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Stochastic resonance is a cooperative effect of noise and periodic driving in bistable systems. It can be
used for the detection and amplification of weak signals embedded within a large noise background. In
doing so, the noise triggers the transfer of power to the signal. In this paper we first present general
properties of periodically driven Brownian motion, such as the long-time behavior of correlation func-
tions and the existence of a “supersymmetric” partner system. Within the framework of nonstationary
stochastic processes, we present a careful numerical study of the stochastic resonance effect, without re-
strictions on the modulation amplitude and frequency. In particular, in the regime of intermediate driv-
ing frequencies which has not yet been covered by theories, we have discovered a secondary resonance at

smaller values of the noise strength.

PACS number(s): 05.40.+j, 02.50.+s

I. INTRODUCTION

Stochastic resonance (SR) has been invoked by Benzi
and co-workers [1] to explain the more or less periodic
occurrence of earth’s ice ages. The main effect of SR is to
enhance the response of a bistable system to weak period-
ic driving by the injection of random noise. The slowly
varying eccentricity of the earth causes weak periodic
modulations of the earth’s climatic system. Benzi et al.
model the climate system as bistable in the sense that
there are two metastable states, each characterized by a
different typical temperature. The result of the coopera-
tive interaction of climatic fluctuations and the weak
periodic modulations is argued to be the periodic oc-
currence of such crucial climatic events like ice ages.

A more recent experiment has been done by
McNamara, Wiesenfeld, and Roy [2] and by Vemuri and
Roy [3] with a bidirectional ring laser. The stable states
are the clockwise and counterclockwise propagating
waves, respectively. Random noise, inherent in every
laser system, causes random switching between the two
modes. An additional acousto-optic modulator periodi-
cally changes the probabilistic weights of the two modes.
Vemuri and Roy have taken the power spectrum of the
stochastic intensity of one of the modes. The power spec-
trum exhibits sharp peaks at the driving frequency and at
its higher harmonics, where the sharpness of the peaks is
solely determined by the experimental facilities, but not
by the laser system. The ratio between the area under
such a peak and the noise background, i.e., the signal-to-
noise ratio, shows a resonancelike curve as a function of
the input noise strength. The resonance condition is
roughly fulfilled when the unperturbed thermal
(Kramers-type [4]) hopping frequency is equal to the fre-
quency of the modulation. Very recently Moss and Bul-
sara [5] have used the SR effect in a superconducting
quantum interference device (SQUID) for the detection of
weak magnetic signals embedded in a large noise back-
ground.

A theoretical description of the SR effect in a bistable
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system based on a two-state model has been given by
McNamara and Wiesenfeld [6]. They have proposed a
master equation for the populations in the two stable
states, where the transition probabilities are periodic with
the modulation frequency. The expressions for the tran-
sition probabilities, however, are only valid for very small
frequencies (adiabatic assumption) and small modulation
strengths. Within this theory one finds & peaks in the
power spectrum at the external driving frequency. The
signal-to-noise ratio, i.e., the ratio of the weight of the
peak and the noise background, shows the SR effect.
This theory, however, does not predict higher harmonic
peaks in the power spectrum. Since the two-state ap-
proximation cannot cover all details of a bistable system,
investigations within a continuous description have been
put forward by Fox [7] and Presilla, Marchesoni, and
Gammaitoni [8]. Both theories are based on a perturba-
tive expansion of the Greens function for a weak periodic
modulation into the complete set of functions defined by
the spectrum of the unperturbed Fokker-Planck opera-
tor. The theory by Presilla, Marchesoni, and Gammai-
toni in fact predicts the SR effect. The expansion, howev-
er, does not consistently describe the details of the time
dependence of the Greens function as it can be seen for
the correlation functions, where additional phases occur
in comparison with exact results [9]. Stochastic reso-
nance has also been studied in detail by Marchesoni and
co-workers [8a—8c] and by Moss and co-workers [10,11]
using an analog simulation technique. In [11] SR has
been characterized for the first time by the characteristic
behavior of peak heights of the escape time distribution.
In [9] and [12] we have given exact answers to spectral
and ergodic problems, i.e., we have exactly predicted
various 8§ peaks in the power spectrum and its selection
rules for symmetric potentials, where only spikes at odd
superharmonics occur [9]. The goal of this paper is to
describe SR within the framework of nonstationary sto-
chastic processes, and to present numerical results
without the restriction to small driving amplitudes or fre-
quencies. This paper is organized as follows. In Sec. II
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our bistable model and some qualitative description of SR
are given. In Sec. III we provide the necessary back-
ground knowledge of nonstationary processes and present
our Floquet-type description of the system. New results
for the Floquet spectrum, such as the supersymmetry
property and generalized selection rules for the 8 peaks in
the power spectrum are also proven here. In addition we
show that the weights of the & peaks in the power spec-
trum are related to Fourier coefficients of certain time-
dependent mean values. We thus derive a formally exact
result for the response of the system to periodic modula-
tion. This formal result may be evaluated approximately
for small modulation frequencies by an adiabatic theory,
as well as for small modulation strengths within linear
response theory [13] (see also Ref. [14]). In Sec. IV we
present explicit numerical evaluations of our formal exact
expression for the system response. In contrast to all the
papers quoted above, we do not characterize SR by a
signal-to-noise ratio. The latter cannot be defined
uniquely within a Fokker-Planck description, since after
subtracting a 8 peak at the driving frequency there is no
clear-cut way of identifying a noise background. Instead,
we describe the SR amplification device by its
amplification characteristics similarly to what is usually
done to characterize a micro-electronic device. Here we
do not restrict ourselves to small modulation strengths
and/or small frequencies only. In this section we also
discuss the influence of finite coherence times of the
modulation to SR, this being a concession to the real
physical world. In Sec. VI, we consider the full power
spectrum of the system. It turns out that the results of
the two-state approximation in Ref. [6] do not apply to
the state-continuous model. The results differ
significantly all over the frequency range. Especially the
integral of the power spectrum over the frequency, which
always equals a constant for two-state models [11], is no
longer constant in the state-continuous description.

