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The kinetic theory for lattice-gas cellular automata is extended beyond Boltzmann's mean-field ap-
proximation by including correlated ring-type collisions. This theory provides explicit expressions for
time-correlation functions for all times in terms of a ring collision integral. We also obtain some exact
results for time-correlation functions for short times. In particular, deviations from the Boltzmann
equation result observed in computer simulations of the velocity-autocorrelation function of three-
dimensional systems after two time steps are explained. For long times the results obtained reduce to
those found using phenomenological mode-coupling theory.

PACS number(s}: 05.20.0d, 02.70.+d, 05.40.+j, 05.60.+w

I. INTRODUCTION

Although lattice-gas cellular automata (LGCA's) as
models for nonequilibrium fluids have been extensively
studied since 1986 [1—5], the kinetic theory of these sys-
tems beyond the Boltzmann mean-field approximation of
uncor related collisions is nonexistent. As far as the
transport coefficients are concerned, there are no compel-
ing reasons for such an extension, because the transport
coefficients measured in computer simulations of LGCA's
are at all densities in good agreement with the predictions
of the Boltzmann equation [6].

However, in the past few years deviations from the
Boltzmann prediction have been observed in the behavior
of time-correlation functions at long [7—11],intermediate
[9], and short [8,10] times Best k.nown are the observed
long-time tails, —t ", in d-dimensional systems,
whereas the Boltzmann equation predicts an exponential
decay of correlations. Of course, the long-time tails have
been explained in quantitative detail by the phenomeno-
logical made-coupling theory [7,9, 11],but this theory has
never been derived or justified on the basis of the micro-
dynamic equation for any LGCA.

Furthermore, at short and intermediate times extensive
computer simulations on the velocity-autocorrelation
function (VACF) show unexplained deviations from the
Boltzmann-equation result already after two time steps in
three-dimensional simulations [8,10], while in one-, two-,
and four-dimensional systems [8,10] there are only devia-
tions from the Boltzmann-equation result after three time
steps.

One expects, of course, that sooner or later sequences
of correlated collisions, which are neglected in the
Boltzmann approximation, will give observable contribu-
tions to the time-correlation functions with increasing
density. But why should three dimensions be qualitative-
ly different from one, two, or four dimensions?

The goal of this paper is to present a fundamental ex-
tension of the kinetic theory for LGCA's beyond the
Boltzmann equation by accounting for correlated ring

collisions. Our theory will not only provide a formal
derivation and justification of the long-time mode-
coupling theory, as is done in Sec. V, but it also gives an
explicit expression in Sec. IV for the short and intermedi-
ate time behavior of the time-correlation functions at
t =1,2, 3, . . . in terms of ring collision integrals, analo-
gous to the case of continuous Auids [12]. In Sec. III we
will explain why the measured results for time-
correlation functions after two time steps in three-
dimensional systems show deviations from Boltzmann,
which are absent in the simulations for d%3. These
three-dimensional result will be related to the peculiar
properties of the quasi-three-dimensional face-centered-
hypercubic (FCHC) model [13] that will be discussed in
Sec. II. In this section we also discuss the microdynamic
evolution equations for general d-dimensional LGCA's.

II. FORWARD AND BACKWARD MICRODYNAMICS

Lattice gases are defined on a regular or periodic lattice
in a d-dimensional space. We consider a system of N par-
ticles in a box of dimension L lattice spacings wide in
the ctth direction (a=x&,x2, . . . , xd). We use units
where the lattice constant is unity so that the total num-
ber of sites in the system is equal to its volume and is
given by V =I. I. - I. . In general we assume

1 2 d

periodic boundary conditions. A b-bit lattice-gas model
is defined as fo11ows. It contains a set of b di8'erent veloc-
ity channels c; per lattice site r, which includes the
nearest neighbors and possibly a rest particle with zero
speed, c;=0. The occupation number n, (r, t) of the ith
velocity channel can only take the values 0 ("empty") or
1 ("occupied") (Fermi exclusion rule). Collisions occur
only among particles at a single node ("point particles" ).
For a complete review of lattice-gas dynamics see Ref.
[1].

The time evolution of a LGCA consists of a collision
step over a time interval (t, t+) with t*=t+s ( l0e)
and a propagation step over the interval (t+, t +1).
The collision step can be represented by,
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n, (r, t+)=n, (r, t )+I,(n(t )),
and the propagation step by

n;(r, t+)=n;(r+c, , t +1)=S,n, (.r,.t +1) .

(2.1)

(2.2)

n;(r, t +1)=S; 'n;(r, t )+S; 'I;(n(t )) . (2.3)

In a b-bits model the collision term I; (n) is a polynomial
of degree b in the occupation numbers nk, each of which
refers to a difFerent velocity channel. Its explicit form
has been discussed extensively in the literature [13,5].
The collision rules may be deterministic or stochastic and
in general conserve particle number and momentum but
not energy. Therefore, the LGCA's discussed in the
present paper have no temperature (athermal models).
Thermal LGCA's with nontrivial energy conservation
and with the proper symmetry of the isotropic Quid are
still lacking.

The quantities of interest in this paper are the equili-
brium time-correlation functions, {n;(t)n~(0) )= (n, (0)n, ( t) ), w—hich depend only on the time
difterence. It is also convenient to have a backward evo-
lution equation, expressing nj( r) in term—s of nj(0) As.
the collision rules are invariant under the reversal of ve-
locities c;, the backward collision and streaming steps
can be represented by

n;(r, t ) =n;(r, —t+)+I;{n( t—+)), —

n, (r, t+)=n, (r, +—c, , —t +1)
=S,„(r, t +1) . —

(2.4)

A combination of both expressions yields the backward
evolution equation (t )0)

n, (r, —t —1 ) =S,n, ( r, t ) +I, (Sn ( r)—) . — (2.5)

From now on we write n;(r, t) =n;(r, t ) and all occupa-
tion numbers refer to precollisional states.

