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Scaling laws of the additive random-matrix model
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The scaling behavior of the additive random-matrix model H = (H +A, V) /( 1+A, )
' has been investi-

gated. This model, capable of producing transitions between di6'erent degrees of level repulsion for the
eigenvalues, has been analyzed for the case of the transition from the Poisson distribution exp( —S) of
the distances between adjacent eigenvalues to the Wigner distribution (mS/2)exp( —5 ~/4). %'e pro-
pose expressions for the level-spacing distribution and the distribution of the eigenvector components
and demonstrate their reliability by means of numerical computations. For the eigenvalues, the transi-
tion proceeds at a rate that scales as the square root of the matrix dimension. For the eigenvalues, the
rate is independent of this dimension.

PACS number(s): 05.45.+b, 02.50.+s, 24.60.Ky

I. INTRODUCTION

P(y)= 1 —yn(y)
&2m. (y )

(lb)

The first one has come to be called the Wigner surmise,
the second one the Porter- Thomas distribution. The
quantity (y ) is the mean value of the transition
strengths. It defines the scale of statistics and can there-
fore be set to unity. It is now understood that these origi-
nal propositions apply not only to nuclear Hamiltonians
but to a whole universality class of dynamical systems.
That class is referred to as orthogonal and is character-
ized by Hamiltonians which (i) generate globally chaotic
motion in the classical limit and (ii) are time-reversal in-
variant. It is represented by an ensemble of real sym-
metric random matrices [Gaussian orthogonal ensemble

When physicists started to investigate the properties of
nuclei systemically, they realized very early that it is
hardly possibly to explain the vast complexity of the level
scheme or the Auctuations of the cross sections of neu-
tron scattering by means of first-principles calculations.
So they studied properties of the eigenvalue spectrum and
the fluctuations of the transition strengths and cross sec-
tions. Much attention was paid to the distribution of
nearest-neighbor spacing [1,2] between eigenvalues
S =(e;+,—e; )(p), (the multiplication with the mean lev-
el density (p ) is used to normalize (S ) to unity). One
also studies the distribution of transition strengths, i.e.,
the elements of the transition matrix y = )(C&~ T~tp; )

~

be-
tween a fixed state

~
@) and eigenvectors

I ~|p; ),i =1, . . . , X], which span the Hilbert space. This
structure of y suggests that one may combine T and

~
4 )

to a new unknown, but fixed, vector ~4). One confronts,
therefore, a problem of describing the statistical proper-
ties of the eigenvectors [ ~y, ),i = 1, . . . , X] of a Hamil-
ton operator H in a certain basis [3]. For both distribu-
tions expressions were surmised [1,2].

P (S)= (mS/2) exp( Srrl4), —

(GOE)] [4]. Two other quantum-mechanical universality
classes are associated with the global classical chaos: the
unitary ensemble with the systems with no time-reversal
symmetry [4,5] and the symplectic ensemble with systems
with Kramers degeneracy and no additional parity [4,6].
For both classes, generalizations of Eq. (1) exist [4].

The fact that the statistical description of classically
chaotic systems is possible in terms of random matrices is
astonishing and needs two clarifying remarks. First,
Hamiltonians of dynamical systems mostly do not appear
to be random. In fact the equivalence of spectral Auetua-
tions for random and "nonrandom" Hamiltonians has
been understood only recently [7]. Second, the
equivalence of a spectral average of some quantity (e.g. ,

the eigenvalue density in a given spectrum of a matrix I)
for one matrix M member of an ensemble, to an ensemble
average over all matrices of the ensemble, is a nontrivial
property of the ensemble that is often hard to prove [8].

A fourth universality class we need to mention here
comprises classical integrable systems with two or more
degrees of freedom. In that class, levels do not repel but
rather tend to cluster together so as to give rise to an ex-
ponential distribution of nearest-neighbor spacings [9]
P(S)=e . In that respect, the levels behave like the un-
eorrelated events of a random Poisson process.

