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Rayleigh-Brillouin light-scattering study of both fast and slow sound in binary gas mixtures
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We present Rayleigh-Brillouin scattering results of H2+ Ar, H2+ Xe, and He+ Xe mixtures that sup-
port the existence of fast and slow sound in binary gas mixtures. An experimental dispersion relation of
both the fast and slow sound modes is given. The approach to the Gaussian limit is also investigated.
An alternative characteristic length scale is used as the scaling parameter of the sound modes. This
length scale proved to be a proper choice as a scaling parameter of the dispersion relation of different gas
mixtures.

PACS number(s): 05.20.—y, 33.20.Fb, 51.70.+f, 78.35.+c

I. INTRODUCTION

When Brillouin derived the formula that predicted a
shift in frequency of scattered light with respect to the in-
coming light [1],his results were received with skepticism
[2]. It took more than 15 years before his predictions
were verified experimentally by Gross [3]. Gross was not
only the first to observe the so-called Brillouin lines, he
was also the first who claimed to have observed multiple
sound modes. With respect to that last point his experi-
ments turned out to be incorrect [4], and it would take al-
most 60 years before new claims would be made about
the observation of more than a single bulk sound mode in
a Rayleigh-Brillouin light-scattering spectrum of a Quid
[5]. This time, however, there was a sound physical basis
for such an assertion. Recent developments in the fields
of computer simulations, kinetic theory, neutron scatter-
ing, and light scattering contributed to this basis.

First of all, Bosse et al. [6] performed simulations on a
liquid Li+Pb alloy, and found, unexpectedly, indications
for the existence of a fast-propagating collective mode of
the Li particles. The propagation velocity of this mode
was more than three times larger than the ordinary sound
velocity of the mixture. The subsequent theoretical work
by Campa and Cohen was the important breakthrough.
They showed that calculations based on revised Enskog
theory predicted a fast sound mode in dense He+Xe
mixtures [7,8]. Later they were able to show that fast
sound should also occur in low-density gas mixtures [8,9].
These results suggested that the existence of fast sound is
a general property of both high- and low-density binary
fiuid mixtures [8].

The calculations triggered a considerable amount of
additional work. Montfrooij, Westerhuijs, and de
Schepper performed a molecular-dynamics simulation on
a dense He+Ne mixture [10] and observed fast sound.
Later they were the first to present experimental evidence
of fast sound from neutron-scattering experiments on a
dense He+ Ne mixture [11]. In their experimental paper,

they suggested that the negative dispersion observed in
He+Xe gas mixtures by Schaink and Wegdam [12,13]
could be the onset of slow sound: a sound mode to which
only the heavy particles contribute. The existence of
both sound modes was demonstrated for a H2+Ar gas
mixture by our group [5]. We observed a fast sound
mode and also a heavily damped slow sound mode for
large reduced wave vectors. Independently, Clouter
et al. [14] showed the existence of fast sound in H2+Ar
and of slow sound in H2+SF6. More recently, we added
preliminary results on H2+ Xe mixtures [15].

We investigated binary mixtures of H2+ Ar and
H2+Xe at different compositions and established the
dispersion relations of the propagating modes. In this pa-
per we present these results and our attempts to find the
scaling parameters —for frequency and wave vector —to
scale the dispersion relations onto a single curve indepen-
dent of kind and composition of the mixture. A proper
length scale, the so-called effective mean free path, was
found by us and suggested in an earlier publication [16].

The relatively simple picture that emerges from these
experiments confirms the suggestion of Campa and
Cohen [9]. At small wave vectors the system behaves as a
homogeneous mixture with just one propagating sound
mode. From certain wave vectors on, the system decou-
ples dynamically and two propagating modes are ob-
served: a slow sound mode supported by the heavy parti-
cles and a fast mode carried mainly by the light particles.
Kinetic calculations on binary Quid mixtures point out
that this behavior appears to be quite general and should
appear in any disparate-mass mixture provided the mass
difFerence is large enough [8].