For use in later sections it is convenient to expand the
collision operator I;(n) in Eqs. (2.3) and (2.5) into fluctua-
tions around equilibrium,

A combination of both equations yields the forward euo-
lution equation (t )0),

n, (r+c, , t +1)=n, (r, t )+I,(n(t )),

(i) &,'; '. . . ; is symmetric in (i, . . . ii., ).
1 A.

(ii) 0;; . . . , vanishes if )i=i and if at least one pair of(~)

indices out of (i i& ) is equal [see below Eq. (2.3)].
(iii) 0';k' is the linearized Boltzmann collision operator

which has the additional symmetry Q';k'= Q'k' .

These symmetry relations can be derived from the sym-
metry of the collision rules under interchange of ingoing
and outgoing particles.

In order to be able to understand why three dimensions
is special, it is important to note that all LGCA's are con-
tained in a macroscopic box with periodic boundary con-
ditions and with V =I. sites, except for d =3 [13]. The
reason is that there does not exist a regular space lattice
in three dimensions, on which fourth-rank tensors, such
as the viscosity, are isotropic so that the Navier-Stokes
equations have the required symmetry of the isotropic
Quid [14,15]. D'Humieres, Lallemand, and Frisch [14]
therefore introduced the FCHC model that gives the
three-dimensional (3D) fiuid symmetry, by considering a
quasi-three-dimensional slab with 2V =I.XI.XL, X2
sites, embedded in a four-dimensional (4D) simple cubic
lattice. Further, only euen sites (r„+r+r, +r, =even)
are accessible, so that the number of available sites is
V =I. . There are 24 allowed velocity states per node,

(+1,+1,0,0), (+1,0, +1,0), (0, +1,+1,0),
(+1,0, 0, +1), (0, +1,0, +1), {0,0, +1,+1) .

It will turn out that the observed non-Boltzmann-type
correlations in 30 LGCA's after two time steps are actu-
ally a finite size eQ-ect, caused by the very small linear ex-
tent of two lattice spacings in the fourth (unphysical) di-
mension. These correlations are therefore of geometric,
rather than dynamic origin.

To analyze these geometric correlations, it is con-
venient to consider a simpler quasi-one-dimensional strip
in the Frisch-Hasslacher-Pomeau (FHP) model [13], two
lattice spacings wide in the y direction, embedded in a
two-dimensional (2D) triangular lattice and shown in Fig.
1. The model allows six velocity states per site (FHP-I)
and possibly an additional rest particle (FHP-II and -III)
[16].

The main object of study will be the time-correlation
function of the tiuctuation (5n;(r, t)5nJ(r', t') ), which de-
pends only on (r —r') and (t t'). Its equal time va—lue is

5n;(r, t)=n;(r, t) —(n; ) =n;(r, t) f . — {5n;(r, 0)5n (r', 0) ) =Ic5;.5(r, r'), (2.8)

Here { ) denotes an average over an equilibrium ensem-
ble, and (n; ) =f =p/b is independent of the velocity c,.
in athermal LGCA's and is equal to the reduced density
(0 ~f ~ 1). Expansion of the collision operator yields,

where 5; and 5(r, r') are Kronecker deltas and where a is
determined by Fermi statistics, i.e.,

2Bg cb

b —1

I, (n)= g QI, '. . . , 5n; 5n, 5n,
A, =1

(2.7)
a

where the relation I, (f)=0 and the Einstein summation
convention have been used. Equation (2.7) defines the
coe%cients O';;.', They have the following properties
that will be frequently used later on:

FICx. 1. Quasi-one-dimensional strip with periodic boundary
conditions with periods L, =L and L~ =2, and e =c&, c, =c2,
and cb =c6.
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The normalized time-correlation function is referred to as
the kinetic propagator,

current-current correlation functions or Green-Kubo in-
tegrands,

1'„(r,t)a =
& 5n, (r, t)5n (0,0) ) (2.10) (2.14)

with I;~(r, O) =5;15(r,O). Its Fourier transform is denot-
ed by

f';J(q, t)~=+ e 'q'I; (r, t)x

where the total current is

J(t)=g j(c, )5n, (r, t) . (2.15)

= V '& n;(q, t)n,'(q, O) ), (2.11)

where n;(q, t) is the Fourier transform of 5n;(r, t) and the
asterisk denotes complex conjugation.

All two-point time-correlation functions can be ex-
pressed in terms of the kinetic propagator. For instance,
the van Hove function or density-density correlation
function is

&5p(r, t)5p(0, 0))=+I, (r, t)~, (2.12)

(2.13)

where g(r, t) =g; c;n (r, t) is the microscopic momentum
density and f'(q) is the Fourier transform of I (r). Addi-
tional important time-correlation functions are the

where 5p=g; 5n; is the microscopic density fluctuation.
Another example is the single-site velocity-correlation
function,

&g„(r,t)g (r, O)) =pc; c„l,)(r=o)a.

The one-particle currents j (c, ), corresponding to the
shear viscosity il and to the bulk viscosity g, are, respec-
tively, j n(c, )=c,„c,y and jg(c, )=d lc,2 -c20,—where d is
the number of dimensions and co is the sound velocity for
the LGCA under consideration [17].