We shall be concerned here with the Hamiltonians "in
between" two universality classes for integrable and for
fully chaotic systems (with time-reversal symmetry). The
investigation of the nature of the eigenvalue spectrum of
these Hamiltonians is of great interest, because it is a key-
stone to understanding quantum chaos. Berry and Rob-
nik [10] have proposed a distribution of nearest-neighbor
spacings for these systems. Motivated by semiclassical
ideas, they presented a family of distributions which in-
terpolate between the Poisson and the Wigner distribu-
tions. Even earlier Brady [2] proposed to use the Weibull
distribution, well known in statistical analysis, to describe
the transition from Poisson to Wigner-like spectra. As-
tonishingly, this proposition, which involved only the as-
sumption that the level repel -S, co&[0,1], seems to
have had the greatest success in fitting experimental and
numerical data. Parallel to the change in the level repul-
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sion, a transition in the distribution of transition
strengths takes place [11].This phenomenon, in a slightly
different context, has already been utilized to give an
upper bound on the time-reversal noninvariant part of
the nucleon-nucleon interaction [12].

At present, the discussion about the right random ma-
trix ensemble describing the transition from a Poisson to
a Wigner spectrum is not over. Recently, Feingold et al.
[13,14] used semiclassical arguments to define an ensem-
ble of band matrices. In the limiting case of this ensem-
ble, which corresponds to the analog of classically ergod-
ic systems, the GOE fluctuation properties of the spec-
trum were observed. A similar band random-matrix
model was investigated by Casati et al. [15]. Interesting
scaling laws during the localization-delocalization transi-
tion were found for eigenvalues [16] and eigenvectors
[17]. Other papers use models of full random matrices to
describe the Hamiltonians in between the universality
classes [18,19]. This line will be followed in our work.

The aim of this paper is to describe the simplest
random-matrix model capable of describing Hamiltoni-
ans of the transition between a Poisson and a Wigner
spectrum. Our investigation provides information about
the eigenvalue and eigenvector statistics of this model, so
far not presented. One reason for reporting these facts is
to verify and complete some results recently reported by
Cheon [20].

This paper will be organized as follows. In Sec. II, we
will describe our model. In Sec. III we discuss the statist-
ical properties of eigenvalues and present some numerical
results; in Sec. IV, we do the same for eigenvectors. We
conclude, in Sec. V, by summarizing our results and dis-
cuss their possible applications and the connection with
band random-matrix models.

II. MQDEI.

For most dynamical systems which have a mixed phase
space (a Poincare section shows the Kolmogorov-
Arnold-Moser tori and chaotic layers), it is possible to
change the fraction of the chaotic volume in the phase
space continuously from zero to one by increasing a sin-
gle parameter in the Hamiltonian. One can write a Harn-
iltonian H,

H=H +XV, (2)

where H describes a regular system and V is a perturba-
tion causing a transition to globally chaotic motion. In a
diFerent context, Hamiltonians of the form of Eq. (2) are
studied in nuclear physics. One often faces the problem
of estimating the "size" of a symmetry-breaking (e.g. , iso-
spin) or time-reversal-breaking part in a Hamiltonian
necessary to produce a sizable effect on the spectrum. In
this situation, V breaks the symmetry and A, plays the role
of the strength of symmetry-breaking part when H and
V have the same norm [12,18,19]. In this situation one
generally has no knowledge of the microscopic structure
of H and V, but it is known that the statistical behavior
of the nearest-neighbor spacings of the spectra for Hamil-
tonians belonging to different symmetry classes are
diFerent [1]. The simplest way to study the transition in
the spectra is to choose H and V from different classes.

To complete our definition, we choose the following vari-
ances for the matrix elements:

( V2 ) =2( V," ) = 1/2N, i',
where the brackets denote the ensemble average. We are
interested in large matrices, 1V ))1.

III. EIGENVALUES

We are interested in the eigenvalue distribution of the
ensemble defined above.
The probability density P(H, A, ) is given by

P(HA)=(5(H —(H +A, V)/+1+A, )). (5)

Let us start with a few remarks about the density of the
eigenvalues. For A, =0, we get a zero-centered Gaussian
with the variance equal to 1 while, for A, —+ ~, we ap-
proach a semicircle [22] with radius equal to 1. Figure 1

shows the integrated density for three different values of
Each curve was generated by superimposing spectra

of 100 200X200 matrices. For later comparison we draw
attention to the values of X needed to complete the transi-
tion. The density performs its transition on a "time
scale" A.d one order of &K slower than the spacing distri-
bution [23], so during the whole transition of the spacing
distribution from Poisson to Wigner we may assume that
the density remains Gaussian.