The outline of this paper is as follows. In Sec. II we
will discuss in what way the polarizability inQuences the
observability of the fast and slow sound modes. In Sec.
III we discuss the kl —+0 and kl~ ~ limit of the light-
scattering spectrum and which mean free path is the ap-
propriate scaling length for the sound dispersion rela-
tions. In Sec. IV we present some experimental details.
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Component

He
H2
Ar
Xe

cr {nm)

0.2163
0.2760
0.3659
0.4801

m (g/mol)

4.003
2.016

39.95
131.30

a {10 m)

0.2069
0.8051
1.674
4.170

TABLE I. Parameters used in the calculations of Eqs. (7) and
(11). The hard-sphere diameters cr are obtained from Campa
[38]. The polarizability volumes are taken from Burns, Crra-
ham, and Weller [39],except for hydrogen [40].

vector kl, is the key parameter in light-scattering experi-
ments.

In two cases the expressions for the light-scattering
spectrum are known exactly: in the limit for small kl and
the limit for kl to infinity. We will treat both cases in this
section. In addition we will dwell upon the most con-
venient definition of the mean free path that can be used
to describe our experiments in Sec. III D.

A. Hydrodynamic limit: kl ~0

Section V is dedicated to data analysis and our experi-
rnenta1 results. Discussion and conclusions can be found
in Secs. VI and VII.

II. OBSERVABILITY OF THE SOUND MODES

The scattering intensity I(k, ro) for a binary mixture is
given by

I(k, ro) ~~a S&&(k,ro)+2z. '~ aS&z(k, ro)+S2z(k, ro), (1)

where ~=x&/xz is the composition ratio, a =a&/az the
polarizability ratio, and S; (k, ro) are the partial dynamic
structure factors. In this paper, the subscripts 1 and 2
will refer to the light and heavy particles, respectively.
Since the polarizability increases roughly linearly with in-
creasing mass for noble gases, the polarizability ratio a is
a small number for disparate-mass noble-gas mixtures.
For example, a =0.05 for He+Xe (see Table I). Thus it
will be very hard to observe S»(k, ro), the structure fac-
tor of the light particles, by light scattering. On the other
hand, the structure factor of the heavy particles S2z(k, ro)
can be studied with ease in this system. Results for this
system at various compositions were published previously
[17,18]. For Hz+Ar and Hz+Xe systems, however, the
polarizability ratio a equals 0.5 and 0.2, respectively, so
the behavior of S& &

(k, ro) can be studied in more detail.
The fast sound mode is associated with the fluctuations

in the density of the light particles and is observed only in
S»(k, co), so that the observability of the fast mode then
depends on the composition and polarizability ratios ~
and a. With a proper choice of ~ and a, two propagating
modes can indeed be observed, though unambiguously
only in a limited number of systems. This will be illus-
trated in Sec. V for two different compositions of the
H2+ Xe system.

The scattered light intensity I(k, ro) can in general be
represented by a sum of Lorentzians [19]

A
I(k, ro) 0t-S(k, co)=—Re+ .

'lT E CO+ ZJ
(2)

B. Intermediate regime: k/ = 1

In this intermediate regime (kl =1) a second sound
mode appears [5,14,15]. Since propagating sound modes
always appear as conjugate pairs, we have to add one pair
of Lorentzians to account for the second sound mode.
Then the formal expression for the scattering intensity
consists in the intermediate regime of six Lorentzian con-
tributions with associated asymmetric terms,

r
ZD+ ZDI(k, ro) ~ AD+ +AD

(zD+ ) +co (zD ) +co

+ [ A,'z,'6 A,

"(topaz,

"
) ] z(z,') +(co+z,")

where A = A '+i A " and z =z'+iz" represent the am-J J J J J J
plitude and eigenvalue of the jth mode. Note that A is
the contribution of the jth mode to the total area of
S(k, ro). In the hydrodynamic limit, I(k, ro) for a binary
gas mixture can be represented by four Lorentzians [20].
Two central Lorentzians represent the heat and concen-
tration mode, two shifted Lorentzians represent the Bril-
louin lines. A few of the quantities that can be obtained
directly from the hydrodynamic spectrum are the Bril-
louin shift, the Landau-Placzek ratio, and the second mo-
ment of the spectrum. The thermodynamic relation be-
tween these three experimental parameters can serve as a
consistency check for fitting procedures and was found to
work quite well for He+Xe mixtures [21).

