differentiability of the invariant circle as,
in general, the return map will not have a cubic infIection
point on this critical line [21,39]. A theoretical approach
for determining the critical line [19,20] was based on the
structure of the stable and unstable manifolds of the
periodic points in the interior of a resonance horn [5,40].
At the edges of a locking the periodic points arise from a
saddle-node bifurcation (the two-dimensional phase-space
version of the tangent bifurcation) and thus the stable
manifold must be characterized by two real eigenvalues
(Flouquet multipliers); see Fig. 8(a). If somewhere in the
interior of the horn the periodic points take on spiral sta-
bility, ie., complex-conjugate eigenvalues, then the stable
manifold is no longer difFerentiable at those points; see
Fig. 8(b). Other mechanisms can also lead to a loss of
smoothness of the circle, as discussed in Refs. [5,19,40],
but for simplicity we define our critical line to consist of
the minima of the spiral stability regions. Other criteria
based on the qualities of the time series at the golden
mean are often used, but our technique provides an in-
dependent measure of criticality. To realize this method
the linear stability of the periodic points has to be deter-
mined. This requires analysis of the system s transient re-
laxation to the attracting periodic points. Therefore, we
turn our attention to the production and analysis of tran-
sients in real physical systems with many potential de-
grees of freedom.

In simple systems such as electronic oscillators it is
easy to produce transients because one can specify the in-
itial conditions with a small number of parameters. On
the other hand, systems described by partial differential
equations have spatial degrees of freedom and require

specifying initial conditions at every point in space. This
is impossible experimentally for arbitrary initial condi-
tions, and so one typically uses another stable state of the
system as the initial state and produces transients by
making sudden changes in a control parameter. An im-
portant point to note here is that even if the long-time dy-
namics of the system are low dimensional, as in our ex-
periments on quasiperiodic convection, a sudden change
in control parameter is likely to induce dynamics in a
higher-dimensional phase space. These higher-
dimensional motions should damp out more quickly than
low-dimensional transients of interest, but there is often a
mixing of time scales, which complicates interpretation
of the dynamics. With that caveat, we describe cases
where the interpretation is straightforward and quantita-
tive results obtainable.

Consider transient relaxation to a single periodic point
in a period-2 cycle. This means that we take every other
iterative point from a Poincare section of the mode-
locked state. (The axes of Poincare sections shown in this
paper are proportional to the temperature oscillations of
the local probe but are scaled so that the entire range of
the attractor is +1.) The data in Fig. 9 are for a state
with spiral stability for which the real and imaginary
parts of the complex-conjugate eigenvalues A,~ and X~
can be defined by considering the position of the points
relative to the asymptotic stable state:

Ag n +kiln
r(r, 8,n)=roe ', where n is the discrete-time
iterative variable. A, R is obtained by plotting lnr versus n

as in Fig. 10(a). Likewise the angular rotation is just the
slope of 9 versus n [Fig. 10(b)]. We get
A,~ =0.18/iteration and A,i = 1.7 rad/iteration. In the re-
gion of the resonance horn where two real eigenvalues
govern the stability of the periodic points, one eigenvalue

-0.65

-0.67

-0.69

-0.71
0.51 0.53 0.55 0.57

X(t+ x)

FIG. 8. Stable and unstable manifolds: (a) of saddle node
and (b) of spiral periodic states. Saddles are denoted by ( 0 ) and
attracting periodic points by (0).

FIG. 9. Transient Poincare section showing a spiral ap-
proach to a periodic points in the 2/13-resonance horn;
R/R, =12.025 and 1/Pr=14. 77. Solid curves are a guide to
the eye and not system trajectories.
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is typically much larger than the other and only the
smaller one is accessible to experimental measu. rement.
An example of pure radial relaxation is shown in Fig. 11
where we get kR =0.3/iteration. By making a series of
such measurements across the 2/13 resonance, we can
specify the stability of the periodic points inside that
tongue. In Fig. 12, A.~ and A, z are shown for
Pr '=14.77, where spirals exist over most of the horn,
and for Pr '=14.56, where there are no spirals. Notice
how the radial eigenvalue decreases towards the middle
of the locking for the spiral case but is peaked for the
nonspiral data. Similarly the approximate threshold for
spirals is determined for the 3/19 and 4/25 resonances.
The accuracy with which this upper boundary to the crit-
ical line can be determined decreases as the cycle length
increases. Another limitation is that as the two real ei-
genvalues become close in magnitude, as they must be-
fore the transition to spiral stability, it becomes dificult
to resolve the spiral component before the transient has
decayed to the noise threshold.

The critical line, determined by this stability constraint
and by the condition that the critical line is below any
tongue hysteresis, is placed slightly below the locus of ap-
parent spirals. The tongue diagram, the spiral region of
the 2/13 resonance, and the critical line are shown in Fig.

