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Potential of systems subjected to weak noise with large correlation time
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Colored-noise-driven bistable systems are considered in the weak-noise limit D ~0 and long-
correlation-time limit r~ ~. The analytic solution of the two-dimensional Fokker-Planck equation is
worked out. The theoretical result is compared with a numerical simulation.
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I. INTRODUCTION r) 1/a, (1.6)

A problem of great interest in nonequilibrium statisti-
cal physics is to investigate the behavior of systems sub-
jected to colored noise [1—13].Due to the nonzero corre-
lation time of noise, the system may have essentially new
features, which cannot be observed in white-noise cases.
A number of physically interesting and mathematically
hard problems remains to be answered. Among them, the
most challenging one is the so-called negative-diftusion
problem [6—8].

Let us consider a Langevin equation

X=aX—X +Q(t),
(Q(t)) =0,

D«1, (1.7)

where we expanded the stationary solution of (1.5) as

P(X, Y)

a negative difFusion coefficient arises that may cause a
conceptional problem of negative probability distribu-
tion. Faetti [10],Tsironis [11],and Hanggi [12] and their
co-workers have suggested various approaches to over-
come the difficulty. However, no reasonable result about
the probability distribution in the unstable region
~x~ (&a /3 has been obtained.

In Ref. [14] we suggested a steepest-descent approxi-
mation in solving (1.5) in the weak-noise limit

(Q(t)Q(s)) =—exp
7 'T

(1.2) =N exp[ —$0(X, Y)/D —Pi(X, Y) DP2(X,—Y)— . ]

(1.8)
At finite correlation time ~, (1.1) is non-Markovian.
However, it can be reformed as Markovian equations in
two-dimensional space

X=aX—X + Y,
Y= —Y/r+I (t),
(r(t)) =0,
( I (t)l (s) ) = 5(t —),2D

(1.3)

which is equivalent to a two-dimensional Fokker-Planck
equation (FPE)

[(aX—X + Y)P]
Bt ax

6 =D/r
Q Y2

(1.5)

The prevailing approach in dealing with (1.5) is to project
into one-dimensional space and to truncate the resulting
equation to an efFective one-dimensional FPE. It has
been shown that, as

and identified the valley of the potential, i.e., $0(X, Y), to
the curve

Y+aX —X =0 . (1.9)

Since the weak-noise limit D —+0 is taken, we will consid-
er only the potential tto(X, Y) in the probability distribu-
tion (1.8) afterwards.

Equation (1.5) does not obey the detailed balance con-
dition [5—7]. Consequently, an analytic solution of (1.5)
cannot be provided. Thus, numerical simulation on Eq.
(1.5) for small D and large r is extremely important in
verifying and comparing various approximations. Never-
theless, the difficulty of numerical work increases rapidly
as D decreases. To date, no numerical result has been ob-
tained which can really represent the behavior of the
solution of (1.5) in the limits D ~0, r—+ ce.

The weak-noise limit D ~0 should be regarded as one
of the most important limits in treating the FPE's like
(1.5) [15]. On the one hand, this limit well meets a practi-
cal situation where noise due to microscopic reasons is
considerably smaller than macroscopic variables. On the
other hand, the weak-noise limit may considerably reduce
the difficulty in computing the equation and obtaining an-
alytic results. The central task of the present paper is to
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get an analytic solution of FPE (1.5) in the weak-noise
limit D —+0 and in the limit z~ ~.

Inserting (1.8) into (1.5) and keeping only the leading
terms of D we obtain the Hamilton-Jacobi equation
[16—24]

where we use

X=C, (X, Y),

Y=C2(X, Y),
(1.12a)

[Y+f (X)]
2

Y BPo B4'o

BY+ BY
w =0, Ci(X, Y)= Y'+aX —X, C2(X, Y)= ——. (1.12b)

f (X)=aX —X (1.10)

A well-known property of the potential is that Po(X, Y') is
a Lyapunov function of the corresponding deterministic
equations

The third equality of (1.11) is due to the Hamilton-Jacobi
equation (1.10). Hence, Po(X, Y) must not increase along
the deterministic trajectory.