A first step towards the description of the spacing dis-
tribution for the ensemble (5) is to consider the case [24]
of %=2. Let us take for H an ensemble of real sym-
metric 2 X 2 matrices of the form

P(H )=- expI —[(TrH ) —4DetH ]'~
I exp[ —Tr(H ) ]

X [(TrH ) —4 DetH ]

and, for V, a 2X2 GOE ensemble. The first ensemble is
easily seen to imply an exponential distribution of the
spacing between the two eigenvalues. The averages in Eq.

To go even a step further, one can select both from
different random-matrix ensembles, constructed with the
only condition of preserving a certain symmetry [1,2].

Problems motivated by "quantum chaos" lead to a
different situation since, in most cases, one has detailed
knowledge of H and V. The justification for choosing
H and V from different random-matrix ensembles and to
study the transition from the GOE spectrum to the
Gaussian unitary ensemble spectrum for a globally chaot-
ic system, or from the Poisson to the GOE spectrum by
studying Eq. (2), was given only recently [21].

For our specific purpose, we choose V from the GOE
ensemble of real symmetric XXN matrices and H as a
diagonal matrix with a Gaussian distribution (with mean
equal to zero) of all elements. For A, =O we get the Pois-
son distribution of the nearest-neighbor spacings and for
A, —& oo the Wigner surmise Eq. (la). To keep the eigen-
values of H in a bounded range of the energy axis, we
slightly modify [21] Eq. (2):

H =(H'+XV)/+1+1, ' .
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collecting —15 000 spacings. We thoroughly checked
that the remaining inhomogeneity exerts no significant
influence on our results.

With all these precautions taken, we have found the
numerically determined spacing distributions to be faith-
ful to our proposition (7) to an amazingly high degree of
accuracy throughout the transition. In Fig. 3 we present
histograms drawn from ensembles of diFerent matrix di-
mensions together with the best-fitting curve from the
family of distributions (7). To have an objective criterion
for the quality of the fits, we used a 5% g-square test.
The quality of the fit with Eq. (7) was, for all N and all I,,
as good a fit as a GOE spectrum, of the same number of
eigenvalues, with the Wigner siirmise Eq. ( 1a). This
means that we are able to discriminate the diFerent spac-
ing distributions in diFerent parts of the spectrum. It
should be noted here that the best-fit value kf„of the pa-
rameter in the distribution (7) does not necessarily coin-
cide with the control parameter A, defining the transition
in the ensemble (3). The fitting parameter A.„,depends, in
fact, on the part of the spectrum from which the histo-
gram was made. The solid lines in Fig. 3 represent the
best fit obtained for data from the center of the spectrum
while the dashed lines denote fits done for the wings.

In Ref. [23] it was argued that the transition should
proceed at a rate -+N. To study the transition rate, we
have plotted the logarithm of the fitting parameter A,f„
against the logarithm of A,&N, where 2 is the bare value
of the control parameter in definition (3). Convincing re-
sults are presented in Fig. 4. A direct comparison with
the results of Cheon [20] becomes easier by using his
method of the analysis of the distribution's momentum.
In Fig. 5 we present our results in the momentum-
momentum plot. Contrary to his results, all points for all
values N and A, lay on a single line. Moreover, this line

relight be well approximated by a curve calculated from
our proposition (7). Such an agreement seems to provide
a convincing argument for the existence of scaling in our
model. Slight systematic deviations of the numerical re-
sults from our curve for small values of k are a conse-
quence of a little drawback of the method of spectral un-
folding. The Poisson spectrum is not invariant under this
procedure. The resulting distribution diFers from the
Poissonian: it has a finite range and an algebraic falloF.

The moments of this distribution can be calculated
analytically and they agree exactly with the numerical
data in the case of A, (&1. Details are given in the Ap-
pendix.