I I
I

I

10

I I I I
l

I I I I
l

I I I I

~ ~ ~
10' ==

10

10

-4 I I I i I I I I I I I I I I I I I I I

20
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13. The general shape of the critical line follows Ref.
[19]. Also illustrated are lines of constant winding num-
ber with asymptotic golden-mean expansions. These are
defined as pz'"'=(n, l, l, l, . . . ) according to (2). It is at
the intersections of these golden-mean lines and the criti-
cal line that universal predictions of the sine-circle-map
model should apply. In the next section we describe
those predictions and the analysis tools for making quan-
titative comparisons between theory and experiment.
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FIG. 10. Plots of (a) r and (b) 0 vs iterate number n for data
from Fig. 9. Solid lines are straight-line least-squares fits to the
data where the slope determines the eigenvalues A,& and A.l.

FIG. 12. Eigenvalues for periodic points (Floquet multi-
pliers) across the 8'=2/13 locking interval: (a) A.~ vs R/R, ,
1/Pr=14. 77; (b) X& vs R/R, for 1/Fr=14. 6; (c) A,l vs R/R,
for 1/Fr= 14.77. Lines are a guide to eye and error bars reAect
statistical uncertainty in the fits.
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rP = 1 (modQ) (4)

in the range 1 ~ r + Q —1. If the winding number of an
orbit is 8/13, then the close return time r is 5 as
5 x 8=40=1+3x13.

Once the close-return for a given orbit is determined,
its winding number can be verified. This is done by con-
necting each of the Q orbit points x„ to their nearest
neighbor in coordinate space, that is, connecting the
point x„ to x„+„,where r is the close-return time for the
P/Q orbit (see also Glazier, Gunaratne, and Libchaber
[41]). If the winding number is not correct, then the con-
nected points will not form a smooth one-dimensional
manifold. An example of the determination of the wind-
ing number of an experimental orbit is given in Fig. 14.
In Fig. 14(a) the set of orbit points used in Figs. 14(b) and
14(c) are not connected. In plot (b) the winding number
was assumed to be 31/143 with the corresponding close
return time being r =60; in plot (c) the winding number
was assumed to be 30/143 with r =62. In (b) the correct
choice was made for the winding number. By exploring
nearby rotation numbers (those that have the same initial

(a) (b)

\
~ ~

r ~'

FIG. 14. Given a winding number P/Q, each orbit point x„
of (a) is connected to supposed close return, x„+„[seeEq. (4)].
If the winding number is correct, (b) is obtained, and if chosen
incorrectly, (c}is obtained.

set of initial points and determining points that come
closer and closer to this set. Di6'erent initial points will
have di6'erent sets of close-return times, but if the orbit is
close to a periodic one there will be a few common close-
return times that are all candidates for the period of the
orbit. These can be tested by verifying the winding num-
ber of the orbit.

The ordering of the points of a periodic orbit of a
monotonic map of the circle can be determined from the
denominator and the numerator of its rational winding
number. If the winding number is P/Q, there are Q
points of the orbit along the circle. Each iteration of the
map takes the orbit P points along the circle, either
clockwise or counterclockwise, so that the next point in
time is not the closest one with respect to coordinates.
To determine the closest point in coordinate space one
has to determine the closest-return time r. If at each step
the orbit moves P points along the curve, then there is a
minimum number r of P steps that must be taken to land
exactly one point from the starting one. The close return
time r can be determined by finding the solution to the
equation

f t'x )
R

FIG. lS. The end points of a segment 6k are determined
from x„and its close return time f"{xk). The length is comput-
ed by joining all points that are within the end points of the seg-
ment. This is a better approximation to the smooth manifold.

sequence in the continued-fraction expansion) one can
determine that the rotation numbers are accurate to
within a few parts per thousand, and not parts per hun-
dred as one would expect from an orbit of period 143.
The procedure described for the computation of the
winding number requires less data for comparable accu-
racy than the one described in Stavans, Thomae, and Lib-
chaber [42] because it uses the ordering of the points.

The segments from which the thermodynamics is de-
rived are the segments 6k that connect neighboring
points xk to x&+, along the manifold in coordinate space.
In some cases there are more points in the data set than
are needed for the orbit, and the extra points can be used
to determine a smoother approximation to the manifold
(a loop), as indicated in Fig. 15.

B. Scaling function

The scaling function (introduced by Feigenbaum in
Ref. [43]) gives complete details on how the orbit points
are being positioned along the loop. It give asymptotic
information relative to a few initial orbit points in a small
region of the loop, and completely characterizes the
circle-map universality class.