III.THEORY

In a light-scattering experiment of a gas mixture two
important length scales are present that determine the
features of the dynamic behavior that can be observed ex-
perirnentally. We can distinguish a "molecular" length
scale, a mean free path l, and a "collective" length scale
given by the inverse of the wave vector k ', the wave-
length of the propagating density fluctuations. The ratio
of these two quantities, expressed as the reduced wave

+ [ A/z/+ A/'(rokz/') ]
(z/) +(ro+zj')

Here the subscripts D + and D —and s and f refer to the
diffusive and the propagating modes and the slow and
fast sound modes. For example, z& and z&' represent the

damping and the propagation frequency of the fast sound
mode.

The corresponding spectrum of rozI(k, ro) can also be
expressed as a sum of Lorentzians
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co I(k, co) ~ —AD+ (zD+ ) —AD (zD ) 2
—[B,'z,'+B,"(co+z,")]

(zD+ ) +co (zD ) +co (z,') +(co+z,")
—[Bjzj +B/'(co+z/') ]

(z/) +(co+zj') (4)

with

C. Gaussian limit: kl ~ oo

As kI increases an increasing number of Lorentzians
are needed to describe I(k, co) properly [19]. It can be
shown that in the limit of free-particle fiow I (k, co) for an¹ omponent gas mixture can then be represented by N
Gaussians [22]

x;(BE/Bn; )„
I( ken) ~ g '

exp[ —
—,'(co/ku, ) ],

/2mkv,
(5)

where i refers to component i, and n; and v; represent the
number density of species i and the thermal velocity of
particle i, respectively. The thermal velocity
v; =QRT/m;, where R, T, and m; are the gas constant,
the absolute temperature, and the molar mass of species i,
respectively. We use the well-known Clausius-Mossotti
equation for the calculation of the dielectric constant e.
Furthermore, we ignore the temperature fIuctuations be-
cause the temperature derivative of the dielectric con-
stant is very small compared to the density derivative.
Then Eq. (5) can be rewritten for a binary mixture

I(k, co) ~~a m'/ exp[ —
—,'(co/ku, ) ]+exp[ —

—,'(co/kv2) ],
(6)

B'= A '[(z') —(z" ) ]—2 A "z'z,",
B"= 2 "[(z') —(z~") ]+23'z'.z",

where j refers to the fast (f) or the slow (s) sound mode.
In the small wave-vector limit the maxima in co I(k, co)
are located at the eigenvalue of the hydrodynamic sound
mode: co (k~O)=z,"=c,k. In the intermediate regime,
kl = 1, the maxima in /o I(k, co) are related to the eigen-
values of the sound modes in a very complicated manner.
In the Gaussian limit, however, the positions of these
maxima are known, which will be discussed in Sec. III C.

range. If the contribution to I(k, co) of both components
is substantial, this will result in a longitudinal current au-
tocorrelation function, which is related to co I(k, co), that
is doubly peaked. The peak positions are located at

, (k) =&2kv, .

D. A characteristic length scale: the effective mean free path

Earlier studies of He+Xe gas mixtures have shown al-
ready that kl is a proper scaling parameter of the disper-
sion relation [17,23]. However, there is some freedom in
the exact definition of the mean free path that is used. In
this paper we will use the effective mean free path I,z of
the fluctuations of the heavy-particle density, in which
the persistence of velocity is taken into account [24]. For
He+Xe mixtures this length scale has the property that
the reduced wave vector kl,& at which the hydrodynamic
description ceases to be valid is virtually independent of
the composition of the mixture [16].

In disparate-mass gas mixtures there is a very
inefficient exchange of kinetic energy between unlike par-
ticles. If one considers a collision between a light and a
heavy particle, the heavy particle will be hardly disturbed
by the collision. On the other hand, the collision has a
dramatic effect on the change in the velocity of the light
particle. This feature of disparate-mass gas mixtures can
be quantitatively described by the persistence of velocity.
The mean persistence ratio Q;., defined as the mean of
the ratio of the component of velocity along the incident
direction of velocity to the velocity before the collision, is
given by [25]