II. THE BISTABLE MODEL

Although many of the considerations in the next sec-
tion are very general, i.e., they do not depend on the
specific choice of the system, we introduce a bistable
model for the presentation of concrete results. The mod-
el we use is the standard double-well system

X =ax —bx3+ A sin(Qt +¢@)+&(1) , 2.1

where a,b >0 and £(¢) is white Gaussian noise with zero
mean, i.e.,

<§(t)>:0 s
(E(DE(t"))=2D8(t —t'),

The model (2.1), (2.2) describes the overdamped Browni-
an motion in the bistable potential
U(x)=bx*/4—ax?/2. The phase ¢ is the initial phase
of the modulator. In this paper we assume that the phase
is not known, i.e., the phase is equally distributed be-
tween O and 27 [15]. This assumption is typical for most
of the experiments. For convenience we transform Egs.
(2.1) and (2.2) into a form where all variables and parame-

(2.2)
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ters are dimensionless, i.e., x —>xVb/a, t—at and
A— A(b/a®*)V?, D—Db/a? Q—>Q/a. Equation (2.1)
is thus transformed into

Xx=x—x3+ Asin(Qt +¢)+E(1) . (2.3

The potential in scaled units has minima at x, , ==+1 and
a relative maximum at x; =0; the barrier height equals
AU=1. As explained in detail in Refs. [1-3] the noise
makes it possible to pass over the potential barrier even if
the modulation strength A is too small for a deterministic
transition. Since the transition rate k out of a metastable
state due to random noise obeys for small noise strength
D an Arrhenius law, i.e., k =vgexp[ —AU( 4,t) /D], tran-
sition events are most likely to take place when the bar-
rier height has a minimum. The theory for transition
rates in these situations has been put forward in Ref. [16].
The modulation A4 sin{}¢ thus clocks the escape process.
As a consequence, the escape process also has—apart
from its random nature—a coherent component. The
coherent component obviously has a maximum if the ran-
dom noise by itself produces in the statistical average two
escape events within one period of the modulation, i.e.,
Q=mveexp(—AU /D). This is approximately the condi-
tion for SR being valid for small driving frequencies Q.
We want to point out, however, that SR does not imply a
resonance for the escape rate itself. The incoherent part
of the rate increases exponentially for increasing noise
strength, and thus hides the effect of SR.

The stochastic trajectory x (), in contrast, is a better
candidate for observing SR, since it is convenient to ex-
tract coherent parts from its power spectrum. Because
the power spectrum is related to the correlation function
(in what sense this is true for a nonstationary process will
be discussed in the next section), the correlation function,
or the power spectrum, presents the appropriate quantity
to look at.

III. ESSENTIALS IN THE THEORY
OF NONSTATIONARY STOCHASTIC PROCESSES

The correlation function (2.2) guarantees the Markovi-
an property of the stochastic process (2.1). Due to the ex-
plicit time dependence of the deterministic flow, however,
the process is nonstationary. The Fokker-Planck equa-
tion (FPE) corresponding to (2.1) and (2.2),

éf%ﬂ)z —%[x —x’+ A sin(Qt +@) [P (x,1;¢)

2

+D 8
dx?

P(x,t;) , (3.1)
has a periodic drift coefficient in time with the period
T=2m/Q. Thus the FPE (3.1) has no eigenfunctions and
eigenvalues; instead, (3.1) possesses the Floquet-type solu-

tions

PW(x,t;@p)=exp(—ut)pWix,t;p), (3.2)

where the functions p"”(x,t) are periodic in ¢, i.e.,
p™(x,t +T)=p™(x,t). The Floquet-type coefficients u
are in general complex, since the Fokker-Planck operator
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is non-Hermitian. Expanding the function p‘*(x,t) into
a Fourier series in time, we observe that
the relevant time scales of the Floquet-type so-
lution PW(x,t;p) are A, ) =(u,+inQ)"', where
n=0,%+1,%2,... . It has been shown in Refs. [9], and
[12] that the inverse time scales A,,, are identical with
the set of eigenvalues of the FPE,

mn

AWx,0:8) |8 (1134 46ind)
at ox
02 4% \wixon, 63
30 ' 7 ax2 B '

which corresponds to a two-dimensional stationary sto-
chastic process, i.e.,

x=x—x3+ A sin0+£&(1) ,

. (3.4)

0=Q .
Both descriptions, the one-dimensional nonstationary sto-
chastic process (3.1) and the two-dimensional stationary
stochastic process (3.3), are fully equivalent when one re-
quires for (3.3) periodic boundary conditions in 6. The
Floquet coefficient =0 and its corresponding time-
dependent function py(x,t;@) in the one-dimensional
description [(3.1),(3.2)] represent the whole class of eigen-
values {in€} and corresponding time-independent eigen-
functions in the two-dimensional description. There is no
additional unphysical information within the two-
dimensional description as claimed in recent work [17].
Integrating W(x,0,t) over 0 does not yield the time-
dependent probability density P(x,?) as implied in [17],
but rather yields the cycle averaged probability density
}_‘(x,t)=(1/27T)fé’TP(x,t;(p)d¢ which approaches, with
@ uniformly distributed, for large times a stationary dis-
tribution. For uniformly distributed phases ¢, the two-
dimensional FPE (3.3) approaches a stationary density
W (x,0) [9] which is connected to the periodic asymp-
totic solution P, (x,t;¢) of (3.1) for large times (which is
unique [18] up to the phase @) by P, (x,t;9)
=27 W (x,0=Qt +¢) [9].