For the purpose of computing scaling functions it is
necessary that the winding number be a periodic contin-
ued fraction, in our case a series of 1's forming a golden-
mean tail. If the winding number determined from the
data is not a golden-mean tail, then there are at least two
options. One can consider the longest possible sequence
of 1's in the actual winding number. For example, if the
winding number is 28/129 = ( 1,4, 1, 1, 1, 1,5 ), then the
longest sequence would be ( 1,4, 1, 1, 1, 1 ), which corre-
sponds to the winding number 5/23. The 6rst 23 points
of the longer orbit would be used as the end points for the
segments, using the remaining points to determine inter-
mediate points within the segments. Alternatively, one
can reconstruct the behavior of the map as a function of
the control parameters in the vicinity of a golden-mean-
tail point, and from the reconstructed map determine the
scaling function [24].

With the reconstruction technique one can utilize all of
the available data, even if the winding number is not ex-
actly a goLden-mean tail. Naively, one would expect that
in an orbit of winding number 28/129, as above, one
could use the nearest golden-mean approximant with
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smaller denominator, 21/97. However, in the sine-circle
map, if the 28/129 orbit is compared to the 21/97 orbit,
one finds that the first 23 orbit points of the orbits are in
close agreement, and after that the phase difference be-
tween the two orbits can amount to errors of up to 20%.
To eliminate this phase problem we choose two data sets
with different winding numbers: one smaller than the
golden-mean-tail approximant, and one larger. The re-
turn map of the two data sets is used to interpolate new
return maps, and the one with the correct winding num-
ber (21/97) is chosen for computing the segments. The
interpolation procedure amounts to small changes, as the
two return maps cannot be distinguished from each other
on a plot [24]. As a check to the reconstruction tech-
nique, we have computed the value of 5, the eigenvalue
that controls the scaling of tongue widths, to be 2.8 (to be
compare with the prediction of 2.83). We use the recon-
struction technique in determining the scaling function.

The determination of the scaling function for an arbi-
trary rotation number requires a set of segments organ-
ized as in Fig. 16. The points in the figure correspond to
a rotation number of 8/13, a golden-mean approximant.
The same orbit is viewed as determining different sets of
segments, each set containing a Fibonacci number of seg-
ments organized in a level. The actual end points of the
segments can be expressed directly in terms of the orbit
points. The end point for a segment 6&"' is a function of
the level n, , for example, A0" has as end points x0 and x2,
whereas A0

' has as end points x0 and x3. For the
golden-mean approximants the end points for all inter-
vals can be expressed in terms of the Fibonacci numbers,
and similar expressions hold when the rotation number is
a golden-mean tail.

The general rule for determining the segments is to
choose an initial segment A0"' and iterate it with the map,
so that if we know the end points of A0"' we then know
the end points of all other segments. The end points of
A0("' are given by x0 and x„,where r„ is determined from

the p„/q„winding number as in Eq. (4). At level n there
will be F„segments, F„being the Fibonacci sequence ob-

tained from the initial values F0 =1 and F& =2. The scal-
ing function is composed from a series of piecewise con-
stant steps of height o',"' placed in ascending order t to
approximate the function

o(s)= lim crt",~) I,n

where s ranges between 0 and 1, and lx J is the largest in-
teger smaller than x. The scaling u', "' is given by the ra-
tio between 6',"+"and its parent segment:

where F„ is the Fibonacci number of segments that exists
in level n Th. e function e(t, F) is the parent index func-
tion, which in the simple case of the golden mean returns
t —F if t ~F and t otherwise. For any golden-mean-tail
winding number, the segments are arranged exactly as in
Fig. 16, and A0("' is the segment between x0 and x . The

&n

general formulas for the segments in the scaling ratios are
worked out in a binary Fibonacci base in the Appendix.

The scaling function o.(s) determines the asymptotic
ratio between the two segments that are separated by a
fraction s of the periodic orbit. For smaller values of s
the initial segment gets mapped around the loop a smaller
number of times than for larger values of s. We should
then expect that the errors in the scaling function will be
larger for larger values of s.

In Fig. 17 we have plotted two different scaling func-
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FIG. 16. Tree structure of the segments.

0.0
0.0 Oe5

S
1.0

FIG. 17. Scaling functions for the experimental data. The
theoretical curve is solid and the experimental curve is dotted.
In (a) the scaling function was computed directly from an orbit
that approximated a golden-mean-tail winding number; for
short periods of time the approximation is good, but decreases
for longer periods. In (b) the scaling function was corrected for
phase problems and averaged between two regions. Only the
difference in the major jumps must be compared, as indicated.
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tions computed from the experimental set. One of the
curves [Fig. 17(a)] was obtained directly from the data
set, whereas the other curve [Fig. 17(b)] was obtained
from the reconstruction process. In comparing these
curves with the theoretical prediction one should com-
pare the sequences of ups and downs and the initial part
of each of the steps, as these remain unchanged when the
number of steps in the scaling function is increased. In
Sec. IV C we will compute the spectrum of singularities
f (a) from this scaling function and directly from the seg-
ments on the loop.