III. SHORT-TIME BEHAVIOR

In principle we have now introduced the basic
de6nitions needed to calculate the kinetic propagator
I;.(r, t) =I;(—r, t). The la—st equality follows from the
translational invariance in space and time of the equilibri-
um state. To calculate I (t) one can iterate the forward
or backward equation t times. In doing so one generates
an enormous number of terms, and one needs to develop
a systematic kinetic theory to account for the di8'erent se-
quences of uncorrelated and correlated collisions, such as
ring collisions.

In the present section we use exact methods to study
the short-time behavior of the propagator I (t). Subse-
quent sections will be devoted to its long-time behavior.
The kinetic propagator after a single time step follows
directly from Eqs. (2.10) and (2.3),

I;J(r, l)a= 5n (0)S; ' 5n;(r)+ g 0';; '. . . ; 5n, (r) 5n; (r). (3.1)

where 5n(r) is short for 5n(r, O) Consider th. e first term
inside the average which yields

f';J(q, 1)=e '(5;~+BI.') . (3.5)

&5n~(c;)5n;(r))=~5, 5(r, c;) (3.2)

&5n (c;)5n; (r) 5n; (r)) =a5 5,; 5(r, c, ) . (3.3)

on account of Eqs. (2.2) and (2.8). In addition we have
used translational invariance to replace 5nj(0)S; inside
the average by S;5n (0)=5nj(c;).

The next set of correlation functions contains the Auc-
tuations,

It shows that I (1) is exactly given by the linearized
Boltzmann collision operator.

Next we consider the propagator after two time steps,
which would be given by Eq. (3.1) with 5nk(r, O) replaced
by 5nj, (r, 1). The last quantity should subsequently be ex-
pressed in 5n&(r, O), using the forward equation (2.3) a
second time. This second iteration of Eq. (2.3) yields a
huge number of terms. For a b-bits model the total num-
ber of terms in I (2) is

The labels I, 1, . . . , i& are all di6'erent on account of the
property (ii) below Eq. (2.7). The kinetic propagator after
one time step then becomes

(3.6)

I;~.(r, 1)=(5; +flI ')5(r, c;) .

Its Fourier transform is

(3.4)
which is approximately 2X10 for b =6 (FHP model)
and 10' for b =24 (FCHC model). Fortunately there ex-
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I,"(r,2)~= (5n; (r, 1)5nj(0, —1)), (3.7)

ists a simpler method to calculate I (2) by using the sta-
tionarity of the equilibrium state, i.e.,

and applying the forward equation (2.3) to the first factor
inside the average and the backward equation (2.5) to the
second factor, yielding only a total of (1+5) terms. This
yields in combination with Eq. (2.7),

b

I,"(r,2)a= S, ' 5n, (r)+ g QI, '. . . , 5n, (r) 5n, (r)

X S,5n, (0)+ g Qg',".. . , [S, 5n, (0)].. . [S, 5n, (0)]
@=1

(3.8)

On account of property (ii) below Eq. (2.7) the nonvanishing terms in Eq. (3.8) contain the same number of 5n s origi-
nating from 5n (r, 1) as from 5n(0, —1), yielding,

I, (r, 2)x.= (5; k+0;''k)(5 i+A)~(')(5nk(r c;)5—ni(ci))

k —2

(3.9)

or in Fourier language,

f',J.(q, 2)=e '(5,k+ QIk')e "(5k.+Q'q"), (3.1 1)

where the symmetry property (iii), quoted below Eq. (2.7),
has been used. Below we will show that all terms in Eq.
(3.9) with A, 2 are Uanishing prouided the macroscopic
periodicity cell is more than two lattice spacings wide in
every space directions. Therefore, I (2), as given by Eqs.
(3.10) and (3.11), is exact for suKciently large systems.
Furthermore, it is correctly given by the Boltzmann ap-
proximation, i.e., f'(q, 2)= [f'(q, 1)] using a matrix nota-
tion.

We consider the remaining terms in Eq. (3.9) starting
with k =2, which contains the Auctuation formula

(5n, (r —c, )5n, (r —c, )5nj (c, )5n~ (cj ))

(3.12)

with i, Wiz and j,&jz. The constraints imposed on r
yield 5(cj,cj ) =1 and require cj =c . However, 0'. '.

J) J2 JJ)J2
vanishes if j,=jz and the total contribution of the (A, =2)
term in Eq. (3.9) vanishes. The same argument applies to
all other contributions with I,)2.

So far we have not taken the periodic boundary condi-
tions into account. Suppose that the system is contained
in a macroscopic periodicity cell with periods I
(a=x„x2,. . . , xd ). Then the spatial 5 functions in Eqs.
(3.10) and (3.12) should be replaced by 5, defined as

Using Eqs. (2.8) the first term in Eq. (3.9) is

I;~(r, 2)=(5;q+0;'k')(5)k+fl'ki)5(r, c;+ck), (3.10)

where (e,a=x„x2,. . . , xd) represents a set of vectors
in the independent directions and M =(0,+1,+2, . . . ).
Suppose all periods I. &2, then the conditions imposed
by 5(c,c ) =1 cannot be met, and all terms in Eq. (3.9)J)' J2
with k ~ 2 are still vanishing.