A. Correlation functions and spectral densities

For large times, the solution of the FPE (3.1) ap-
proaches the periodic function P, (x,t;¢), which is the
Floquet-type solution for the vanishing Floquet
coefficient. The analog to the stationary correlation func-
tion for stationary processes is the quasistationary corre-
lation function

K(t,t’;gv)———(x(t)x(t'))q,
=f_°° fjo xyP(x,t|y,t";p)
XP,(y,t";p)dx dy . (3.5)

For large times 7=t —t’ the transition probability density
P(x,t|y,t’;@) approaches the unique asymptotic solution
P, (x,t;@) yielding for the correlation function
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Ka(t,t";0)—{x(t;9)) ,{x(t";0)) s

t>t'—> 0, 7—> o .

(3.6)

Note that the correlation function for a fixed phase @ is
not a function of the time difference v as for stationary
processes, but rather is a symmetric function of ¢ and ¢’
separately. Expanding the periodic mean values in (3.6)
in a Fourier series, i.e., with M, =0,

(x(1);p))= i M exp[in(Qt+¢)],

n=-—oo

(3.7

the phase-averaged asymptotic correlation function reads

i | M, |%exp(in Q1)

n=-—oo

K, (t,t)=K,(1)=

=23 |M,|*cosnQr .

n=1

(3.8)

The phase-averaged correlation function thus is a func-
tion of the time differences 7 [19]. Furthermore it does
not decay in time, but performs ever present periodic
cosine oscillations. Systems having this property are
termed not strongly mixing [13]. In our two-dimensional
description, the periodic oscillations are due to the
branch of purely imaginary eigenvalues. The asymptotic
spectral density S,,(w), which is the Fourier transform of
the asymptotic time-homogeneous correlation function
K, (1), is given by

S.(@)= [ K (Dexp(—ior)de

=2r 3 |M,*8(0—nQ).

n=-—ow

(3.9

It exhibits § spikes at multiples of the driving frequency
Q with weights given by the Fourier coefficients of the
time-dependent mean value (x(¢)),. The full spectral
density, obtained from the full correlation function valid
for arbitrary times, has in addition to the & spikes a
Lorenzian-like “background.” The existence of 8§ spikes
in the power spectrum is very general for periodically
driven stochastic systems. They are due to the fact that
the corresponding probability distribution always ap-
proaches a periodic asymptotic distribution [20]. This is
also true in the case when the deterministic dynamics is
chaotic [12,21]. The same results [(3.8), (3.9)] could have
been obtained also from the two-dimensional stationary
stochastic process [(3.3), (3.4)] (see the Appendix). The
fact that S (w) is positive is thus a consequence of the va-
lidity of Wiener-Khintchin’s theorem for the two-
dimensional stationary stochastic process [(3.3), (3.4)]. As
a result we conclude that the Wiener-Khintchin theorem
also holds for our nonstationary process after phase
averaging over the uniformly distributed initial phase of
the modulation.

Next we mention that, depending on the symmetry of
the problem, not all the weights of the & spikes in the
spectral density are different from zero. There are selec-
tion rules for the occurrence of 8 spikes, which are now
derived for the more general situation
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x=h(x)+g(x)sin(Qzt+¢)+E&(2) . (3.10)
For symmetric potentials, i.e., A (x)=—h(—x) and sym-
metric functions g(x)=g(—x), the mean value

(x(t);@)) possesses only odd Fourier coefficients. This is
a consequence of the fact that the asymptotic probability
must be invariant under the parity symmetry transforma-
tion Ty: x— —x, t—t+T /2. Expanding P, (x,t;¢) in
a Fourier series with respect to time, the Fourier
coefficients obey the symmetry relation c,(x)
=(—1)",(—x). Carrying through the integration for
the mean value (x(1);¢) only the odd coefficients
€y, +1(x) do contribute. Thus the & spikes at even multi-
ples of the driving frequency assume zero weight. For
symmetric potentials and antisymmetric function
g (x)=—g(—x), the mean value {x(z)) is identical zero.
This is also a consequence of the invariance of the asymp-
totic probability with respect to the parity symmetry
transformation which reads here 7,: x — —x. This pari-
ty implies that P, (x,?;@) is symmetric at all times ¢, i.e.,
P, (x,t;p)=P,(—x,t;p). Thus the mean (x(t);p) is
identical to zero. As a consequence there are no & spikes
at all in the spectral density. Asymmetric potentials pos-
sess 8 spikes at even and odd multiples of the driving fre-
quency. All those selection rules have already been ob-
served by simulations [11] and by actual experiments [3].

The “power” [22] in the vth frequency component is
obtained by integrating the spectral density S(w) over
the & peaks at vQ) and —v(), i.e.,

P, =4x7|M |*. (3.11)
With the total input power contained in the modulation,
given by
P,=mA?, (3.12)

the power amplification at the frequency 0= is given
by

(4,0)=2 =4 2
n ’ - P. -

mn

11,

y (3.13)

The quantity 7( 4,Q) in Eq. (3.13) presents our measure
for stochastic resonance.