IV. KIGKNVKCTORS

0. 6
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We have also studied the eigenvector statistics of the
matrices belonging to the ensemble Eq. (5). Numerical
diagonalization of a matrix provides N eigenvectors
[gk, k=1, . . . , NI, each described by N components
[ck, l= 1, . . . , N]. We are interested in the distribution
of squared components y =~cl',

~
. It is well known [2,4]

that, for the pure orthogonal ensemble (k~ ) for the
case of large N the probability P(y) is given by the so-
called Porter-Thomas distribution (lb). Figure 6 presents
the statistics P(logic(y)) (on the logarithmic scale) for
N =200 and diFerent values of A, . Each histogram was
built of data from 20 matrices to assure a sufIicient statis-
tics. Values of y are scaled in such a way as to keep

500

N

0. 6

CD

~ 0.0
(c)

0. 2

1.5 M(2)
FIG. 5. Plot of the sixth moment (5 )(A, ) as a function of

the second (5 ) l A. l during the transition from the Poisson spec-
trum (upper right corner) to the GOE spectrum (lower left
corner) ~ Details in text.

0 Q

0

1og„(y)
FIG. 6. Eigenvector statistics for %=200 and A, =12.0 (a),

0.50 (b), and 0.01 (c). Dashed lines denote GOE prediction.
The narrow line in (c) represents the histogram of eigenvectors
which correspond to eigenvalues in the center of the spectrum.
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&y &=1, so the Porter-Thomas distribution has the max-
imum at log, o(y) =0. For A, =12.0 [Fig. 6(a)], the numeri-
cal results coincide so well with the Porter-Thomas distri-
bution that one can hardly distinguish between the histo-
gram and the dashed line, representing Eq. (lb). With
smaller values of A, , the distribution P(log, o(y)) becomes
wider and almost symmetric. The maximum of the dis-
tribution y is shifted toward smaller values of y. Such a
distribution, obtained for X=0.5, is presented in Fig.
6(b). For even smaller values of X [0.01 at Fig. 6(c)], the
distribution is shifted further and y decreases, while at
log, o(y) =log, o(X) a peak appears, which corresponds to
the diagonal elements. In the limit A, ~0, the matrix ck is
equal to the identity matrix, the main peak of the distri-
bution escapes to the left as log, o(y) —+ —~, and only the
peak at logio(X) remains.

In order to estimate the inhomogeneity along the ener-

gy axis, we have selected only those eigenvectors which
correspond to eigenvalues lying in the center of the spec-
trum, and prepared a separate statistics for them. The
narrow histogram in Fig. 6(c) shows the eigenvector
statistics obtained from 50% of all eigenstates for the
same value of X=0.01. Eigenvectors from the center of
the spectrum are slightly more delocalized than the aver-
age, but the difFerence in the distribution is not very
large. The discussed eigenvector statistics possess an in-
teresting feature. Its dependence on the size 2V of the ma-
trices is almost negligible, apart from the peak at log, o(X)
which occurs for su%ciently small k. The shape of the
main peak of the distribution seems not to change for
wide ranges of X and k, so the distribution may be
characterized by the position of the maximum y . Fig-
ure 7 presents the dependence log, o(y ) on log, o(A, ) for
different size of matrices. The number of matrices diago-
nalized was changed in order to keep the total number of
components ) 10 . Even though X varies from 2 to 600,
all points lie close to a straight line with fitted slope equal
to 1.96. Hence, the main peak of the distribution
P(logio(y)) moves right with y —A, independently on
the matrix size ¹ The value log, o(A, , ) =0.5 at which the
fitted line intersects the axis log, o(y )=0 gives a good
approximation for the critical value of the parameter A,

necessary to obtain the vector statistics in agreement with
the prediction of the orthogonal ensemble.