However, if the periodic box in one space direction, say
ed, would only be two lattice spacings wide, the condition
5(c, , c )=1 can be met with j,&j2, andJ)' Jp
c. =c. +(c,—c& ) and there exist nonvanishing contribu-

J) J2
tions to Eq. (3.9) given by

5I;.(r, 2)=2m 0; 0" . 5(c,c. )5(r, c;+c ) . (3.14)

As an example we show in Fig. 1 how Eq. (3.14) applies
to a quasi-one-dimensional strip. Here c„ande are unit
vectors in the x and y directions. The dimensions of the
system are I. =1.( —+ ~ ) in the x direction and I. =2 in
the y direction. The lattice is a triangular lattice and we
show a pair (ab) of velocity vectors, c, and c&, satisfying

c, —cb =2ed. The condition imposed by the first 6 func-
tion in Eq. (3.14) has the following set of four solutions:

(c, =+c„cj=+c&),
(3.15)

(c) =+ Gi, , cj =+c~ )

X5(r, c, +c, )J) (3.16)

contributing to Eq. (3.14). Subsequently one must sum
over all possible pairs (ab), satisfying c, —c„=2e„.

The terms with X & 2 can be analyzed similarly and one
finds that the A,th term,

5(r, r')= .

xd

1 ifr'=r+ g M I. e
a=x&

0 otherwise,

(3.13)

is vanishing, because two intermediate 5 functions cannot
be satisfied simultaneously since c,. Wc, A . Wc, .

J2 J3
Collecting results from Eqs. (3.14) and (3.15) we find

for the kinetic propagator I (2) in a quasi-(1 —1)-
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+n"-' ""n"-') (3.17)

where we sum over all parts (ab), satisfying c, —c& =2ed,
and j denotes the label referring to the velocity —c when

j denotes ci. In deriving Eq. (3.17) we have also used the
relation exp[iq (c, —c& ) j = 1, as implied by periodic
boundary conditions. A.s an illustration we mention that
the FHP model of Fig. 1 has one pair (a, b), with c, =c2
and cb=c6, and that the FCHC model has three pairs
(ab) with c, =e&+ed and cb =et3 ed (P—= xy, z).

As a further illustration we have applied the result
given by Eq. (3.17) for the excess geometric correlations,
to calculate at time t =2 the correction to the Boltzmann
value of the stress-stress correlation function for a 1D
strip (see Fig. 1) of the FHP-I model (FHP-I has no rest
particles). This has been done in Appendix A.

The values of I (t) for t =3,4, . . . involve rings and

dimensional system, contained in a d-dimensional slab of
linear dimensions I." ' X 2,

f';, (q 2)= [[~(q 1)1'i;,

+4 ""~ (n[2' '"' n[2[K8 ~ I~b e
(ab)

more complicated collisions that have not been con-
sidered here. In the subsequent sections on long-time be-
havior the ring collisions will be analyzed in more detail.

IV. RING KINETIC EQUATIQN

5n, (r, t)=—g e'q'n, (q, t),1

q

and we use the relation

(4.1)

q'=5{q,q') .
V

(4.2)

The Fourier transform of Eq. (2.3) then becomes

To study the long-time behavior of the kinetic propa-
gator (5n1(r, t)5n1(0, 0)), we derive a formal identity
that expresses the time evolution of this correlation func-
tion in terms of higher-order ones. Finally we do a loop
expansion with a one-loop diagram, the ring integral, that
gives the long-time tails.

We start from the forward microdynamic Eq. (2.3)
combined with the Auctuation expansion, Eq. (2.7), and
represent each 5ni(r, t) by a Fourier series

b

'n, (q, t+1)= n, (q, t)+BI„"n„(q,t)+ g V' g 5 q, g q~ 0', ; '. . . ; + n~(q„t)
A. —2 ql

. .
q~ p=l p=l

(4.3)

where we have used that the streaming operator S; becomes diagonal in the Fourier representation S;(q) =exp(iq. c;).
To proceed we introduce a discrete Laplace transform,

n;(q, z)= g e "n;(q, t) .
t=O

The microdynamic Eq. (4.3) can then be written as

oo b

L;k(q, z)nk(q, z)=e 'n;(q, 0)+ g e "g V' g 5 q, g q~ 0,'.; '; g n; (q~, t) .
t =0 A, =2

(4.4)

(4.5)

Here we introduced the wave number and frequency-dependent Boltzmann collision operator L,.k(q, z), which reads in
matrix notation

L (q, z) =e'+'q' —1 —Q ",
with the convention that a function A (c) represents a diagonal matrix with A;J(c) = A (c;)5,". The symmetry of all
three terms on the right-hand side (rhs) of Eq. (4.6) under (ij) interchange implies that L (q, z) is a symmetric matrix.

After multiplying Eq. {4.5) with L and inserting Eq. (4.5) into the discrete Laplace transform of Eq. {2.11),we ob-
tain the result

I';J(q, z)a = ir[L '(q, z)];J.e

oo A.

+X e *'X v e X 5 q, X qe [L '( , ) qQeb[. . .t, Q v, (qe, () vJ.'(q, o)) .
t=O A, =2 q&. . .

q& p=l p=l
(4.7)

This formula expresses the (11)-correlation function, 1;,
in terms of the (A, l)-correlation function with
1=2,3, . . . , b. In the first term on the rhs we have used
that the Fourier transform of Eq. (2.8) equals V5,"a. This
first term is in fact the Boltzmann approximation to the

kinetic propagator, i.e.,

I o(q, z)=—g e "f' (q, t)
t=0

—
(

z+iq c
1 II(1))—1 z+iqc.(4.8)
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Expansion in a geometric series yields then

f0( t) [e
—iq c(1+II(1))]t (4.9)

The results given by Eqs. (4.8) and (4.9) have been used
extensively in the literature [18,19] to calculate Green-
Kubo formulas and current-current correlation functions
in LGCA's within the Boltzmann approximation.