Another interesting interpretation of the physical
meaning of M, is the following [23]: The equal-time
correlation between the stochastic output x (¢#) and the
modulation A sin(¢ +¢) averaged over the time is given
by

C(4,0,D)={({x(sin(Qz+@)),), .
From (3.7) we find

(3.14)

ImM,=le0T<x(z;q))>sin(m+<p):c(A,Q,D) .

(3.15)

The imaginary part of the first Fourier coefficient of the
mean value {(x(z;@)) thus describes also the equal-time
correlations explained above. Finally we want to men-
tion that within the two-dimensional description in x and
6 the Fourier coefficients M, and the correlation C are
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0 2 .
Mn—f_wdx fo dOxW,(x,0)exp(in6) (3.16a)
and
C=(xsind) . (3.16b)

These relations allow us to extend the quantitative
description of stochastic resonance to more realistic sys-
tems, where the modulation is not perfectly coherent (see
Sec. IV C).

B. Inverted potentials and supersymmetry

It has been shown that for overdamped one-
dimensional Brownian motion in confining potentials
f(x), the Fokker-Planck operator is isospectral (except
for the eigenvalue A =0) with that of Brownian motion in
the inverted potential — f(x) [24,25]. In this section we
show that this remains true for the Floquet spectrum of
periodically modulated overdamped stochastic systems.
This concept is very similar to what others have termed
“supersymmetry” in quantum mechanics and field theory
[26,27]. The major difference is that our Fokker-Planck
operator is non-Hermitian and cannot be transformed
into a Hermitian operator. The starting point is the two-
dimensional Fokker-Planck equation (3.3) with the gen-
eral binding force field 4 (x), i.e.,

Wx,0,0) _ { 8_ [ h(x)+ 4 sin]

ot Cax
3 32
—Q—+D— ,0,t
Q 30 D 2 Wi(x )
=LgpWi(x,0,t) . (3.17)
The transformed operator
L=¢¢ (x)Lgppo(x) , (3.18a)
with ¢4(x) given by
bolx)=exp | == [ “h(p)dy (3.18b)
0 2D Yo
is obtained after some calculations to read
1 a? A .
——1p T 12 v a
L >h'(x) 4Dh (x)-l—Dax2 2Dh(x)smﬁ?
. .0 3
A sinf 3% Q 30 - (3.19)
Introducing the operator a and its Hermitian adjoint al
~— 0 1
4 ox 2vVD (x),
3 1 (3.20)
¢ ax 2vp %)

the transformed operator L takes on the simple form

A4 oot
D (sinf)a Q

L=—a"a+ :
aa 30

(3.21)
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Repeating the steps above with the inverted potential,

i.e., h(x)=—h(x), we end up with a transformed opera-
tor
L=-—aa"— ‘//—15 (sinG)a-Qa% . (3.22)

From (3.21) and (3.22) we can derive the following rela-
tion:

aLt(x,—0)=L(x,0)a , (3.23)
where L T(x,(9) is the adjoint operator of L, i.e.,
t =t 4 9
L'x,0)=—a'a+ == (sind)a+ 0 . (3.24)

The eigenvalues of L and L' are denoted by A, while the
eigenfunctions are denoted by 2(x,60) and A(x,0), respec-
tively, i.e.,

L(x,0)2(x,0)=A2(x,0) ,

; (3.25)
L'(x,0)A(x,0)=AA(x,0) .

Since the spectrum of the operator L does not depend on
the sign of 0, we find

aLt(x,—0)A(x,—0)=L(x,0)aA(x,—0)

=AaA(x,—0), (3.26)

which means that aA(x,—6) is an eigenfunction of
L(x,6) with the eigenvalue A, which is also an eigenvalue
of L. Thereby we conclude that the Fokker-Planck
operator with the inverted potential — V'(x) is isospectral
with the original potential ¥ (x). Since the operators L
and L are not of Schrodinger type we cannot define super-
symmetric partner potentials as in quantum mechanics.
The isospectral property, however, is very important for
practical calculations. For instance, we can conclude
that the escape rate out of the bistable potential
V(x)=—x2%/2+x"*/4, which is given by the smallest real
Floquet coefficient [16,28], equals that of the inverted
metastable potential — V(x).

IV. SIGNAL AMPLIFICATION CHARACTERISTICS

In this section we present explicit results for the signal
power amplification (3.13) in our double-well system in-
troduced in Sec. II. To obtain the time-dependent mean
values and its Fourier coefficients we utilize the matrix-
continued-fraction (MCF) technique [29]. The technical
details for the application of the MCF technique in our
system are explained in Ref. [16]. We shall present only
results here. In Fig. 1, the signal power amplification is
plotted as a function of the noise strength D at 4 =0.2
for various values of the driving frequency Q. For large
Q, the curve is rather flat and the power amplification is
smaller than 1, i.e., the signal is damped and not
amplified. For decreasing ), the curve develops a peak,
where the power amplification is larger than 1, i.e., the
signal is amplified by the action of the noise. Note that
the power amplification always decreases to a finite value,
when the noise strength tends to zero (below the reso-
nance point). This limit value can be obtained from a

PETER JUNG AND PETER HANGGI

IR

35

304
254
204
154

FIG. 1. The signal amplification factor 7 (3.13) is shown as a
function of the noise strength D at 4 =0.2 for three different
driving frequencies Q.

linearization around the potential minima and is given by
1/(4+Q2?). In the adiabatic limit Q <<exp(—AU /D)
(see Sec. IV A), the amplification increases for decreasing
noise strength and approaches a maximum at D =0. This
limit, however, is never reached for a finite frequency (Q,
since the adiabatic approach breaks down for values of
the noise strength D, at which the adiabatic condition
D >>AU/|In(Q)| is not valid any more. In this regime of
D values, the system approaches the linear regime upon
decreasing D.