C. Thermodynamics

q = —p(P) and r= /3 .— (10)

By implicit differentiation of these relations we obtain the
expression for a, as

given in the limit of I b, k I
—+0 for all k. In that case, for a

fixed q the sum I is either zero or infinity except for a
particular choice of ~, which then defines the function
r(q). From the ~ function one introduces the conjugate
variable o.=B ~, and the Legendre transform of ~, the
spectrum of singularities f =qa —~. By comparing the
sum in (9) with the partition sum in (8) we can establish
the correspondence (see Feigenbaum [49])

Even though the scaling function is the maximal in-
variant for the maps of the universality class of the sine-
circle map, there are other invariants that can be com-
puted. One class of invariants, introduced by Sinai [44]
and Bowen [45] and later generalized by Ruelle [46],
closely follows the formalism of thermodynamics. The
analogy is found when we try to compute the Hausdorff
dimension of the set covered by the segments 6k of size

To determine the Hausdorff dimension PH one
determines the value of P such that the sum

z(p) = y la, l& (7)

is neither zero nor infinity in the limit of infinitely small
segments. One notices that if the segments 6k are taken
to be the Boltzmann factors and the Hausdorff exponent
is taken to be the inverse temperature p, then the sum (7)
can be considered to be the partition function of a system
where the "energy" of the state k is given by —lnl b, k I.

If the number of segments 5'k"' at a certain level n is

Q„, then the "pressure" p (p) can be defined as the limit

p (P) = —lim In g b.'k"'l~,1

n-co lnQn p&k&g
n

r(q, ~)= y
I
g(n)I r (9)

Because the segments Ak were defined as being equiprob-
able, we can take pk =1/Q„. The definition of f (a) is

where for golden-mean-tail winding number Q„grows as

pg as n goes to infinity, p~ being the golden mean
(&5—1)/2. The choice of the name pressure for this
quantity was introduced by Ruelle in analogy with the
lattice-gas quantity. From it several other quantities of
interest can be derived: the spectrum of singularities

f (a) and related quantities a and r [47] and the general-
ized dimensions Dz [48]. These quantities are functions
of the pressure p and its derivative with respect to p,
which we denote by u, the internal energy.

To establish the relationship between the spectrum of
singularities and the pressure, we must recast the
definition of the spectrum of singularities in terms of the
segments b,k. The f (a) formalism assigns to each seg-
ment b, I, a probability pk (in general the probability of
the segment being visited). One then considers the sum

a '=u (/3) = = —limap( )

BP n-~ lnQ„
k

Notice that to evaluate this expression from the segments
there is no need to perform a numerical differentiation of
~(q), as it is given in terms of the segments. The expres-
sion for the singularity spectrum is then

f (a)=/3 p( )

u(p)
(12)

The relationship between the pressure and the general-
ized dimensions also follows from the sum in (9). Taking
as the definition of the generalized dimension D the rela-
tion r=(q —1)D, we get

1+p (P)
(13)

z'"'(p)=[1, 1, 1]&'" "(p)[l~"'I~, I&"'I~, I&"'l~]', (14)

where &(p) is the matrix

With the above expressions one can determine the
spectrum of singularities and the generalized dimensions
in terms of the parameter /3. In practice one fixes a value
of p and from the set of segments the pressure p (p) and
the energy u (p) are computed using expressions (8) and
(11). With these two values all other quantities are given
implicitly [24]. A similar approach for computing the
f (a ) spectrum was discussed by Chhabra et al. [50,51].

The thermodynamic quantities can be directly obtained
from the scaling function. The connection is established
by evaluating the asymptotic behavior of each segment.
Every segment at a given level can be written as the prod-
uct of scalings at previous levels multiplied by the initial
segment. For example, Ib4 'I =o', "cr'i 'o~ 'Ih' 'I. The
value of a given o.k"' converges to a limit exponentially
fast as a function of n, so for the thermodynamics, o.k"'

(for any n) can be substituted for its asymptotic values.
Using the five-step approximation to the scaling function,
all segments beyond level 2 can be written as products of
the several scales o.

k and three initial segments 4'k '.
One can verify that the partition function (8) is given

by a power of a transfer matrix T as
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In the limit of large n, the partition function (14) is dom-
inated by the largest eigenvalue A, (P) of T (P), and the
pressure can be written as

-50—
---x

x---. .x

1
ink, (P) . (16)

x---x

In the circle map there is the extra constraint that the
Hausdorff dimension of the orbit be equal to 1. The
Hausdorff dimension is the generalized dimension Do,
which implies that the pressure p (pH) is zero from Eq.
(10), and that as Do = 1, the value of PH is one from Eq.
(12).