Q —1

[I +I2M —I /2 1n [(I—1 /2 + 1 )M 1 /2
) ]

where M, =m; /( m; +m~ ). The definition of 0; allows
us to calculate the average number of collisions after
which a particle no longer has a velocity component in
the incident direction. We define ~;, the mean free time
of a collision between the tagged particle i and one of the
particles of type j, as

where m is the mass ratio m, /m2. The widths and the
ratio of the intensities in the Gaussian limit are

r;~=1/(nj~o;j(u)), (.u) =SRT/(mm„d), (9)

I
2 —1=(~a )I) I, =kv, . (i =1,2) . (7)

The intensity I, is defined as the contribution of corn-
ponent i to I(k, ~) in Eq. (5). Note that the full width at
half maximum (FWHM) is 2&2 ln2 times the width used
in Eq. (7). One can calculate the intensity ratio from the
parameters in Table I and find that for the He+Xe sys-
tem I(k, co) can be represented properly by a single
Gaussian throughout almost the whole composition
range. For Hz+Ar and Hz+Xe, however, two Gauss-
ians must be used over practically the whole composition

g(Q; Yp

P)J
=

g(Q; Y
p=1

(10)

We can now calculate an effective mean free path which

where the average hard-sphere diameter o, equals
—,'(o,. +aj. ) and m„d is the reduced molar mass. The
average number of collisions needed for the " randomiza-
tion" of the incident velocity vector p;. can be calculated
using a Poisson distribution [26]
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16
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0.799
1.050
1.054
1.126



8066 R. P. C. SCHRAM, G. H. WEGDAM, AND ARJEN BOT

I

-50 0 50
io(10 rad/s)

FIG. 2. Three Rayleigh-Brillouin spectra of H2+ Xe,
xx, =0.17. Thermodynamic circumstances from bottom to top:
p =2.65 MPa, p = 1.17 MPa, and p =0.10 MPa (T =294 K).

I,„p,(k, co)=I;„„,(co)I(k, co) . (13)

To extract the values for z and A from our experiments
we used a fitting procedure. The scattering intensity was
approximated by the form given in Eq. (3). This fitting

gime, the position of the maximum in co I,„,(k, co) resem-
bles the Brillouin shift very closely [17]. Although no
distinct Brillouin peaks are visible for the Hz+Xe mix-
tures, a good estimate for the Brillouin shift can still be
obtained from the spectrum of co I,„,(k, co). A doubly
peaked structure appears when the pressure is decreased,
that is, when the reduced wave vector kl increases. This
is a qualitative proof of the existence of a fast sound
mode. The fact that the high-frequency contribution
must be attributed to hydrogen is illustrated by compar-
ing co I,„~,(k, )coof He+Xe and H2+Xe mixtures with
the same partial Xe pressure (Fig. 6). As was pointed out
before, the scattering function I,„,(k, co) of He+Xe
essentially represents S22(k, co). The difFerence between
the two spectra in Fig. 5 must therefore be attributed to
hydrogen.

An experimentally obtained light-scattering spectrum
is a convolution of the instrumental profile of the experi-
mental setup and a line shape due to the processes which
are probed,

50
io(10 rad/s)

FIG. 4. The longitudinal current autocorrelation function
[=co I,„~,(k, co)] of the Hz+Xe spectra. Thermodynamic cir-
cumstances as in Fig. 2.

function for I(k, co) was convoluted with the instrumen-
tal profile and fitted to the experimental scattering inten-
sity using a simplex fitting routine. The y merit function
was minimized by fitting both I,„z,(k, co) and
co I,„,(k, co)

Throughout all fitting procedures we have assumed
only one central component in the spectrum, so AD =0.
Hydrodynamic calculations on the He+ Xe system
showed that the Rayleigh line is always dominated by one
of the possible diffusive modes [23]. This prediction
holds for H2+Ar and H2+Xe as well. Furthermore, we
assume that the amplitude of the asymmetric term of the
fast sound mode Af" can be neglected. The amplitude of
the asymmetric term of the slow sound mode 2," is cal-
culated using the n = 1 sum rule [29]

2As s AD+zD+ +2c4szs +22fzf
For small reduced wave vectors, the scattering spectrum
can be described by the well-known Rayleigh-Brillouin
triplet. Equation (3) reduces to the Rayleigh-Brillouin
triplet when Af equals zero. At higher reduced wave
vectors we allow Af' to have a nonzero value in our
fitting routine in order to account for the contribution of
the fast sound mode.