In Fig. 2, the power amplification is shown as a func-
tion of the noise strength D at Q2=0.1 for increasing
values of the modulation strength 4. For 4 > 4.(Q),
with 4,(Q—0)=V4/27, the resonance structure of the
power amplification disappears and we observe a monoto-
nous decrease with increasing D. This transition corre-
sponds in the deterministic system to a transition from
nonswitching to switching with hysteresis. The transition
value A4,(Q) scales in the deterministic system for small
frequencies like 4,(Q) = Q?/? [30]. The maximum power
amplification shows a monotonous decreasing behavior
for increasing modulation strength 4. This important
characteristic of SR is neither described by a linear

FIG. 2. The signal amplification factor 7 (3.13) is depicted as
a function of the noise strength D at 2=0.1 for increasing
values of the driving amplitude A. The result of LRT (4.15) is
plotted as the dotted curve.
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response theory [14], nor by the two-state approximation
in Ref. [6].

Another effect, which has been overlooked so far, is the
existence of an additional peak in the power
amplification, and thus also in the Fourier coefficient
M (D). This peak is best visible when the frequency Q is
not too small, i.e., much larger than the thermal hopping
frequency. In Fig. 3 the Fourier coefficient |M,| is
shown as a function of D at Q=2 and 4 =0.2. We clear-
ly recognize an additional peak at D =0.05. The shape of
this small ‘“secondary” peak looks very much like the
shape of the primary peak. This similarity of the peaks
implies the following explanation for this secondary peak.
The primary peak has been explained by the clocking of
the escape mechanism by the external forcing [see below
Eq. (2.3)]. This argument, however can be generalized as
explained in the following.

The escape process can also be clocked in a ‘“‘subhar-
monic” way, i.e., the period of the thermal hopping
Ty =2/k can be a odd multiple of the period T of the
driving frequency [transition rate k =vyexp(—AU/D)].
This is motivated by possible “wait loops” of duration nT
(n=0,1,2,...) in the potential wells. The complete
period, including the wait loops, is thus given by
(2n +1)T. The generalized stochastic resonance condi-
tion 2/k=(2n +1)T yields resonance at a sequence of
values for the noise strength D,=AU/
lIn[voT(2n +1)/2]|, with D, ., <D,. The primary peak
is located at D, while the secondary peak is at a smaller
value D;. For a quantitative description at driving fre-
quencies of the order of the well frequency, one should
merely use directly the eigenvalue [16,28] (depending on
frequency Q and amplitude A) instead of an Arrhenius-
type expressions. Otherwise, the resulting values D, are
not compatible with the weak noise assumption for the

|

8037

0.036 T T T T
0.0 0.4 0.8 1.2 1.6 2.0

D

FIG. 3. The absolute value of the Fourier coefficient M, is
shown as a function of the noise strength D at Q=2 and
A=0.2. The secondary resonance at D =0.05 is indicated by
an arrow. Note the self-similar shape of this secondary peak as
compared with the main peak.

Arrhenius law. Using nevertheless an Arrhenius law, the
prediction for D, is in qualitative agreement with the po-
sition of our second peak.

A. Adiabatic approximation

In this section we present the adiabatic theory of our
system which is valid when the frequency of the external
signal Q is small compared to all other typical frequen-
cies of the system. For small noise strengths D, the signal
frequency Q has to be small compared to the thermal
hopping frequency, i.e., ) <<exp(—AU /D). From this
condition it is obvious that the adiabatic limit is not
reached in the limit D—0 at finite frequencies. The
asymptotic (t— o) probability distribution is given by
[16]

V°(X)+ 4 (Qt+o)
- t,(p):L exp D D x cos @
as 2% — n
Zo = 1 | A%os (Qt+q@)V2D —
3 Y 4 D_p_1,(—1/V2D)
n=0""

, 4.1)

where D _ ,(x) denote parabolic cylinder functions and Z, is a normalization constant, i.e.,

1

1/4y/—
3D (2D) .

Z,=exp

(4.2)

For ease of notation we have used a cos-type modulation instead of a sin-type modulation. The asymptotic mean value

(x(t ;@) ) can be obtained from (4.1) via an integration i.e.,

= 1 | A%osQt+¢)V2D |” —
2 n! = 4]_)2<p D_p_3(—1/V2D)
(x(p)) = AL O 1m0 @.3)
’ 2D P 2.2 vap " ’ )
2 1 A “cos (Qt+q0) 2D $~n_1/2(~1/@)
neo?t! 4D*
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Using the asymptotic expansion for the parabolic
cylinder functions [31]

Vor
T'(n+41)

2

Q—n_l/z(_l/\/ﬁ)z (2D)1/4—n/2

€Xp 8D

for D—-0, (4.4)

we find for the asymptotic mean value in the weak noise

limit

(x(t;@))=tanh . 4.5)

%cos(QH-cp)

The first Fourier coefficient M, an be found by rewriting

tanh(x) in terms of exponentials and expanding the ex-

ponentials into modified Bessel functions 7,,(x) [31], i.e.,
_1,(4/D)

A4 D 2
(M| 1———7+0D? .

Io(A4/D) “.0

Thus, in the adiabatic limit, the signal amplification 1 ap-
proaches a maximum value 7,,,=4/42 in the limit
D —0. This value is more generally given by d?/A42,
where d is the distance between the minima of the poten-
tial. This can be understood in terms of the time-
dependent probability distribution. For weak noise, the
time-dependent probability distribution is—even for
small modulation amplitudes A sin(Qt +¢)—
exponentially concentrated in the right or in the left well,
respectively. Therefore the mean value performs an os-
cillation between the positions of the two potential mini-
ma. The influence of finite noise is then to decrease the
amplitude of the oscillation of the mean value, i.e., to
reduce the amplification of the signal.