We can incorporate the constraint directly into the
evaluation of the largest eigenvalue, as it is also satisi-
fied experimentally. Defining z = 1/A, , we get the
secular equation 1 zo~z —z(o—2a&)~ z[(c—rio 2cr3)~
—(ooozo4)~]=0. From the condition p(13=1)=0 we
have z = 1 for p= 1 and we get the simplified expression

(1—zs~»)(1 —z s~~) —z (1—s, )~(1—s~)~=0, (17)

where si =oo and s2=crzoz [26]. The final secular equa-
tion depends on only two parameters, s& and s2, whereas
the original scaling function had five parameters. This
indicates that the thermodynamics of the circle map is
degenerate in the sense that there are many different sca1-
ing functions (and therefore many different dynamics)
that produce the same thermodynamics [49]. The
theoretical spectrum of scalings f(a) can be determined
from just the two parameters s& =0.468 and s2 =0.S56 to
within plotting accuracy (around 1%).

D. Computing the thermodynamic quantities

In this subsection we explain some of the practical de-
tails involved in computing the thermodynamic quanti-
ties from the experimental data. Most of the difficulties
come from the finite number of segments. For a fixed
number of segments there is only a finite range of the pa-
rameter P that can be used reliably, and outside this
range the partition function (8) is dominated by a single
segment. To circumvent this problem we have used a
combination of scaling-function techniques and direct
methods that utilizes all the data available.

To perform a multifracta1 analysis of the orbit, it must
be first veriIIied that the orbit is generating a scaling ob-
ject. This is done in two different ways: with the scaling
function and by direct computation of the partition func-
tion. The scaling-function method consists of verifying
that the points are indeed being placed along the loop as
a circle map, and assuming that this persists for all scales.
This need not be the case in a two-frequency system like
the one being studied. Next the scaling is checked by
computing the scaling function, as presented in Sec. IV B.
The direct method consists of computing the partition

-1 00
2

»»»» ]»» I 1 I »»»»
3 4

In Q„

FEG. 18. Scaling of the partition function, Eq. (7), with the
cycle length Q„. Three different values of p are used: p= —10
(0), 0 (+), and 10 ( X ).
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Flax. 19. P(p) vs p for experimental data. For (~ ) all the
data were used and for ( ) only the largest segment was
used.

function (8) and verifying that it grows exponentially as
the number of segments is increased. The growth is plot-
ted in a log-log plot in Fig. 18 for three different values of
P. This plot verifies directly from the data that the limit
used to compute the pressure (10) does exist. As smaller
segments are better converged than larger ones [the
error term for the largest segment goes as—1nQ„(1.28857. . . ) "], the scatter in the data for negative
values of p is smaller than for positive p.

A straightforward evaluation of the f (a) curve for the
small number of data points that we have here, of order
100, gives reasonable spectra. For example, the max-
imum of the f (a) curve is at 0.99+0.01, indicating that
the fractal dimension of the orbit is consistent with 1.
But the procedure is not robust and is strongly affected
by a few segments. In particular the largest and smallest
segments dominate the determination of the range of
scales, i.e., the values of e,„and n;„. This is because
these quantities depend on the interval sizes raised to the
power p and thus the largest segment dominates the sum
for large positive P, whereas the smallest segment dom-
inates for large negative P. In Fig. 19 we illustrate this
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for large segments by plotting p (P) for all the data and
comparing it with p(P) computed from only the largest
segment; for P & 8 (which corresponds to a —=l. 5) there is
no difference between the two. This indicates serious
problems since it is necessary to have good values of p (P)
for P & 30 to accurately obtain a,„.

To quantify the effects of the smallest and the largest
segments, we have plotted the energy function, Eq. (11),
as a function of P. The plot is reproduced in Fig. 20 and
except for a small region around P=O the function as-
sumes only two values:

I I I I
i

I I I I
]

I I I I
)

I I I I4
~ ~

~ 0
~ 0

8 I I I I [ I I I I I I I I I I I I I I

-4 -2 0 2

1 ~
(n) ~~(n)

n~n ln~n
(18)

The transition region is where all the segments are con-
tributing to the partition sum. Given that the spectrum
of singularities can be well determined by just the two pa-
rameters si and s2, we can directly compute p (p) for the
transition region and use it to fit the values of s, and s2.
Then, for illustration, the spectrum of singularities (or
any other thermodynamic quantity) can be computed
from them.

To determine the parameters s, and s2 we have fitted
the thermodynamic pressure obtained directly from the
segments in the Poincare section with the expected ex-
pression (10). The fit is done in a limited range of values
of the parameter I3 (which plays the role of temperature)
to avoid the dominance of the partition sum (8) by a few
segments. The range of P to be used may seem arbitrary
at first, but can easily be extracted from the plots of the
"energy" u as a function of the parameter P. The energy
has a sharp transition around f3=0 and choosing a range
of P around the transition assures that none of the seg-
ments is dominant in the partition sum (8).