By employing stationarity of equilibrium averages,
( 2 (t)B (0) ) = ( 3 (0)B ( t) ),—we use the backward evo-
lution equation (2.5) to further reduce Eq. (4.7). For that
purpose we define

nj(q, z)= g e "n (q, t)—.
t=—0

(4.10)

"(n; (q), 0) . n; (qi, 0)n.'(q, t))—
t =-0

=(n;, (q, o) ' n; (qo, )n*(qz,)) . (4.11)

By manipulations similar to the ones used in deriving Eq.
(4.5) we obtain from the backward dynamic equation (2.5)

Now the Laplace transform in the last term of Eq. (4.7)
can be carried out, i.e.,

n*(q, z)= e '[L '(q, z)] ~i'n~*(q, 0)

oo b P P+ g e "g e '[L '(q, z)]),Q()') . . . , V' " g 5 q, g q' + [S '(q')n*(q' —t)] .
t =0 @=2 I r p

—
$ p

—]. . q

(4.12)

We note that this equation for the complex conjugate of the backward equation contains exactly the same inhomogene-
ous symmetric Boltzmann operator L (q, z) as the forward equation (4.7). Next we insert Eq. (4.12) into Eq. (4.11) and
observe that the term containing n, (q, O) yields a vanishing contribution because i,Wiz = . . Wi)„

The remaining terms in Eq. (4.11) yield in combination with Eq. (4.7)

I; (q, z)~= I; (q, z)x

b b 00

Vl —A. —P, y y y ztL ——1II(i,)

1
A, =2 @=2 q. .q '. . . 't=01" Xq, q

X5(q, q, + . qi)5(q, q', + . +q„')S, '(q', ) . S, '(q„')

X (n, (q„t) n, (qi, t)nl*(q'„0) n,
* (q„',0) ), (4.13)

where L =L (q, z). The formal (unclosed) equation of motion for I expresses the (11) correlation in terms of the (A)L(, )

correlation functions with (A., )u, =2, 3, . . . , b)
In the subsequent part of this section we will introduce a factorization approximation that converts Eq. (4.13) into a

closed equation for I (q, t). The basic idea is that Fourier components of occupation numbers are approximately distri-
buted as a Gaussian, at least for small wave numbers, as a consequence of the law of large numbers. Further, we note
that by constructing higher-order hierarchy equations and by using factorization approximations in these equations a
systematic loop expansion can be developed. The factorization approximation used here gives the one-loop theory ex-
actly. In the Gaussian decoupling approximation the higher-order correlation functions can be expressed in products of
pair-correlation functions and all higher cumulants are neglected.

Next we observe that the (A)M) correlations in Eq. (4.13) are only nonvanishing in the Gaussian approximation if
every i label out of (i„.. . , i) ) is paired to a j label out of (ji, . . . ,j„).Consequently A, =)M and the (AA, ) correlations
factor into a sum of products of I (t). For the (22)-correlation function we obtain in this manner

(n l(ql t)n2(q2 t)n i'('ql 0)n2'( 12 0) ) V + ('ql 'ql)5( 12 k2)~11(ql t)~22 ('q2 t)

+ V ~ 5(q„q2)5(q2,q', )f',2, (q„t)f'2„(q2,t) . (4.14)

For the time being we neglect all higher-order terms with A, )2 in Eq. (4.13). As will be shown in the next section, the
terms with A, =2 yield the two-mode contributions, yielding long-time tails -t in current correlation functions.
The terms with X=3 yield three mode contributions with subleading long-time tails —t, where d is the number of di-
mensions. Also note that the A, =3,4, 5, . . . terms are all higher order in a loop expansion then the A. =2 terms and
should not be retained without also improving the approximation given by Eq. (4.14).

Insertion of Eq. (4.14) into Eq. (4.13) and using that L (q, z) is a symmetric matrix gives

I,. (q, z) =I,. (q, z)[L '(q, z)]...Q(, .,)zR,2, 2 (q, z)Q' ', 2 [L '(q, z)], ,e

where R (q, z) is the discrete Laplace transform, defined in Eq. (4.4), of the ring collision integral,

(4.15)

R,~, 2 (q, t) = g 0„.(q', t)S i, '(q')f 2z(q —q', t)S z, '(q —q') .
V

(4.16)
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The structure of the ring integral given by Eq. (4.15) is a discrete time convolution. It describes a Boltzmann propaga-
tor (L '), a collision (0), two independently propagating particles (I S ')(I S '), and a subsequent correlated col-
lision (0) followed by a Boltzmann propagator (L '). We further observe that R,z, .2. (q, t) vanishes for t =0. The for-
mal reason is that g~ exp[iq. (c& —cz)]= V5& z, whereas 1'%2' because of Q~, '2. Physically the reason is that the (1'2')
collision, denoted by 0'1'2 cannot be followed by a second collision, denoted by 0';1&, between the same pair, if the par-
ticles are only freely propagating during the intermediate time interval t. Therefore t 1, allowing that particle 1

and/or 2 can at least suffer one intermediate collision with another fiuid particle. Of course in a (d —1)-dimensional
slab, which is only two lattice spacings wide in the dth dimension, R,2, z. (q, O)-5(c&,cz) is in general nonvanishing
[see Eqs. (3.13)—(3.15)]. It gives rise to the excess geometric correlations, discussed in Sec. III. This is the standard
structure of the ring collision term in the kinetic theory of continuous fiuids [12].