It is known from hydrodynamics that the propagation
frequency of the sound mode in the small wave-vector

aa i
TQ ~

i

-50
I

0
I

50
co(10 rad/s)

0
io (10 rad/s)

50

FIG. 3. Three Rayleigh-Brillouin spectra of H2+ Ar,
xA, =0.23. Thermodynamic circumstances from bottom to top:
p =4.78 MPa, p =0.88 MPa, and p =0.10 MPa (T=294 K).

FIG. 5. The longitudinal current autocorrelation function of
the H2+Ar spectra. Thermodynamic circumstances as in Fig.
3.
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S

( I 0 rad/s)

0 0
0

HP
IB @

dP
0 ~ 0 0S 0

S S

0 9 50
~(10 rad/s)

FIG. 6. Current autocorrelation functions of H~+ Xe,
xx, =0.17 (outer spectrum), and He+Xe, xx, =0.22 (inner
spectrum). The spectra were recorded at the same temperature,
T=294 K, and the same partial xenon pressure, px, =0.17
MPa.

3
ten, Xe

FIG. 7. The propagation frequency of the slow sound modes
for H2+Xe; (U) xx, =0.18; (9l) xx, =0.33. Horizontal line
denotes c, x„assuming ideal-gas behavior.

limit is given by

ll
z, —+c, h„,k, (16)

for large values of kleff heavy The ProPagation frequencies
of the fast sound modes (Fig. 9), however, do not reach
c, H k for the largest values of kl, s „„„„(seediscussion).

In order to make a comparison between the slow sound
modes for the different systems, we make use of the be-
havior in both kl limits. We therefore used the following
scaling formula for the propagation frequency:

s s, heavy
z"/k —c

(17)s
Cs, tmx Cs, heavy

where c, ;„is the experimental adiabatic sound velocity
of the mixture and cs heavy is the calculated adiabatic
sound velocity of the heavy component assuming ideal-
gas behavior. The results for the z,

"
scaling of the y axis

and kl,~,. scaling of the x axis are shown in Figs. 10 and

k —+0

where c, ;„is the adiabatic sound velocity of the mixture.
In Figs. 7 and 8 we have plotted the sound propagation
frequency vs kl,a, (i =Ar, Xe) for various mixtures and
compositions. From the propagation frequency in the
limit of small kl,zh„,, that is at the highest densities,
one can obtain the adiabatic sound velocity of the mix-
ture (Table III). A remarkable result, that was already
noted for He+Xe system [13], is that the value for z,

"
tends towards the adiabatic sound velocity of the heavy
component times k,

11. We can see the sound-mode behavior of the different
mixtures and compositions coalesce onto a single curve.

Clouter et al. [14] have shown unambiguously the ex-
istence of both fast and slow sound in the spectrum of
I,„,( k, co ). Their results for the slow mode in the
H2+SF6 mixture obey the same scaling behavior as the
mixtures we studied. The experimental data points ob-
tained from Fig. 3 of Ref. 14 coalesce with our results
when scaled according to Eq. (11) and Eq. (17), like in
Figs. 10 and 11.

In Figs. 12 and 13 we show the results for both the fast
and slow sound mode. The fast sound mode appears at
kl, f[x, =0.5 for the H2+Xe mixture and at kl, ff + 1

for the H2+Ar mixture. Due to the larger mass ratio m
of H2+Xe the peaks in co I,„„,(k, co) are better separated
than in the case of H2+Ar. This makes the observation
of the fast sound contribution in H2+Xe easier. The fast
sound mode appears roughly at kleig heavy

=0 8$ the value
where the hydrodynamic description breaks down [16].
The fast sound mode appears around this kl value
whereas the slow sound mode seems to be the continua-
tion of the ordinary hydrodynamic sound mode in the
low-density gas mixtures we studied [15].