In Ref. [2S], we suggested an expansion of the potential
around the potential valley (1.9),

dgo(X, Y)

dt
="'X+"Y

BX BY

Bfo B4'o
C, (X, Y)+ — C2(X, Y)

BX ' BY

Po(X, Y) =Po(X) + (52(X)V + .

V= Y+f (X)= Y'+aX —X
(1.13)

2
Bbo

BY
r ~0, (1.11) and obtained an iterative equation for P,.(X) as

po(X) = ——ff(X)$2(X)dX,
2 (1.14a)

—2 — f'(X) p~—(X)+ f$3(X)+—4$~(X)/r =0,1 3

7
(1.14b)

—3 — f'(X) $3(X)+$—2(X)+ f (X)p~(X—)+12/2(X)$3(X)/r =0, (1.14c)

1
n —?

n ——f—'(X) P„(X)+P'„,(X)+ f(X)P„+,(X—)+ g k(n +2 k)gk(X)P„+—~ k(X)/r =0,
7 7- k=3

(1.14d)

from which P;(X) can be obtained successively.
In Sec. II, we apply (1.14) to some solvable models and

obtain exact solutions. The structure of the two-
dimensional probability distribution in the limit D —+0,
r~~ is analyzed. Section III is devoted to solving (1.14)
and obtaining the analytic form of the potential of bist-
able systems in the limit ~~ ~. A comparison of our an-
alytic result with those of the previous theories and with
a numerical simulation will also be presented in Sec. III.

f (X)= —aX, a )0 .

Inserting (2.2) into (1.14), we obtain

(2.2)

$2(X)= — 1+ar

y (X)= "+"X'
0 7

(2.3a)

(2.3b)

which leads to the Hamilton-Jacobi equation (1.10) with

f (X) being replaced by

II. EXACTLY SOLVABLK MODELS

In order to show the validity of the iterations (1.14)
and to get intuitive ideals about the structure of the po-
tential in the limit ~—+ ~, we analyze certain solvable
models. The first model is the following FPE:

$3(X)=$4(X)= . =p„(X)= . =0 .

Finally, we have

~ (X Y)
a(1+ar) Xp+ r(1+ar)

( Y X)p
2 2

(2.3c)

(2.4a)

BP(X, Y, r) (

'
2

Bt BX BY r
] BY

(2 1)

Actually, the probability distribution

P (X, Y) =X exp[ —Po(X, Y) /D ] (2.4b)

with Po(X, Y) given by (2.4a) is the exact stationary solu-
tion of (2.1).
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It is obvious that the curve

Y = f (—X)=aX (2.5)

$0(X, Y =aX)= X (2.6)

is the potential valley with respect to P; that is consistent
with our argument in Refs. [14] and [25]. It is
worthwhile remarking that, in the limit ~~ ~, there ex-
ist two characteristic directions in the potential profile.
Along the potential valley (2.5), Po(X, Y) is proportional
to~,

ing directions of the potential in the limit ~—+ oo will be
shown to be very important for understanding the struc-
ture of the potential of a more complicated system (1.5).

For the second model, we study a nonlinear though
single-basin system

f (X)= —aX —X, a )0 . (2.8)

Now the deterministic equations (1.12) have a unique at-
tracting center, the origin (0.0). In the limit
P„(X) in Eqs. (1.14) are decoupled from all the upper
terms P (X), m )n, and then can be exactly solved suc-
cessively from below. For instance, we have

y(X Y= —X/ )='("
2

(2 7)

while along the direction perpendicular to the potential
valley, Po(X, Y) increases rapidly as $2(X)=—[1+sf'(X)],

$0(X)=If(X)dX+ f (X)

(2.9a)

(2.9b)

where As is the distance between the given point and the
potential valley. The existence of the two distinctive scal-