Including all A, terms in Eq. (4.13) in the Cxaussian approximation leads similarly to the result
b

I,z(q, z)=I J(q, z}+g L;,''II, , &z. . . ~e ~LJJ''Qz. &'2. . . . ~R&z. . . ~ &2 . . . ~(q, z), (4.17)
A, =2

where

(A, )R &z. . .„,z . . . ~. (q, t)=
V

5(q, q, + . +qz) + [f'„.(q, , t)S ~ '(q .)] .
p=1

(4.18)

By extending the arguments below Eq. (4.16) one can show that R' '(q, O) =0 for all A, =2, 3, . . . , b. The kinetic propa-
gators in Eqs. (4.16) and (4.18) are the full propagators and Eqs. (4.16) or (4.18) give a self-consistent equation from
which I (q, t) can be solved in principle. This equation is referred to as a self-consistent ring equation. In the next sec-
tion we shall only consider the ring integral R' ' with all I"s replaced by their Boltzmann approximation, I in Eq.
(4.9). This approximation is called the simple ring approximation [12].

A particularly interesting application of these results would be the calculation of the current-current correlation
function P(t) in the ring approximation for all times t, as there exist many simulation data, in particular for the velocity
autocorrelation function (VACF) [7—10].

In order to do so we write the correlation function in Eq. (2.14) as p(t)=j f'(O, t) jx. , using. a. notation with a b Xb
matrix f' and a b vector j(c) with components j(c; ) (i =1,2, . . . , b). Combining Eq. (4.15) with Eq. (4.6) at q=O we ob-
tain for the discrete Laplace transform

N(z)= xj(c) [1—e '(1+0"')] ' j(c)

+~[exp( —2z)][j(c) [1—e '(1+0"')] '],0,',zR, 2 & 2 (O, z)A'. , '2 [[1—e '(1+0"')] ' j(c)] . . (4.19)

In time language the last term involves time convolutions.
A further simplification follows from the observation that j(c) is an eigenfunction of 0'" for almost all LCxCA's, i.e.,0' "j(c)= —

A j(c), where A, is positive. Consequently 0' "in Eq. (4.19) may be replaced by the corresponding eigenvalue—A, . This certainly holds for all 4-, 8-, and 9-bits models on the square lattice [14,20,21], for all 6- and 7-bits models on
triangular lattice [13],and for all versions of the FCHC models [14,22] in three- and four-dimensional lattices.

As the inverse Laplace transform of [1—e '(1 —
A, )] and [1—e '(1 —

A, )] are, respectively, (1—
A, )' and

(t + 1)(1—1,)', the current correlation function in the ring approximation has the form

p(t)=(1 —A)'p(0)+v g r(1 —A) 'j(c;)Q,'.fzR&2 &. (t2—1 r)Q'. , '2j—(c ) . (4.20)

In fact the upper limit on the ~ summation can be re-
stricted to ~=t —2 in systems with linear dimensions
larger than two, because R&z, 2 (0)=0 [see below Eq.
(4.16)]. This shows again that the Boltzmann result
(1—

A, )' is exact for t =2. As this expression cannot be
evaluated analytically, it will be computed numerically in
a separate publication [23] for the VACF, and compared
with existing simulation data.

The contribution from the ring integral to the total
transport coefficient can be obtained from 4(z) in Eq.
(4.19) by setting z =0. This leads to a meaningful result
for dimensionalities d )2. However, in two-dimensional
systems R ( t } decays algebraically as 1/t, as we shall see
in the next section. Consequently, R(z) diverges as ln(z)

V. LANG-TIME TAILS

In order to analyze the long-time behavior of the ring
integral R ' '(q, t) in Eqs. (4.6) and (4.7) we need the slow
modes of the kinetic propagator f' (q, t). We therefore
introduce the kinetic eigenvalue problem [24],

L (q, z„)a„(q,c)=0 . (5.1)

With the help of Eq. (4.6) it can be rewritten, using ma-

for z ~0, which is in complete agreement with the funda-
mental observation for continuous fluids that Navier-
Stokes-type hydrodynamics does not exist in two-
dimensional systems.
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trix notation, as

e 'q'(I+0"')a„(q,c)=e " a„(q,c) .
z (q)

(5.2)

Once the eigenvalue problem is solved, it follows directly
from Eq. (4.9) that a (q, c) is a right eigenfunction of the
propagator. , i.e.,

f' (q, t)a„(q,c)=e " a„(q,c) . (5.3)

We note that |S ' is a symmetric matrix on account of
Eq. (4.6). However, f' is nonsymmetric, so its left eigen-
functaon as

a„(q,c)=e'q'a„(q,c) .

The spectral decomposition of f' is then

f', (q, t)=pa„(q,c;)e " a„(q,cj)

(5.4)

z (q)t lq'c ~=g a„(q,c, )e " a„(q,c )e
P

(5.S)

The eigenvalue spectrum of the b Xb matrix f' contains
(2+1) slowly decaying ("soft") hydrodynamic modes

provided the normalization is chosen such that the Carte-
sian inner product is

b

a„(q)a, (q) = g a„(q,c, )a,(q, c; ) =5„

with z„(q)-0 (z) or 0 (q ) for small wave numbers (orig-
inating from particle and momentum conservation), and
(b —d —1) rapidly decaying kinetic modes with
z„(q)—&

—A, as q~0, where —A, is an eigenvalue of 0'"
with I /A, typically on the order of the mean free time to
between collisions. The hydrodynamic modes are linear
combinations of the collision invariants a (c;)=(1,c;).

