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Para-Bose oscillator as a deformed Bose oscillator
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We show that a single para-Bose oscillator may be regarded as a deformed Bose oscillator. We con-
struct a nonlinear realization of the single-mode para-Bose algebra in terms of a single boson. This is in
contrast to the Green decomposition that expresses a single para-Bose oscillator in terms of p anticom-
muting bosons. We also construct an operator canonically conjugate to the para-Bose annihilation
operator that permits us to carry over familiar constructions to the para-Bosonic case.

PACS number(s): 05.30.—d, 03.65.Fd

Quantum deformation algebras and groups [1-14]
have attracted considerable attention in recent years. In
particular, deformations of the Heisenberg algebra
[2-14] and those of su(2) and su(l1,1) [1,8—10] algebras
have been extensively investigated. The particular defor-
mation of the Heisenberg algebra that has been con-
sidered in the literature is

aaT—ana=1 , (1)

[a,N]=a, [al,N]=—al. )
The g commutator (1) may equivalently be written as

[a,a']=g(N), 3)
where, for g0,

gN=g", @)
and, for ¢ =0,

g(NM=0(1—WN), (5)

where O(x)=1 for x>0 and 0 for x <0. With g(N)
given by (4) and (5), one may regard the commutation re-
lations (2) and (3) as the definition of the g-Heisenberg
algebra. This transcription of the g-Heisenberg algebra
suggests more general possibilities corresponding to
choices of g(N) other than those given above. Indeed,
we show that the single-mode para-Bose algebra may also
be viewed as a distortion of the Heisenberg algebra.

A single-mode para-Bose system [15—19] is character-
ized by the commutation relations

[a,N]=a, [a,N]=—a", 6)
where

N=1{a"a}. )
The vacuum state is assumed to satisfy

al0)=0, ®)

aa*10)=p|0> , 9)

where p is the order of the para-Bose system. From the
algebra (6) and (7) and the conditions (8) and (9) on |0), it
follows that

44

N=1(a"a}—p/2, (10)

which has eigenvalues n=0,1,2,... . The correspond-
ing eigenstates may be obtained by repeated applications
of a’ on |0). The normalized eigenstates are given by

l2n) = (a’y" 0), (1)
[2"nlp(p+2) - (p+2n—2)]1"2
_ (a’r)zn+1

12n+1)= 5 10) . (12)

[2"nlp(p +2) - - - (p+2n)]

The action of the creation and annihilation operators on
these states is given by

a'l2n)Y=v2n+p)2n+1) ,
atl2n +1)Y=v2n +1)2n+2) ,
al2n)Y=v(2n)|2n—1) ,

al2n +1)=v2n +p)2n) . (13)
We may rewrite these relations as

aln)=vVf(n)n—1), (14)

a'ln)=vFn+Dln+1), (15)
where

fm)=n+i1—=(=1"}(p—1). (16)
From (14) and (15) it follows that

aa'=fN+1), 17

ala=f(N), (18)
and hence

[a,a']=g(N), (19)
where

gM=FN+1)—fNM=1+(—1"p—1). (20

The commutators of @ and a' with the number operator
N are, of course, the usual ones,

[a,N]=a, [a',N]=—a'. @21
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The para-Bose commutation relations (6) and (7) may
therefore be replaced by (19). This fact has also been not-
ed by Mukunda et al. [18]. This observation permits us,
as in the case of g deformations [4,5,13,14], to express the
para-Boson annihilation and creation operators a and a
in terms of bosonic annihilation and creation operators b
and b' as

FbTh+1) ]mb

bTb+1 (22&)
at=pt [ L2 BF1) (bbfbb:ll)] (22b)

The number operator N for the para-Boson expressed in
terms of a boson is

N=bTb . 23)

In view of the relation (23), we may invert the relations
(22) to express the bosonic annihilation and creation
operators b and b in terms of those for a para-Boson

N1 ]
b= (m] a, (24)
b*: il __JY."LI_ v (25)
fN+1)

These relations enable us to construct an operator At
canonically conjugate to a, satisfying

[a,4%1=1, (26)
(4t N]=—4aT, 27)

as was done by us for the case of g deformations [13,14].
From (23)-(25) it follows that the number operator N
can be written as

—af N+1
N= f(./\/+1) @8
Defining
t— t_N+1
4 fN+1) @9)

and using (17) and (28), it is easy to see that At given by
(29) indeed satisfies (26). Equation (27) is a simple conse-
quence of (21). The conjugate of the relation (26) gives

[4,aT]=1, (30)

+

implying that the operator a ' is canonically conjugate to
A.

Having constructed the operator A4 T, the construction
of the para-Bose coherent states, the eigenstates of the
para-Bose annihilation operator a,

alz)=alz) , (31
is immediate. They are given by
|z)=C(|z])exp(z41)|0) . (32)

Calculation of the normalization constant C(|z|),

C(lz])=[{0lexp(z* 4 )exp(z4)|0)]71/2, (33)

is most convemently done by using (25) and (23) to ex-

press AT in terms of bosonic operators as
AT=b"h(bTE)1V2, (34)
where
¥
hblo)=-2bF1) (35)
f(b'b+1)
This gives
exp(zaHjo)='3 %{b*[h(b )112370) ,
n=0""
=3 HW/h(m—l)]|n), (36)
n=0 m=1
and hence
o *\n n
(Olexp(z* A)exp(z4T)|0)= S (_Z%T)_ l II »tm—1) ] .
n=0 : m=1
(37)
From (35), it follows that
ham)=22FL " hom +1)=1. (38)
2m +p
Using (38) in (37), we finally obtain
Cllzh)=[2°"T(p/2)]"*[F(|z|*)]12, (39)
where
F(2)=z'"P2[(I,,_(2)+1,,5(2)] . (40)

Para-Bose coherent states have also been constructed
directly by Mukunda et al. [18] and by Sharma, Mehta,
and Sudarshan [19]. Their result is

lz)=C(|z])F(zah)|0) , 1)

where C(|z|) and F(z) are given above. It is indeed gratl-
fying to see that our construction of the operator At
canonically conjugates to enable us to express the opera-
tor appearing on the right-hand side of (33), involving
modified Bessel functions by a single exponential as in the
Bose case.

To conclude, we have shown that a para-Bose oscilla-
tor may be regarded as a deformed Bose oscillator. We
have constructed a nonlinear realization of a para-Boson
in terms of a single boson in the spirit of the work of Hol-
stein and Primakoff [20]. This is to be contrasted with
the Green decomposition [15], which expresses a para-
Boson of order p as a linear combination of p mutually
anticommuting Bosons. Further, we note that all the
constructions given above perform verbatim for any
single-mode system satisfying (19) and (21).

We are grateful to Professor A.K. Kapoor, Professor
R. Jagannathan, Professor C. L. Mehta, and Professor N.
Mukunda for numerous helpful comments.
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