Integrating P(X, Y)=N exp[ —$0(X, Y)/D] over Y and
considering D —+0, we have

I' (X)=KG (X) exp — — +—XaX 1 4

4
D ——(aX+X ) D

2
(2.10)

where 6 (X) is a D-independent function. Apart from the
prefactor, Eq. (2.10) is the exact stationary probability
distribution of X in the weak-noise limit D ~0 and in the
long correlation time limit ~~~. The D-independent
prefactor is negligibly smaller than that of the potential
and will be ignored from our consideration. Thus, Eq.
(2.10), which is reduced from the two-dimensional proba-
bility distribution (1.8), (1.13), and (2.9), is identical to the
exact solution obtained from the effective Fokker-Planck
equations [19,20,26,27]. We would like to emphasize that
Eqs. (2.9) and (1.13) contain more information than
(2.10). From (2.9), we know the potential in two-
dimensional space. This knowledge turns out to be ex-
tremely important as multibasin systems are considered.
With (2.9a) and (2.9b), we find again two characteristic
directions of $0(X, Y). Along the potential valley

III. THE POTENTIAL OF DOUBLE-BASIN SYSTEM

F = —aX+X (3.1)

The turning points A and 8 are located at

In this section, we come to our main problem, the
study of the potential of bistable systems. An analysis of
the trajectory of the corresponding deterministic equa-
tions (1.12) is particularly useful for understanding the
peculiar structure of the potential (see Ref. [12]). In Fig.
1, we plot the deterministic Row in the limit ~—+ ~. The
arrows denote the directions of the trajectories. The dot-
ted line represents the curve

I' =aX+X (2.11)

the potential increases from the ori.gin in the manner

$0(X, Y=aX+X )=C,~, (2.12a)

where C& is a ~-independent function of X. In the per-
pendicular direction, the potential increases much more
1apl dly as

(bo(X, Y) =C2db, s (2.12b)

where C2 is again a ~-independent function of X and As is
the distance between the given point and the potential
valley. Hence, the variation of the potential along the
potential valley is infinitely slower than that along the
perpendicular direction.

FIG. 1. The deterministic paths of Eqs. (1.12) in the limit
~~ Oo, a =1. The arrows indicate the directions of the trajec-
tories. The dashed line is plotted according to Y+X—X'=0.
The system approaches the segments AE2 and BE

&
while it runs

away from AOB.
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X~ @ =+i/a/3,

F„ii =+ &a/3,2Q
A, B

(3.2)

The validity of (2.9) can be verified by integrating the re-
sulting stationary solution over Y that leads to

P(X)= XEi(X)

X exp
aX 1 4———X

2 4
D ——(aX —X ) D

2

(3.4)

with H(X) being independent of D. Equation (3.4) is the
well-known exact solution of (1.5) in the limits D —+0,
r~ ~ in the region (3.3) [11,23,27]. In the region

~X~ «a/3, (3.5)

(2.9) [or equivalently, (3.4)] is no longer the solution of
(1.5) in the limits D ~0, r~ ~. Nevertheless, the proba-
bility distribution in the unstable region (3.5) can be com-
puted as follows.

First, we can use (2.9) to calculate the potential at A.
Inserting (3.2) into (2.9) and (1.13), we have

(bo(X~, I'„)=2a r/27 . (3.6)

In Ref. [12], it is argued that the probability density at A

(and 8) is the maximum on the barrier between the two
basins. In other words, the potential at A (and 8) is the
lowest on the separatrix of the two attractors. Therefore,
the probability transition between the two wells must
take place in the vicinity of A (and 8). Since the drift at

is infinitely small, a small random force can easily
spread probability apart from this point. Hence, slightly
above or right to A, the probability density must be of or-
der (3.6). Above A, the system is mainly evolved by the
deterministic dynamics [11,28,29]. Thus, the probability
transition in the bistable system takes place mainly
through the channels AEi (from left to right) and BE2
(from right to left) which are parallel to the X axis. Since
the time needed for probability to flow from A to the
right basin (or from 8 to the left basin) is finite and the
probability Aow is steady, the probability density on all
the channels AE, (and on BE2) must be of order (3.6).
This conclusion is consistent with the solution (3.4), ac-
cording to which the potentials at A, B, E& and E2 are all
equal to (3.6) in the limit r~~. From Eqs. (1.5) and
(2.9), the width of the channel can be estimated to be of
the order 1/~.