The eigenvalue problem determined by Eq. (5.1) for the
hydrodynamic modes wa, s solved by Brito, Ernst, and
Kirkpatrick [24] for small q. There are two sound
modes, (cr =+), a (q, e)=X (q c+oco) with
z (q) = iqo—co —yq, and (d —1) shear modes

a„;(q, c)=N'og~;. c with zz(q) = —(g/p)q, where X„is a
normalization constant. The vectors j q, q~, ,
i =1,2, . . . , d —1] form an orthonormal set of unit vec-
tors, with q=q/q. Furthermore, co is the sound velocity,
and rilp and y are the Boltzmann values for the kinemat-
ic viscosity and the sound damping constant for the
LGCA under consideration [24]. Both transport
coef5cients include the so-called collision and the propa-
gation part [13,15].

If we restrict ourselves to the long-time behavior
(t ))to) of the kinetic propagator given by Eq. (S.5) and
the ring integrals of Eqs. (4.16) and (4.18), the kinetic
modes in Eq. (5.5) can be neglected. The analysis below
of the ring integral is very similar to the one for the con-
tinuous Quid [12].

Using the spectral decomposition given by Eq. (5.5) the
simple ring integral R ' ' in Eq. (4.16) can be written as

2K fz (k)+z (q —k)]t
R', z', z. (q, t)= gga (k, c, )a,(q —k, c2)e " " a (k, c,.)a (q —k, c2.),

k pv

(5.7)

where the (pv) summations extend only over hydrodynamic modes. In Appendix 8 the following identity is proved for
the hydrodynamic modes [to 0 (q ) ]:

n;]2a (c])a (c2)= II;] a (c])a (c$) ~
(2i

P
(5.&)

It allows us to write Eq. (5.7), using K=f (1 f) as

Q, &2R &2 &, &, (q, t)Q. &,&, fl„R„(q,t)&& 1
(2) {2) (2) (1) (0) (&) (5.9)

and the ring integrals becomes

R,' '(q, t)= —g pa„(k,c;)a (q —k, c;)e " " a„(k,cj)a (q —k, ci) .(1 2f) 1 [z (k)+z„(q—k) jt

2f (1 f) V— (5.10)

The above expression is essentially the mode-coupling re-
sult. It describes the long-time behavior of the ring in-

tegral for times t large compared to the mean free time
to. For the time-correlation function given by Eq. (4.20)
at times t &)to one should consistently neglect the first
exponentially decaying term on the rhs of Eq. (4.19) and
set z =0 in the first and last factor of the second term.
Subsequently we substitute Eq. (5.9) into Eq. (4.20), and
obtain the long-time behavior of the Green-Kubo correla-
tion function in the sample ring approximation,

p(t)=aj R' '(O, t)j.
(q)/ e

p, v

The amplitudes are given by

A„,,(q)=(1—2f) g j(c;)a„(q,c;)a„(—q, c;)

'( Jg„(q)g(
—q) ) .

(5.11)

(5.12)
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The result is identical to that of the phenomenological
mode-coupling theory for arbitrary density. It has been
used by Naitoh et al. [9] as the starting point for calcu-
lating the long-time tails of correlation functions in
LGCA's. The second line in Eq. (5.12) quotes the expres-
sion of Naitoh et al. , where

P (q) =g a (q, c, )n, (q)/Qy
(5.13)

A discussion of this result is given in the next section.

VI. CONCLUSION

This paper presents a kinetic theory description for
fluid-type LGCA's that includes correlated collisions,
which are absent in the mean-field-type Boltzmann equa-
tion. From these extensions we have obtained a number
of interesting results.

(i) Time-correlation functions at time t =2 are exactly
given by the Boltzmann-equation result, Eq. (3.11), pro-
vided the periodic box, containing the particles, is more
than two lattice spacings wide in any space direction.

(ii) Due to the severe restriction of isotropy of fourth-
rank tensors there exist only quasi-3D isotropic LGCA's,
the so-called FCHC models [13,14], which are defined on
a 3D slab, two lattice spacings wide in the fourth (un-
physical) dimension. The geometric correlations given by
Eq. (3.16), observed as deviations from the Boltzmann-
equation result, appear to be finite-size e6'ects related to
the unphysical fourth dimension. The general formula
for an arbitrary (d —1) dimensional slab is given in Eq.
(3.16) and the explicit evaluation for a 1D strip is given in
Appendix A. In a planned separate paper [25] this result
will be extended to the velocity-correlation function of a
tagged particle and compared with the available 3D com-
puter simulations.

(iii) Within the approximation of the ring kinetic equa-
tion we have calculated the current-current correlation
function given by Eq. (4.20) in terms of the ring collision
integral, Eq. (4.16). This integral has been evaluated nu-
merically [23] for the triangular lattice-gas models, not
only at short and intermediate times (t = 1,2, . . . , 20),
but also for asymptotically long times (say t )20), where
the numerical results approach the long-time tails 1/t de-
rived in Sec. V.

(iv) The phenomenological mode-coupling theory, Eqs.
(5.10) and (5.11), for LGCA's has been derived from the
fundamental microscopic theory, using the methods of
kinetic theory.