The advantage of analyzing co I,„~,(k, co) rather than
the light-scattering spectrum itself is that the two sound
modes can still be distinguished at low pressures. This
can be done even when the sound modes are overdamped.
At the lowest pressures, at large kleig heavy values, the
spectrum of co I,„,( k, co ) is very similar to the
longitudinal-current autocorrelation function in the
Gaussian limit. The question that arises is: "At which kl

TABLE III. Results for the adiabatic sound velocities at the highest pressure of each series (see
Table II) and at T =294 K. For the calculation of the adiabatic sound velocities, see text.

Adiabatic sound velocity in m/s

System

H2+Ar
H2+Xe
H2+Xe
H2+Xe

Xheavy

0.23+0.02
0.17+0.02
0.18+0.02
0.33+0.02

Cs, expt

579
460
440
320

572
381
371
282

614
417
422
305
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FIG. 9. The propagation frequency of the fast sound modes:
(0) H2+Xe, xx, =0.17; ( ~ ) H2+Ar; xA, =0.23. Horizontal
line denotes c, H, assuming ideal-gas behavior.

FIG. 8. The propagation frequency of the slow sound modes
for H&+Ar; (V) xA, =0.23. Horizontal line denotes c, A„as-
suming ideal-gas behavior.

—0,5
0 1 2 3

k ~ eff, Xe

FIG. 11. Reduced eigenvalues z, [see Eq. (17)] of the slow
modes of He+Xe for three compositions: ( ) xx, =0.22; (V)
xx, =0.45, and (C') xx, =0.61.

values does the Gaussian-like behavior start?"
In order to check if the kh —+~ limit was already

reached at the lowest pressures, we fitted a sum of two
Gaussians to our data. We convoluted this function with
the instrumental profile and followed the fitting pro-
cedure mentioned above. The relevant experimental pa-
rameters are the intensity ratios and the widths as given
by Eq. (7). The fitting results for H2+Ar are given in
Figs. 14 and 15. Similar results were found for the
H2+Xe mixtures. Although I 2., the width of the heavy-
component velocity distribution, resembles the Gaussian
width quite well, I

&
does not reach its Gaussian value

( =kut) at the highest kl, s h„„„values.The intensity ra-
tio is close to the Gaussian value. This is not surprising
since, at these densities, only S»(k) and S22(k) contrib-
ute to the integrated intensity [see Eq. (1)]. The ratio of
these contributions has the same value. The suggestion is
that at the largest kl,s h„,„values (lowest densities), the
Gaussian limit is gradually approached. However, for
kl, ff h y

(3, we can safely state that the Gaussian limit
is not applicable. This proves that we have examined an
intermediate regime in between hydrodynamic and the
free fl.ight limit. Kinetic calculations on dilute pure gases
show that Gaussian behavior is reached for kl )4 [19]
(for pure gases l,s /1 = 1.6). In hard-sphere fiuids, Gauss-
ian behavior is found for kl ) 3 [30]. We find that the
mixtures we studied approach gradually the Gaussian re-

S

1.0-

0.5-

0.0

8P
Vlf

VI) V VVo+
aa m Il

2 3
k~eff, i

FIG. 10. Reduced eigenvalues z, [see Eq. (17)] vs kl,s; (i is
the heavy component) of the slow modes of three systems: (H3)

He+Xe, x,=0.45, (U) H +Xe, x,=0.17, and (V) H +Ar,
x~, =0.23.

G
0 2 3

k ~ eff, Xe

FIG. 12. Reduced eigenvalues, (z")*=zj'/c, k, of the fast
and slow modes (j= s f) of H2+ Xe, xx, =0. 17, and xx, =0. 18,
c,k =7.65X10 rad/s.
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z"*

2 3
kleff, Ar

gime at kl, ff h y
5.

For one H2+Xe mixture, xx, =0.33, we did not ob-
serve a fast sound mode. The high-frequency contribu-
tion in the longitudinal-current autocorrelation function
did not appear, not even at the lowest pressures. Al-
though the fast mode may be present, the observation
will be hampered by the low hydrogen mole fraction.
This can be illustrated by Eq. (1), where one can see that
the observability of S»(k, co) does not only depend on the
polarizability ratio a, explaining the absence of an observ-
able fast sound mode in He+ Xe, but also on the compo-
sition ratio ~.

FIG. 13. As in Fig. 12 for H, +Ar, x„,=0.23,
c,k =1.00X10' rad/s.