The fit is computed using a nonlinear least-squares fit,
and the fit is done many times using different collections
of values of the pressure p(P), with a bias towards nega-
tive P (which represents the better-converged values). By

FIG. 21. Fitting of the pressure. The points represent the
data and the solid curve the fitted pressure.

repeating the fit many times we are able to determine a
distribution for the values of the parameters s, and s2,
from which the fitting errors are determined. In Fig. 21
we plotted the set of points for the pressure and the curve
obtained from the fitted values: s, =0.47+0.01 and
s2=0.61+0.2. The f(cr) spectrum obtained using these
parameters is shown in Fig. 22. Also shown for compar-
ison is a subcritical f (a) curve. In principle, a subcriti-
cal data set is not multifractal and should collapse to a
point. Finite-size effects, however, associated with finite
cycle approximations to the golden mean cause some re-
sidual multifractal scaling (see Arneodo and Holscneider
[52]) and a narrow but finite width curve (see also the ex-
amples in Glazier, Gunaratne, and Libchaber [41]).

From the quantities s& and s2 we can calculate the
value of the inAection point exponent which characterizes
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FICi. 20. Energy function for the experimental data. Due to
a finite number of segments, the smallest and the largest seg-
ments dominate the function at the extremes of the P parameter
range.

FIG. 22. f{a) curves for the experimental data (~ ), for
theoretical data from a sine-circle map at criticality ( ),
and for a subcritical experimental data set ( ———) with
R/R, =12.375 and 1/Fr=14. 17. The error bars for a that are
smaller than 1.1 are of the order of the data points and are not
plotted.
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the universality of a particular map. For inAection points
of the type 0~29~ ' we have that v=2 inst /ins~
=a,„/a;„[26]. From the experimental data for t()(4),

Fig. 13, we get v=3. 1+0.3, putting the state in the
universality class of the sine-circle map (1). Other
golden-mean hnes in our parameter space, p and p

~ ~ (2) (3)

yield v' '=2.9+0.3 and v' '=2. 8+0.4.

Po 0
QP 1' Qt

P&

at
'

Q2

p=(at, a2, a3, . . . ),
then

1
a&+

a2

(Al)

(A2)

V. CONCLUSIONS

We have presented experimental data on the quasi-
periodic regime of Rayleigh-Benard convection in a
He —superAuid- He mixture. The quasiperiodic motions

are two internal oscillatory modes of the system and are
shown to lead to mode-locked and chaotic states. The
parameter space of Rayleigh and Prandtl numbers is ex-
plored and mode-locked regions are identified. The criti-
cal line of the circle map model is located using transient
Poincare sections to study the stability eigenvalues of
periodic points within resonance horns. This is a power-
ful technique that can be utilized effectively even in sys-
tems such as thermal convection that are intrinsically
higher dimensional. We have also implemented a nurn-
ber of techniques for the analysis of nonlinear dynamical
systems, particularly those thought to correspond to the
universality class of a one-dimensional-map model.
These techniques are robust both in the presence of noise
and using small data sets, and should have wide applica-
bility. In particular, our determination of the trajectory
scaling function by fitting the experimental map is an ex-
ample of techniques now being investigated for interpo-
lating the behavior of dynamical systems as a function of
the control parameter. Finally, we have demonstrated
that for a number of points in the experimental parame-
ter space the universal predictions of the sine-circle map
are satisfied to remarkable precision. This constitutes a
very severe test for the genericity and universality of the
circle-map predictions, since systems with two internal
frequencies cannot be manipulated to provide optima)
conditions for circle-map behavior.
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APPENDIX: GENERAL EXPRESSIONS
FOR THE SCALING FUNCTION

When the winding number is not the golden mean, the
segments that go into the computation of the scaling
function are no longer given by the Fibonacci numbers.
In this appendix we will explain a few details of the order
of the segments along the circle and how to compute the
scaling function.

For an irrational winding number p there are a series
of approximants P„/Q„ that are determined from trunca-
tions of the continued fraction expansion ofp. If

and in general one has the recursions

Pn + 1 an + 1Pn +Pn —1

Qn+1 =an+1Qn +Qn =1
(A3)

By definition the approximant Pp/Qp is the fraction 0/1.
The nth approximant for a periodic continued fraction
has the property that it approximates the irrational p by
CQ„', for a constant C independent of n

For each approximant to the irrational winding num-
ber, one has an orbit of Q„points labeled xp through
x& &. This orbit is not a periodic orbit since x&, the

n n

next orbit point, is not the point xo, but it is a close ap-
proximation to one. The error xo —x& goes asyrnptoti-

n

cally as o.", with o; the eigenvalue 1.2558. . . of the
circle-map renormalization group.