1 1

'(/1+4x /b
L

Since we are interested in the regime of small k so
x «b, the quantity y can be approximated by

X X

b2+ 2 2 b2

According to the definition of the model, the variable
g=x is distributed with the Porter-Thomas distribution
with the mean value & g &

=
& H; &, i Wj, and the random

variable p=b has the same distribution with mean value
&p& =2&H;; &. The distribution P(y) may thus be ap-
proximated by

—g/2( g&
—p/2(p)

~(y) = y J» ™&(y k/p) —— ~b ~p.
0 0 2~&&k&&S &km

Performing integrations and substituting variances & H, , &

and & H; & from Eq. (4), we obtain

2m&4+ X'

v'y sr[A, +4y(4+1, )]
(12)

where the factor a=(K —1)/X takes into account the
fact that the diagonal elements of the matrix 0 are ex-
cluded. This distribution fits indeed to the X =2 case, as
demonstrated in Fig. 8. The picture is obtained for the
parameter A, of the ensemble (3) equal to 0.013; the same
value inserted in the above distribution gives a satisfacto-
ry agreement with the histogram. The main peak of the
distribution described by Eq. (12) contains the oA-

diagonal elements of the orthogonal matrix O. All diago-
nal elements contribute to a singular peak at

The fact that the eigenvector statistics does not depend
significantly on X enables us to look for an approxima-
tion for the distribution P (y) by analyzing 2 X 2 matrices.
Consider a symmetric matrix

x a+& (g)

and the orthogonal matrix O, such that 2 =O~ AO is di-
agonal. This constraint determines y, the squared nondi-
agonal element of 0,

08
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FIG. 7. Dependence of the position y of the peak in I'(y)
on A, on a logarithmic scale. (%=2, stars; %=20, diamonds;
N =200, triangles; and X =600, squares. )
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1 og„(y )

FIG. 8. Eigenvector statistics for X=—2 and X=0.013. The
solid line stands for the distribution (12) with the same value of
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FIG. 9. As in Fig. 8 for X =600 and A, =0.002.

V. CONCLUSIONS

The aim of this paper was to give a thorough investiga-
tion of the often-used random-matrix model (4): the ma-
trix H is drawn from an ensemble of diagonal matrices
with identically distributed matrix elements and V from

Iog&0(y) =log&0(2). The distribution (12), derived for 2X2
matrices holds well for A, not larger, say, than 0.5 where
the approximation (10) breaks down.

Even more interesting is the fact that this approxima-
tion works fine for an arbitrary size N of the matrices.
Figure 9 presents an excellent agreement of this distribu-
tion with the histogram obtained for X =600 and
A, =0.002. Of course, a small peak at log, a(y) =log, 0(600)
corresponds to the diagonal elements of 0 and cannot be
described by the distribution (12). Apart from that fact,
the proposed distribution can be used to approximate the
eigenvector statistics for all X and A, &0.5. The eigenvec-
tor statistics is, in general, basis dependent [3,28]. In the
discussed model, however, the eigenvector statistics, in
the basis of the unperturbed H, provides relevant infor-
mation for an alternative study of the transition from reg-
ular to chaotic motion. In this representation, the distri-
bution of the eigenvector components for k =0 is a singu-
lar peak at Iog, 0(N) and for A, = ~ is given by the Porter-
Thomas distribution Eq. (lb). In between these two lim-
its our distribution, Eq. (12), describes the main peak of
the distribution. Due to the large number of eigenvector
components, this approach assures good statistics and
may be sometimes more suitable than the standard
analysis of the level-spacing distribution.

the GOE ensemble. We investigated the statistical prop-
erties of the eigenvalues and the eigenvectors both of
which are of interest for quantum chaos and nuclear
physics. These properties, the distribution of the level
spacings, and distribution of the eigenvector components,
were investigated numerically with a sufhcient statistics.
In a first step we presented simple 2X2 predictions for
the distribution of nearest-neighbor spacings and the
modulus of an eigenvector component. In the next step,
the high reliability of the distributions (7) and (12) was
demonstrated for all X and all values of A, (with certain
restrictions for the eigenvectors). We also looked for
scaling laws of the model and found them for eigenvalues
and eigenvectors. The eigenvalues undergo a transition
from the Poisson to the Wigner distribution, with a tran-
sition rate which scales as VN. In contrast, the eigen-
vectors perform a universal transition independent of X
from the Porter-Thomas distribution to the singular dis-
tribution of the eigenvectors of a diagonal matrix. To
our knowledge, it is the first time that such an interesting
difference in the behavior of the eigenvectors and eigen-
values has been shown. At erst glance, a scaling propor-
tional to &X in the transition form a Poisson spectrum
to a GOE spectrum seems to be an obstacle for a mean-
ingful interpretation of the ensemble (5) in the context of
quantum chaos. It is well know [1,23] that the bare tran-
sition parameter A, in a random-matrix ensemble (2) may
possess a physical interpretation after a suitable renor-
malization only. On the other hand, the fitted parameter
A, in the distribution (7) may have the physical meaning of
an effective coupling constant since this distribution ap-
proximates well the level statistics in pseudointegrable
systems [29,30].