We next make a number of comments and conclusions
on the mode-coupling results for LGCA's. The kinetic
theory derivation of the long-time behavior in LGCA s,
as presented here, gives a much stronger result than in
the case of continuous Quids. This LGCA kinetic theory
result is valid for arbitrary density and identical to the re-
sult of the phenomenological mode-coupling theory. In
continuous fluids, however, the corresponding kinetic
theory derivation of Eq. (5.11) is only valid in the limit of
low densities [12]. The mode-coupling result, Eq. (5.11),

gives the well-known long-time tails t " that have been
discussed extensively in the literature [7—11] and are in
good agreement with computer simulations of LGCA's
for the VACF. For a further discussion of its conse-
quences we refer to the literature [7—11].

In the derivation of the mode-coupling theory one
needs to solve a kinetic eigenvalue problem defined by
Eq. (5.1). Here we have restricted ourselves to modes
that become soft [z„(q)~0as q~0]. In the analysis of
Brito, Ernst, and Kirkpatrick [24], it was shown that
there exist in many LGCA s additional spurious modes,
for which the real part of z„(q)becomes soft, when q ap-
proaches special reciprocal-lattice vectors, usually locat-
ed at the corners of the Brillouin zone. These modes
must be included in the mode-coupling formula, Eq.
(5.10). The present analysis can be simply extended to in-
clude such cases. The spurious soft modes give rise to ad-
ditional long-time tails [11].

Finally it can be shown, starting from the spectral
decomposition given by Eq. (5.5) and using an analysis
similar to the one in Sec. V for the two-mode contribu-
tions, that the ring integral R' ' in Eq. (4.18), involving A,

one-particle propagators, reduces to a long-time result
similar to (5.10), involving A, slow modes instead of just
two. The leading long-time tail, however, is only deter-
mined by the two-mode terms. The three-mode contribu-
tions ()(,=3) yield a subleading tail —t
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APPENDIX A

In this appendix we use Eq. (3.17) to calculate at time
t =2 the correction to the Boltzmann value of the stress-
stress correlation function for a quasi-one-dimensional
strip of the FHP-I model. To this end we define the
correlation function

p())( t) j(()f ( q O r)j()) (A1)

with j, a momentum flux. For a two-dimensional system
there are two independent Auxes,

J(2) 1( 2 2)

(A2a)

(A2b)

and we note that for a spatially isotropic two-dimensional
system one has p")(r) =p( )(t). However, it is clear that
for the finite 2D system shown in Fig. 1 one does not
necessarily have P' "(t ) =P' '( i).

The second term in Eq. (3.17) gives the correction to
the Boltzmann value of the stress-stress correlation func-
tion at t =2. We define this contribution by |)p(()(2). The
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Eqs. (3.17) and (Al) and the discussion below Eq. (3.17)
gives

5y(l)(2) 4f (1 f)[()(l)II{2))2+(.(lj~(2) )2] (A3)

APPENDIX 8

In this appendix we indicate how Eq. (5.8) can be de-
rived for a general LGCA. We begin by considering a
particular binary collision, labeled a, operator for parti-
cles with velocity i and j for a generic b-bits LGCA,

I '(f)= g f* f f,* g f—f;f,
li, j 1&i,j

Here f; =1 f;, f; =—f (c;) is a general nonequilibrium
single-particle distribution function and the asterisk
denotes post-collisional velocities. The factors f in Eq.
(81) enforce the Fermi exclusion rule. For reasons that
will become clear, we next define

The matrix elements QI k in Eq. (A3) have been tabulated
in Ref. [15]. Using these results yields

(A4a)

Next, let us suppose that f is a (fermion) local equilibri-
um distribution of the form

f (LE)
1+exp(b a )

(83)

Here a; ( = 1 or c; ) is a colhsion invariant and b is the
thermohydro dynamic variable conjugate to a;:
b=b, +5b = [v, y] with v proportional to the chemical
potential, y proportional to the macroscopic Bow veloci-
ty, and b,q

is the equilibrium value of b.
To obtain a useful identity we use that I ' vanishes if f

is replaced by f( I as can be seen by using momentum
conservation, and

FI~~'=exp( —b.a, ) .

This gives

I (a)(f (LE)
) ()

(84a)

(84b)

= —(a„;a +a„a,; —a„;a —a„.a, ;) . (85)

We next use Eq. (83) in Eq. (82) and expand in powers of
56. To zeroth and linear order only trivial identities are
obtained. To quadratic order one finds

(a„;a,;+a„a —a„;a,; —a„la l) .

so that Eq. (81) can be written

b

I '(f)= Q ft (F;*F,* F,F, ) . —
I

(82b)

To make use of Eq. (85) we relate this equation to the
expansion given by Eq. (2.7). For our particular (ij )

binary collision the operator QI". in Eq. (2.7) is given by

fl' '5f =f(1 f) (5f;*—+5f* 5f; 5f )—. (86)—
Similarly, the operator 0';jk for the binary collision (ij) is

«J'k5f, 5f»= f(1 f)' '—+5f—k (5f;*+5f,* 5f; 5f, )— —
k

+f (1—f) [(5f ) +(5fj') —(5f;) —(5f, )']+(1—f) (5f 5f,' —5f 5f, ) . (87)

Now let us suppose that 5f is a collision invariant. The
first term on the rhs of Eq. (87) then vanishes due to the
conservation laws. The second term on the rhs of this
equation is proportional to the linearized collision opera-
tor given by Eq. (86). Similarly, Eq. (85) can be used to
relate the final term on the rhs to Eq. (86). Combining
these terms yields

0;;2a„(c;)a (cz) = — —0;;a„(c;)a,(ci) . (88)

Summing over all possible binary collisions then proves
Eq. (5.8) for this type of collision. The same considera-
tion can be used to prove Eq. (5.8) for triple- and higher-
order collisions.
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