The point closest to xo with respect to the coordinate
is x& and on the other side of xo along the circle is

2

x& . In general, the segment between xo and x& is
n —1 n —1

the largest segment generated by the orbit with Q„
points. In analogy with the sine-circle map we choose

b,p(") = [x(),xt) ] (A4)

and define the other segments as its iterates

g( )fn(k)(g(n)) [ x ]
n —1

(AS)

where the index calculations are done modulus Q„.
For the purpose of computing the scaling function, one

does not consider all Q„segments, but just the iterations
of Ao"' that do not share a common end point. These are
the segments of label 0 through Q„2—1, and do not cov-
er the whole circle.

The scaling function o (s) is formed by the concatena-
tion of piecewise constant steps 0, The number of steps
is one of the Fibonacci numbers in the sequence
IFp, F„Fz. . . ] with Fp =1 and F, =2. The steps o, that
form the scaling function are the ratios between segments
at different levels, the larger segment being the "parent
segment" and the smaller segment being the "child seg-
ment. " If the winding number is the golden mean, the
parent and child segments can be expressed in terms of
the Fibonacci numbers, but if the winding number is just
the golden-mean tail, then one has to introduce a binary
Fibonacci base to express them.

Any positive integer s can be written in the form

s =epFp+ e 1F1+a~F2+ e3F3 +
with any of the e; taking the values 0 or 1 and the F; as
defined above. The sequence of e; is a binary Fibonacci
representation of the integer s, and is written from the
most significant e to the least significant e as in
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sF, J )I

(l P;J)l ' (A7)

(ek, ek „.. . , eo). It is not unique because some integers
can be written in more than one way. For example, the
integer 3 can be written as (O, l, l) or as (1,0,0). To make
the binary Fibonacci expansion unique we introduce the
convention that there cannot be two successive 1's in the
binary expansion [53]. In the example, (1,0,0) would be
the representation of 3.

We define the scaling function using two index func-
tions: the child function 8„(s) and the parent function

e„(s) to be defined later.

To compute the child function for an integer s one first
decomposes s into its binary Fibonacci expansion
(ek, ek „.. .e„eo), chooses an offset m ~0, and evalu-
ates the sum

(s) =~oQ —k — +etQ —k+i—

+ +&k-iQ. —i — +&kQ. — (A8)

In practice, to improve the convergence, one has to
choose the o6'set m to be at least 1. The parent function
is evaluated using the same o6'set m,

e„(s)= eoQ —k—

+&iQ. —k+i- + +'k —iQ. —i— (A9)
where we used the Iloor function lx J, which returns the
largest integer smaller than x. The child and parent func-
tions depend on the approximants P„/Q„being used.

The parent function divers from the child function only
by the omission of the last term of the sum.

[1]K. Kaneko, Collapse of Tori and Genesis of Chaos in Dissi

pative Systems (World Scientific, Singapore, 1986).
[2] J. Glazier and A. Libchaber, IEEE Trans. Cir. Sys. 35, 790

(1988).
[3] R. Ecke, in NATO Advanced Study Institute —Chaos, Or-

ders, and Patterns, edited by P. Cvitanovic and R. Artuso
(Plenum, New York, in press).

[4] S. Shenker, Physica D 5, 405 (1982).
[S] S. Ostlund, D. Rand, J. Sethna, and E. Siggia, Physica D

8, 303 (1983).
[6] M. Feigenbaum, L. P. Kadanoff; and S. J. Shenker, Physi-

ca D 5, 370 (1982).
[7] M. Jensen, P. Bak, and T. Bohr, Phys. Rev. A 30, 1960

(1984).
[8] P. Cvitanovic, M. Jensen, L. KadanofF, and I. Procaccia,

Phys. Rev. Lett. 55, 343 (1985).
[9] M. Jensen, L. Kadanoff; A. Libchaber, I. Procaccia, and J.

Stavans, Phys. Rev. Lett. 55, 2798 (1985).
[10]A. Fein, M. Heutmaker, and J. Gollub, Phys. Scr. T9, 79

(1985).
[11]E. G. Gwinn and R. M. Westervelt, Phys. Rev. Lett. 57,

1060 (1986).
[12]J. Maurer and A. Libchaber, J. Phys. (Paris) Lett. 40,

L419 (1979).
[13]M. Sano and Y. Sawada, in Turbulence and Chaott'c Phe

nomena in Fluids, edited by T. Tatsumi (North-Holland,
Amsterdam, 1983), pp. 167—172.