One further impetus for our work was the paper of
Cheon [20] in which he claims that there should be no
scaling property in this model. We repeated his compu-
tations working with large statistics of eigenvalues and
paying special attention to the dependence of the level
statistics on the region in the spectrum from which the
data were collected. Clear evidence of scaling was
demonstrated, even using Cheon's method of momentum
analysis.

At the end we mention the close similarity of our re-
sults regarding the eigenvalue distribution with the re-
sults of Caurier et al. [31] for a certain class of tridiago-
nal matrices. Their results for the nearest-neighbor dis-
tribution are identical with the lowest-order perturbative
approximation for the two-level correlation function
R2(S, A, ) of ensemble (4). This approximation can be stat-
ed as follows [32]:

R2(S, A. )=f J 5 S—S- 4A, 'y(p)'(H, .',. )
0 0 (I+X )

P(y )R ~(S,O)dS dy, i Wj (13)

Here P(y) is the Porter-Thomas distribution, (p) stands
for the local mean level density, and R2(S, O) represents
the correlation function of the unperturbed ensemble [for
a Poisson spectrum one has R2(S,O)=1]. Expression

!

(13) gives a correct approximation of the correlation
function R2(S, A. ) in sense of perturbation theory [23]
which takes account of the inAuence of distant levels only
through the mean level density (p ). Performing integra-
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tions, we arrive at

R (S,A)= S exp
8A

with

S S
16A 16A

(14)

(15)

P(k)(S) J' y y
™~S P 2k +1

o o 0 (p+kv+kii)

x Po(p)Pk(v)Pk(rl)dp dv dr) . (A2)

The density distribution Pk(S) is the "k+1"-neighbor
spacing distribution, i.e., there are precisely k eigenvalues
between two eigenvalues separated by distance S. These
distributions are readily obtained for a Poisson spectrum

where Io(x) denotes the modified Bessel function. For
A. (& 1, Eq. (14) reduces to our result (7).

Sk —lk k

P (S) —ks
(k —1)!

(A3)
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APPENDIX

P'"'S = 1+(2k+1) (2k+1)

2k —1

(A4)

which allows one to find the moments

(2k + 1) 2k!n!
(2k +n)! (A5)

and obey the normalization &S &
= 1. From Eqs. (A2) and

(A3), we obtain the distribution

We want to discuss the inhuence of the spectral unfold-
ing on the resulting nearest-neighbor distribution. By
spectral unfolding, we de6ne the following transforma-
tion of the nearest-neighbor spacings:

(e;+,—e, )(2k + 1)

ei+ i+k
(Al)

It follows from this definition that the spacings are
bounded from above by 2k + 1. By calculating the
inhuence of this unfolding procedure on a Poisson spec-
trum, we use the fact that all eigenvalues are uncorrelat-
ed. The resulting spacing distribution reads

For the analysis of the data we had to balance two oppos-
ing tendencies: (i) to keep the finite-k eft'ect small, (ii) to
keep the stretch of the eigenvalues used by the unfolding
short. We decided for k =20. For the moments we get,
in excellent agreement with the numerical data for the
Poisson limit of the ensemble (3), & S &

= 1.95,
&S & =507. 1, whereas for a pure Poisson spectrum we
would get &S &=2.00, &S &=720.0. This reduction of
the higher moments is relevant for the Poisson-like spec-
trum only since, if any repulsion of eigenvalues occurs,
the k-neighbor spacing distribution (k ) 1) takes negligi-
ble values for small S.
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