For a large noise strength D, we obtain from (4.3) by
expanding into powers of A /D the approximate result

(x50 = (D) sin(@u+e)+0 [ |, @)
x(t; ) = (x7)asin t+o ISRE .

where (x2) denotes a stationary mean value of the un-
perturbed system. The absolute value of the Fourier
coefficient M, is thus given by

1 A4 D_3,(—1/V2D)

M |=——= S
I ll 2 \/ZD Qﬁl/z(—l/\/zD)
4 D=l -
oA T oy
D T «<1/vVD . (4.8)

B. Linear response theory for stochastic resonance

In this section we shall discuss the application of linear
response theory (LRT) [13] to periodically driven sto-
chastic systems. The perturbation of the Fokker-Planck
operator L, without periodic driving is of the gradient
type, i.e.,

L,=— i A sin(Qt +¢@) . (4.9)

ext a

The response function
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(4.10)

ext

R()= [ x exp(Lot)LPy(x)dx ,

where P (x) is the stationary probability of the unper-
turbed system, is connected with the correlation function
K, (r=t—1t")={(x(t)x(t') of the unperturbed system by
(13]

1
D
For small noise strength D, we can approximate K, (¢)
by a single exponential term, i.e.,

R(t)=——K, (1) . 4.11)

K, ()=~ {x?)exp(—Apint) » (4.12)

where A, is the smallest nonvanishing eigenvalue of the
operator L,. For the one-sided Fourier transform X (o)
of the response function R (¢), we find

X(o)=X'"(0)—iX"(w)

1 )\'rznin )"min
=—(x?) —iw (4.13)
D krznin w2 }‘lznin w2

The mean value (x(¢;¢)) is obtained from the convolu-
tion integral of the response function with the external
perturbation A sin(Q¢+¢). The absolute value of the
first Fourier coefficient, i.e., |M,/[, is then evaluated to
read

min

=i‘- z_i 2 A
|M, | 2|X(m| 2D(x)( (4.14)

)\’rznin—*_‘Q’z)l/z ’

Substituting (4.14) into (3.13), and using the approximate
expression for the eigenvalue A_,,~V2/mexp[—1/
(4D)], valid at weak noise, we obtain for the signal power
amplification in linear response

2
(x?) 1
D 1+ (72/2)Q%xp(1/2D)
_ 1 [Dosu=1v2D) )
2D | D_,,(—1/V2D)

n(Q)=

% 1
1+(Q2%7%/2)exp(1/2D)

1 1

T D2 1+(Q*2/2)exp(1/2D)

(4.15)

Clearly, this linear response theory does not involve a
dependence on the driving amplitude 4. This expression
shows qualitatively the correct behavior as a function of
the noise strength D (cf. Fig. 2). For D —0 the exponen-
tial term in (4.15) forces 7 to approach zero while for
large D, where (4.15) is, strictly speaking, no longer valid,
the D % term would force 1 to approach zero. In the
adiabatic limit (2=0), the expression (4.15) would ap-
proach infinity for D —0; i.e., for (i) —0 and (ii) D —O0.
It is, however, obvious from (4.14) that the mean value
(x(t;@)) also would diverge in the adiabatic limit for
D —0. Thus this limit is not consistent with the assump-
tions of linear response theory. But also for finite fre-
quencies, (4.15) does not predict the correct behavior for
very small values of D, being a consequence of the single
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exponent approximation in (4.12). Equation (4.15) pre-
dicts in contrast to the numerical results an exponential
decrease of  for D—0. Furthermore, the additional
small peak, for instance, is not reproduced by LRT. A
similar expression for the signal-over-noise ratio has been
derived in Ref. [14] on the basis of a linear response
theory. They have compared their result with simula-
tions of the stochastic differential equation. They have
obtained reasonable agreement within their accuracy.

In conclusion, LRT produces qualitatively the correct
picture for small values of the modulation; other impor-
tant properties such as the 4 dependence of the signal
amplification and the additional secondary resonance are
clearly beyond the regime of validity of LRT.

C. The influence of finite coherence times

In the real world where periodic modulations are pro-
duced, for instance, by lasers these modulations have a
finite coherence time. The destruction of the phase rela-
tion within a certain coherence time 7 can be included in
our model by adding Wiener noise to the phase of the
modulator. The extended Langevin equations then read
[16]

x=ax —bx3+ A sinf+E&(r) ,

. (4.16)
6=Q+&,(1)

where
(&, (N6, (1) =2=8(1=1") . 4.17)

The one-dimensional description does not lead to a
Fokker-Planck equation, since the phase noise results in a
non-Gaussian noise term. In contrast, the two-
dimensional description yields the two-dimensional
Fokker-Planck equation

OW(x,0,1) _|_ 38  _ _ 3 0y — (9
ot { ax(x x°+ A sinf) Qae
2 2
+p 2412
dx 7 30

W(x,0,t) . (4.18)

This Fokker-Planck equation does not possess a set of
purely imaginary eigenvalues [16]. Instead, one branch
of eigenvalues is given by

)"On =inQ—n2l .
T

(4.19)
As a consequence the correlation function {x(#)x(0)) de-
cays for long times with the decay constant 7~ '. The &
spikes in the spectral density at frequencies n() thus are
now broadened and have a finite width proportional to
n2/7. Another consequence is that the time-dependent
mean value {x(¢)) now exhibits damped oscillations. In
accordance with the arguments at the end of Sec. III A,
we measure stochastic resonance now in terms of the
coefficient M, ={(x expif), see (3.16a). In Fig. 4, the
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FIG. 4. The absolute value of the Fourier coefficient M, is
plotted as a function of the noise strength D at 2=0.1 and
A =0.2 for decreasing values of the coherence time 7.