[14]J. Gollub and S. Benson, J. Fluid Mech. 100, 449 (1980).
[15]H. Haucke and R. Ecke, Physica D 25, 307 (1987).
[16]R. Mainieri, T. Sullivan, and R. Ecke, Phys. Rev. Lett. 63,

2357 (1989).
[17]J. Peinke, J. Parisi, R. Huebner, M. Duong-van, and P.

Keller, Europhys. Lett. 12, 13 (1990).
[18]M. Bauer, U. Krueger, and W. Martienssen, Europhys.

Lett. 9, 191 (1989).
[19)T. Bohr, P. Bak, and M. Jensen, Phys. Rev. A 30, 1970

(1984}.
[20] T. Bohr, Phys. Rev. Lett. 54, 1737 (1985).
[21] X. Wang, R. Mainieri, and J. Lowenstein, Phys. Rev. A

40, 5382 (1989).
[22] D. Sullivan, in ¹nlinear Evolution and C-haotic Phenom

ena, edited by P. Zweifel, G. Gallavotti, and M. Anile
(Plenum, New York, 1987), pp. 101—110.

[23] M. J. Feigenbaum, Nonlinearity 1, 577 (1988).
[24] R. Mainieri and R. Ecke (unpublished).
[2S] T. Halsey, M. Jensen, L. Kadanoff; I. Procaccia, and B.

Shraiman, Phys. Rev. A 33, 1141 (1986).
[26] M. J. Feigenbaum, J. Stat. Mech. 46, 925 (1987).
[27] Vespel is a graphite-loaded polyimide resin produced by

Dupont, Wilmington, DE 19898.
[28] Y. Maeno, H. Haucke, R. Ecke, and J. Wheatley, J. Low-

Temp. Phys. 59, 305 (1985).
[29] G. Metcalf and R. Behringer, Phys. Rev. A 41, 5735

(1990).
[30] N. Packard, J. Crutchffeld, J. Farmer, and R. Shaw, Phys.

Rev. Lett. 45, 712 (1980).
[31]F. Takens, in Lecture Notes in Mathematics Vol. 898,

edited by D. A. Rand and L-S. Young (Springer, Berlin,
1981},pp. 366-381.

[32] J. -P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617
(1985).

[33] A. Fraser and H. Swinney, Phys. Rev. A 33, 1134 {1986).
[34] R. Ecke and I. Kevrekidis, Phys. Lett. A 131, 344 (1988).
[35] R. Ecke and H. Haucke, J. Stat. Phys. 54, 1153 (1989).
[36] R. Ecke, Y. Maeno, H. Haucke, and J. Wheatley, Phys.

Rev. Lett. 53, 1567 (1984).
[37] R. Ecke, H. Haucke, Y. Maeno, and J. Wheatley, Phys.

Rev. A 33, 1870 (1986).
[38] R. Deissler, R. Ecke, and H. Haucke, Phys. Rev. A 36,

4390 (1987).
[39] D. Rand, in Proceedings of the Eighth International

Congress of Mathematical Physics, edited by M. Mebkhout
and R. Seneor (World Scientific, Singapore, 1987}.

[40] D. Aronson, M. Ghory, G. Hall, and R. McGehee, Com-
mun. Math. Phys. 83, 303 (1982)~

[41]J. A. Glazier, G. Gunaratne, and A. Libchaber, Phys.
Rev. A 37, 523 (1988).

[42] J. Stavans, S. Thomae, and A. Libchaber, in Dimensions
and Entropies in Chaotic Systems, edited by G. Mayer-
Kress, Springer Series in Synergetics Vol. 32 (Springer-
Verlag, Berlin, 1986), pp. 207 —214.

[43] M. J. Feigenbaum, Commun. Math. Phys. 77, 65 (1980).
[44] Y. Sinai, Russ. Math. Surveys 166, 21 {1972).
[45] R. Bowen, Trans. Am. Math. Soc. 154, 377 (1971).
[46] D. Ruelle, Trans. Am. Math. Soc. 185, 237 (1973).
[47] T. C. Halsey et al. , Phys. Rev. A 33, 1141 (1986).



8118 R. E. ECKE, RONNIE MAINIERI, AND T. S. SULLIVAN

[48] P. Grassberger, Phys. Lett. A 97, 227 (1983).
[49] M. J. Feigenbaum, J. Stat. Phys. 46, 919 (1987).
[50] A. Chhabra and R. V. Jensen, Phys. Rev. Lett. 62, 1327

(1989}.
[51]A. B.Chhabra, R. V. Jensen, and K. R. Sreenivasan, Phys.

Rev. A 40, 4593 (1989}.

[52] A. Arneodo and M. Holschneider, Phys. Rev. Lett. 58,
2007 (1987}.

[53] D. E. Knuth, The Art of Computer Programming, Vol 1. .
Fundamental algorithms, 2nd ed. (Addison-Wesley, Read-
ing, MA, 1973},see exercise 1.2.8.34.