20

V w

10-
I

(10 rad/s)
9

0
0

kleff, Ar

FIG. 14. Widths I; (i =1,2) of the Gaussians vs kl, &A, for

H2+Ar; xA, =0.23. Horizontal bar denotes the Gaussian limit

[Eq. (7)].

2.

00
kl eff, Ar

FIG. 15. Intensity ratio I2/I& of the Gaussians vs kl, ff A for

Hz+Ar; xA, . =0.23. Horizontal bar denotes the Gaussian limit

[Eq. (7)].

VI. DISCUSSION

In Figs. 10 and 11 one can see that the scaling with z,
"

using the experimental value for c, ;„works quite we11.

We have used the experimental value for c, ;„instead of
the calculated one because of a relatively large difference
between the calculated and experimental adiabatic sound
velocity for Hz+Xe (see Table III). None of the spectra
of the H2+ Xe series shows distinct Brillouin peaks, con-
trary to the spectra of Hz+Ar (Figs. 2 and 3). There are
several plausible explanations of experimental origin for
this problem. The combination of a low adiabatic sound
velocity of this mixture and a relatively large free spectral
range causes overlap of the Rayleigh and Brillouin lines,
which may result in the disappearance of the Brillouin
peaks. During these experiments the free spectral range
had to be large in order to observe the fast sound mode.
In addition, the instrumental function was shghtly
broader during the measurements of the H2+Xe series.

In Table III the experimental as well as calculated adi-
abatic sound velocities are given. Since H2 has internal
degrees of freedom, the adiabatic sound velocity is fre-
quency dependent. The low-frequency adiabatic sound
velocity c, „&,was calculated using the van der Waals
equation of state. The high-frequency adiabatic sound
velocity c, „&,was calculated from the ideal-gas iso-
thermal sound velocity and the specific-heat ratio y
The specific-heat ratio y" was calculated from number-
averaged values for C~ and C, where we took experimen-
tal specific-heat values for hydrogen [31] and ideal-gas
specific-heat values for the noble-gas component. The ex-
perimental adiabatic sound velocity for H2+Ar coincides
with the calculated zero-frequency result for c, . For all
Hz+Xe series we found that the experimental adiabatic
sound velocities are higher than the calculated c, „&,
values. If these differences would be ascribed to uncer-
tainties in the composition, than these uncertainties
should be of the order of 20—30 %, which is very unlike-
ly. Neither can it be ascribed to an error in the experi-
mentally determined Brillouin shift since the error in this
shift in the limit for small wave vectors is typically of the
order of 2 —3 %.

In general the fitting results can be influenced by the
presence of a central component such as a Mountain line
[32]. Since we use only one central Lorentzian in our
fitting procedure to account for all possible nonpropagat-
ing modes, an offset in the fitted position of the Brillouin
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lines may be suspected. This may also explain the
discrepancies between the experimental and calculated
adiabatic sound velocities. A precise prediction for the
contribution of the different nonpropagating modes can
probably be given by hydrodynamics for mixtures with
internal relaxation [33]. Although this may introduce
systematic errors in the absolute values of the experimen-
tally determined sound velocities, use of the experimental
sound velocity does not affect the scaling behavior. The
same holds for the scaling behavior of the fast sound
mode.

We have examined the scaling behavior of the fast
sound mode as well. For both mixtures the propagation
frequency of the fast mode tends towards roughly two
times the propagation frequency of the mixture for large
kl values. The fast mode is not analogous to the slow
mode in the sense that the propagation frequency of the
fast mode does not reach c, H k at large kleffhezpy values.

In our fitting procedures we have neglected the asym-
metric contribution of the fast sound mode A&'. The
asymmetric term shifts the top of the fast sound mode
contribution to a value that is somewhat smaller than z&'.

Neglect of the asymmetric term thus suppresses the ex-
perimental value of z&'. Around kleff, heavy 1, the fast
modes of the two mixtures exhibit qualitative different
behavior. Although the 6tting procedure renders accu-
rate results in the high and low kl regimes, it is less accu-
rate around kleffhezpy 1. In this regime the fast sound
mode appears but its contribution to the spectrum is still
small. As a consequence we could not distinguish the
contributions of the fast and slow sound mode very clear-
ly in the co I,„~,(k, co) spectrum, which aff'ects the reliabil-
ity of the fitting results.