From the previous analysis, the stationary probability
distribution in the X-Y plane, in the limits D —+0, ~—+ ~,
becomes clear. The essentially new results on the station-

respectively.
It is reasonable to take the potential (2.9) [note, now

the function f (X) in (2.9) should be aX —X rather than
(2.8); this fact is understood afterwards] as the correct ex-
pression of the stationary solution in the region

(3.3)

ary probability distribution can be described as follows.
(1) In the region (3.3), there are two potential valleys

AE2 and BE&, along which the potential is correctly
represented by the analytic formula (2.9). In the unstable
region (3.5), there are also two potential valleys AE, and
BE2 on which the potential is identical to that at A and

Outside or inside the closed curve E2 AE, B, the po-
tential increases so rapidly that the probability away
from this circle can be neglected.

(2) In the region (3.5), the probability on the two chan-
nels AEi and BE2 has highest density. Therefore, the
absolutely major part of probability transition between
the two basins takes place through these channels.

(3) Since the probability density inside the circle
AE&BE2 is much lower than that on the circle, it is
reasonable to expect a probability hole at the origin. This
conclusion is identical to the numerical observations
[30—32].

(4) The probability density at A and 8 is given in Eq.
(3.6). In the weak-noise and large correlation time limits,
the potential on the channels AE, and BE2 is also given
by (3.6). According to argument (1), the reduced proba-
bility density P(X)= JP(X, I')d Y can be explicitly given

by

lim (D/r) lnP(X)= ~

D —+0
T—w 00

—(aX —X )

2
—2a'/27, ~X~ «a/3 .

IXI & &a/3,
(3.7)

I i I I I I I I I L I I I I I I I I I I

0.5—

0—

—0.5—

I I I I I I I I
)

I I I I I I I I I
I

I I I I

FICx. 2. The numerical level curves of the stationary solution
of the FPE (1.5). D =0.01, ~=10, and a =1. The points A, 8,
El, and E, are the same as those indicated in Fig. 1. In the un-
stable region (3.5) there are two probability density humps on
AE, and BE2 on which the level curves are rather rare and the
potential there is practically uniform. A probability hole exists
around the origin.

Equation (3.7) is a good approximation of the one-
dimensional stationary probability distribution for small
D and large ~. In the limits D —+0 and ~-~ ~, the result
becomes exact. We would like to emphasize that the ana-
lytic form (3.7) essentially improves the expression in Ref.
[10] where the probability in the unstable region (3.5) is
assumed to be zero.

The probability distribution (3.7) leads to a mean first
passage time
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T ~ exp(2a r/27D)

which is consistent with the result in Refs. [11],[12], and
[33—35].

To verify the above theoretical prediction, we numeri-
cally solve the FPE (1.5). To our knowledge, numerical
simulation of (1.5) for small D and large r is still lacked to
date, and then it is interesting by itself to accomplish this
task. A finite-difference method with a Grank-Nicolson
implicit mode is used to simulate Eq. (1.5). To avoid the
divergence in the weak-noise case, we use the upstream
scheme instead of the central difference scheme. A de-
tailed report about this matter will appear elsewhere [32].
Here we only present the result of one of the simulations.
In Fig. 2, we fix D, ~, and a to 0.01, 10, and 1, respective-
ly, and plot the level curves of the stationary probability
density. The following features are obvious in the figure.

(1) In the region ~X~ )&I/3, there are two potential

valleys (i.e., two probability density humps) along AE2
and BE& (to compare with Fig. 1) vertical to which the
level curves are rather dense.

(2) There are two other potential valleys in the region
~X~ (&1/3 along AE, and BE2 on which the level
curves are very rare. The potential on these valleys is
practically uniform.

(3) A probability hole occurs at the origin, the deter-
ministic saddle point.

All these features, which are observed in all numerical
simulations of Eq. (1.5) with small D and large r [32], are
completely consistent with the above theoretical predic-
tions.
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