Fourier coefficient |M,| is shown as a function of the
noise strength D for 2=0.1, 4 =0.2, and 7=100. In
Fig. 4 we observe that the SR peak decreases with de-
creasing coherence times. Thus if one wishes to use SR
for the detection of small signals (whose coherence times
T are a priori unknown) embedded in a noise background,
one has to take into account that SR works best when the
coherence times are long enough, i.e., 7>>1. This cru-
cially restricts the technical applicability of SR.

V. SPECTRAL DENSITIES

In the preceding section we have discussed SR in terms
of the weight of the & spikes in the spectral density S(w).
In this section we discuss the full behavior S (w). For the
calculations of S(w) we follow a matrix-continued-
fraction technique [29] described in detail in Refs. [32]
and [33]. The technical details are presented elsewhere.
We want to point out, however, that the error of our nu-
merical numbers can be estimated to be much smaller
than the line thickness in our figures. In Fig. 5, the real
part of the one-sided Fourier transform of the autocorre-
lation function K (2)=(x(#)x(0)), i.e.,

K(w)=f0°°<x(r)x(0)>exp(—im)d»r, (5.1)
which is half the spectral density, i.e., S(w)=2Re[K(w)],
is plotted for increasing values of the modulation
strength A4 at the driving frequency Q2=0.1 and the
coherence time 7=100. For vanishing A the spectral
density shows the usual Lorenzian-like shape [13]. For
A =0.2, the predicted peak builds up at the driving fre-
quency Q. We want to emphasize that the line shape is
modified not only such that the spectral density becomes
somewhat smaller at all frequencies different from the
odd multiples of the driving frequency, but rather
changes it shape completely. At small frequencies w, the
value of S(w) is strongly reduced, since S(0) is propor-
tional to the inverse escape rate k ( 4), which is strongly
enhanced with increasing modulation strength 4. This
becomes quite evident at 4 =0.5. Here, the Lorenzian-
like background structure around @ =0 no longer exists.
For infinite coherence times, the shapes of the curves for
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Re[K (w)] are qualitatively the same, but the width of the
peak at the driving frequency would be zero (8 spike).
The imaginary part of K(w) shows a typical resonance
structure at the driving frequency (1. For infinite coher-
ence times, one would observe a characteristic pole at the
driving frequency.

Another interesting quantity is the fotal power, defined
by

P = fwa(m)dm : (5.2)

As already mentioned in the Introduction, the total
power in a two-state model does not depend on the driv-
ing amplitude and frequency. Here, within the state-
continuous bistable model this does not hold true any
more. The total power P, being identical with the
second moment 2m{x?) (the brackets denote averaging
over the realizations of the noise and over the initial
phase of the modulator) is shown in Fig. 6. The unex-
pected result is that for larger frequencies the total power
first decreases and then increases for increasing modula-
tion strength A. This behavior can be understood from
the shape of the phase-averaged asymptotic probability
distribution [16]: For large frequencies, the peaks are
shifted towards smaller values of x at small values of the
modulation strength A, i.e., the variance is reduced. On
further increasing the modulation strength A4, however,

(a)
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FIG. 5. The real part (a) and the imaginary part (b) of the
one-sided Fourier transform of the correlation function K ()
(5.1) are shown at Q=0.1 zero driving amplitude (dotted lines)
and for 4 =0.2 and 0.5.
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FIG. 6. The total “power” P, i.e., the integral over the
spectral density (4.21), is depicted as a function of the driving
amplitude 4 at D=0.1 for three different driving frequencies
Q.

the probability distributions broaden and the variance in-
creases again. In contrast, for small driving frequencies
Q, the peaks of the probability distribution are shifted to-
ward larger values of x even for small modulation
strength, and thus the variance increases monotonously
for increasing modulation strength. To understand this
point, we have to carefully study the energy-flow diagram
for a periodically driven stochastic system.

The input powers are the power of the periodic modu-
lation Pg, plus the power of the noise P ;.. The output
power is the total power of the stochastic output x(?),
defined in (5.2), and in addition a very large dissipation
P4 going to a second reservoir. Utilizing the white
noise assumption as is done throughout this paper, the in-
put noise has an infinite total power as indicated by the
infinite variance of the white noise process. Since the to-
tal output power contained in the process x(¢), (5.2), is
finite, the system, acting as a nonlinear filter, has to dissi-
pate infinite power. This is even true in the weak-noise
limit, D —0, since here also the variance of the noise is
infinite. The limit of zero noise is a discontinuous limit
from infinite power to zero power. In real systems, the
white noise assumption does not hold and the system dis-
sipates finite energy into the environment via viscosity
[we remind the reader that the equation of motion (2.1) is
valid in an overdamped regime]. The periodic driving
also adds up to the input power, but has in addition the
function of a distributor of power. It regulates the
transfer of input power into the output power in x (¢) and
into the second reservoir. For large frequencies, as seen
in Fig. 6, the power in x () decreases for small modula-
tions, i.e., the modulation distributes more power from
the input noise to the second reservoir than to the sto-
chastic output x(¢). For small driving frequencies, in
contrast, the power of the stochastic output increases
with increasing modulation strength.

V1. CONCLUSIONS

In this paper we have systematically studied the effect
of stochastic resonance. A description of SR within the
theory of nonstationary stochastic processes has been put
forward. The parameter dependence of SR has been de-
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scribed in a wide range of values for the modulation am-
plitude 4, frequency (2, and noise strength D.