At this stage we wish to refer to kinetic calculations of
Campa and Cohen on the dilute H2+Ar mixture. They
point out that above a certain concentration of the light
component, the fast sound mode no longer exists [8]. As
the hydrogen concentration increases, the difference be-
tween the sound velocity of the mixture and that of pure
hydrogen becomes small. They state that the extended
hydrodynamic sound mode becomes fast propagating for
compositions with xH &0.9. We have performed calcu-

2

lations based on a simple four-moment model proposed
by Bowler and Johnson [34] and found the same qualita-
tive behavior. The extended sound mode is a fast propa-
gating mode for xH &0.84 and 0.92 for H2+Ar and

2

Hz+Xe, respectively. Maybe the qualitative different be-
havior of the experimentally determined fast sound mode
of the H2+ Ar and H2+ Xe mixture is associated with the
above described phenomena. The composition of the
Hq+ Xe mixtures (xH =0.82 and 0.83) might be too close

2

to a critical composition xH „;,. Below this critical com-
2'

position the hydrodynamic sound mode goes over into
slow sound, above this composition it goes over into a
fast propagating mode.

Johnson and co-workers [35,36] have found anomalous
dispersion in dilute He+ Xe mixtures by ultrasonic exper-
iments. They found two different forced sound modes
that can be predicted fairly well by two-temperature hy-

drodynamics. The anomalous dispersion arises from a
competition between a diffusive mode and a sound mode
and seems to be a typical feature of disparate-mass gas
mixtures. It would be interesting to carry out a normal-
mode analysis of two-temperature hydrodynamics and
compare the eigenvalues with our results. Good agree-
ment was already found for light scattering results of
He+Xe gas mixtures [37].

Earlier results of the He+Xe system proved that hy-
drodynamics is applicable for 0 ~ kl,s h„„„~0.8 [16].
The present results indicate that Gaussian behavior starts
at kl, ff h y

5. In the intermediate regime, demarked by
1 ~ kleff hzzpy 5, we have found both qualitative and
quantitative evidence of a fast and slow sound mode. The
physical interpretation of fast and slow sound, however,
is still not entirely clear.

Campa and Cohen proposed an interpretation of fast
and slow sound in terms of decoupled sound waves [9].
The light particles are moving in a background of heavy
particles. Due to the fact that the heavy particles are un-
able to follow the rapid oscillations of the light particles,
there is a decoupling of the dynamics of the light and
heavy subsystem allowing two separate sound modes to
propagate through the gas mixture.

VII. CONCLUSIONS

We have found qualitative evidence for the existence of
both fast and slow sound modes in gaseous H2+Ar and
Hz+Xe systems. For one of the examined H2+Xe mix-
tures, xx, =0.33, we have not observed a fast sound
mode. This is due to an unfavorable combination of the
polarizability ratio and the composition of the mixture.
The slow sound mode seems to be the continuation of the
hydrodynamic sound mode in the examined gas mixtures.
The fast and slow sound mode were observed in an inter-
mediate regime in between the hydrodynamic and the
Gaussian regime.

Using a newly developed length scale that includes the
efFects of the persistence of velocity in disparate-mass gas
mixtures, we found that the behavior of the slow sound
mode of H2+ Ar and H2+Xe is very similar to the slow
sound mode in He+Xe, which was intensively studied
earlier [17]. This led us to believe that we have separated
the "universal" mixture behavior from trivial mass
efFects. The scaling behavior of the fast sound mode is
still not clear but may be elucidated by further experi-
ments.

Until now we may conclude that revised Enskog theory
gives, at least qualitatively, an accurate description of the
light-scattering spectra in the intermediate regime be-
tween hydrodynamics and free Aight. In the case for
which calculations were published, correspondence be-
tween theory and experiment was even quantitative [5].
Fortunately, experimental and theoretical results not
only allow us to compare experiment with a highly com-
plicated formal framework, but also allow us to develop
an appealing physical picture of the dynamics of a gas
mixture at high reduced wave vectors.
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