Finally we would like to give some comments on the is-
sue (raised in Ref. [6]) of physical interpretation of SR in-
volving a transfer of power from the noise to the signal.
As already mentioned in the Introduction, the integral
over the spectral density is always a constant in a two-
state model. The integral has been interpreted as the to-
tal output power of the stochastic system. Increasing the
coherent power thus automatically reduces the noise
power of the total output. An increase in the signal-to-
noise ratio thus has been interpreted as the transfer of
power from the noise background to the signal part of the
output. This, however, is not true for a continuous mod-
el as discussed in Sec. V. Thus stochastic resonance is
generally not a simple transfer of noise power from the
noise background to the power of the coherent output.
Having in mind the discussion of the energy flow in the
preceding section, we know that there is an energy flow
from the noise input to the stochastic output x (¢) and
another one to a second reservoir. Energy conservation
is only valid with respect to the sum of all involved
powers, i.e., the signal, the input noise, the stochastic
finite output x(¢), and the dissipation into the second
reservoir. From these considerations it becomes evident
that the conservation of power with changing modulation
strength A in x (¢) alone in the two-state approximation
is only an accidental and not a generic property. The
periodic modulation, acting as a “power distributor,” re-
gulates the pumping of power from the input noise to the
process x (¢) and to the second reservoir. Furthermore it
regulates the distribution of power to the coherent (the
weight of the & spike in the spectral density) and in-
coherent parts of x (¢). In conclusion, the generic mecha-
nism of SR is connected with an involved transfer of
power, contained in the input noise, into the stochastic
output x (¢#) and into a second reservoir.
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APPENDIX: TWO-DIMENSIONAL DESCRIPTION

In the main parts of this paper we have used the one-
dimensional description in terms of the time-dependent
Fokker-Planck operator [(3.1), (3.2)] for the nonstation-
ary stochastic process. We have already mentioned the
equivalence with the description in terms of the two-
dimensional Fokker-Planck equation (3.3). In this appen-
dix we briefly describe the derivation of the results for the
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long-time correlation function (3.8) and the spectral den-
sity (3.9) within this two-dimensional theory.

To this end, we introduce in addition to the Fokker-
Planck operator of the two-dimensional stochastic pro-
cess (3.3), i.e.,

Lip=—-2[h(x)+ 45in0]—- 02 +D-L (a1
FP dx 30 7 ax?
its Hermitian adjoint operator, i.e.,
. 0 0 9?
Li,= + —+Q—+D—— . A2
rp=[h(x)+ A4 sinb] F 30 32 (A2)

The operator L}P has the same eigenvalues A,,, as Lgp
[defined by Lgpt,,,(x,0)=—A4,,,¢¥,..(x,0)], but other
eigenfunctions ¢,,,(x,0). The following theorems are
readily verified.

(@) If A,,,o is an eigenvalue of Lgp with the right eigen-
function 9,,4(x,0), then A,,, =X, ,+inQ are also eigen-
values of Lgp with the eigenfunctions 4v,,,(x,0)
=,,0(x,0)exp(in ) and @,,,, (x,0)=@,,o(x,0)exp(—inH).

(b) From (a) it follows that there exists a branch of pure
imaginary eigenvalues A, =in{}. The corresponding left
eigenfunctions are obtained from (A2) and read
@on(x,0)=exp(—in6), while the corresponding right
eigenfunctions are given by W (x,0)exp(in6). Here
W (x,0) is defined by Lgp W, (x,0)=0.

The existence of the purely imaginary branch of eigen-
values is no artifact of the extended two-dimensional
description as claimed in Refs. [17], but rather is the
necessary consequence of the periodicity of the asymptotic
probability density p, (x,¢;@), defined in Sec. III. Within
our two-dimensional description, the time is contained in
the variables ¢t and 6. Thus 0 is not an independent sto-
chastic variable. This leads to some peculiarities men-
tioned in the beginning of Sec. III. Calculating mean
values in the two-dimensional description, i.e., perform-
ing integrations with respect to x and 6, is equivalent to
computing mean values in the one-dimensional descrip-
tion by averaging over the noise and over the uniformly
distributed initial phase ¢ of the modulator. The time-
homogeneous, phase-averaged correlation function
K(1)=(x(1)x(0)) (where the phase has been assumed to
be uniformly distributed between O and 2#) is thus given
by

K(1)= 3 gmnexp(—A,,,7), (A3)

n,m

where the weights g, are given in terms of the left and
right eigenfunctions, i.e.,

gmn=J " [ X0, (x,0)dx d6
Xwaw fohx’Wst(x’,G’)

X @ (x,0)dx'd0" . (A4)
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For large times 7, the correlation function K(7) is
governed by the terms with purely imaginary eigenvalues
Ao, =inQ. Using the spectral theorems above, the corre-
sponding weights g, are given by

0 T 2
g0n=U_w f:st,(x,O)exp(—inG)dde . (A5)

With the relation P, (x,t;¢)=27Wy(x,0=Qt+¢), and
substituting 8 by Q¢ +¢, i.e., t€[0,...,27/Q=T], Eq.
(A5) is rewritten as
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_ 1 © T .
gOn_F f_oo foxpas(x’sy(p)
2
Xexp[ —in(Qs+@)ldx ds
=M, |? (A6)

where M, are the Fourier coefficients of the time-
dependent mean value {x(¢;@)), see (3.7). Inserting (A6)
into (A3), we thus reobtain the general results in Egs.
(3.8) and (3.9).
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