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Aspects of q-oscillator quantum mechanics
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We investigate some aspects of q Heisenberg algebra. We show how su(2) and su(1, 1) generators can
be constructed in terms of the q creation and annihilation operators. We also construct the coherent
states for the q oscillator and show that they can be obtained by the action of a displacement operator on
the vacuum. For the multimode case with q=0, corresponding to the infinite statistics of Greenberg
[Phys. Rev. Lett. 64, 705 (1990)],we generalize our single-mode construction to obtain the corresponding
coherent states. These states, which are eigenstates of the annihilation operators, interestingly, turn out
to be degenerate owing to the noncommutativity of the displacement operators.

PACS number(s) 05 30 —d

I. INTRQDIJCTIQN II. q AI.GKBRA

Quantum-deformation algebras and groups [1] have at-
tracted considerable attention in recent years particularly
because of their relevance to certain models in field
theory and statistical mechanics Quantum deformation of
the Heisenberg algebra [2—10] and the su(2) and su(1, 1)
algebras have been extensively investigated [1,8 —10].
The study of a particular deformation of the Heisenberg
algebra —leading to infinite statistics —has been initiated
by Greenberg [6] and investigated by Greenberg [11]and
Mohapatra [12] with a view to seeking small violations of
the Pauli exclusion principle in physical systems.

This work is a continuation of our earlier work [13]on
the single-mode Heisenberg q algebra

aa~ —qa a =1, (1.1)

In particular, we construct an operator A which for the
q algebra is a truly canonically conjugate to a, i.e., it
satisfies

The q Heisenberg algebra is

aa —qa a=1 .

Introducing a number operator X satisfying

[N, a]= —a, [N, a ]=+a
and defining [1]

—
A,N/2 f f —kN/2c a q 7

(2.1)

(2.2)

(2.3)

with A, real, the algebra (2.1) can alternatively be cast into
the form

cc —q' c c=q (2.4)

particular cases of which corresponding to A, =1 and
A, =—,

' are often used in the literature. In the present work
we shall exclusively work with (2.1).

An explicit expression for X, in the normal-ordered
form, constructed in our earlier work [13],is

(1.2)

(1.3)

where X is the number operator for the q commutation
relations (1.1) and can be expressed in terms of a and A t
as

tn n(1 —)"

„=i (1—q")

The normalized eigenstates of X are

in)= -io),
n 1

(2.5)

(2.6)

N=A~a . (1.4) where

The operator 3 satisfying (1.2)—(1.4) enables us to carry
over standard constructions of coherent states to the q
case. For the case of infinite statistics (q =0), we also
discuss a multimode generalization of (1.2) —(1.4) and in
turn construct multimode coherent states and pair
coherent states. Further we construct and discuss non-
linear realizations of su(2) and su(1, 1) algebras in terms of
a and a, satisfying the q commutator (1.1) in the same
spirit as the work of Holstein and Primakoff' [l4] for the
bosoMc case.

(1—q") =1+q +q"
(1—q)

(2.7)

It follows from (2.8) that

a~a n =n n

(2.8)

(2.9)

The action of a and a on i n ) is given by

ain&=Qn in —1&, atin&=y (n+1) in+1) .
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which written as an operator relation gives [X r tX —r] (2.22)

(1—q)
(2.10)

leadin~ to the following useful expression for N as a func-
tion a a:

in[1 —(1—q)a a] in[a, a ]
lnq lnq

(2.11)

This expression for X has been discussed by many au-
thors [2,4,5, 8 —12]. It, however, becomes singular in the
limit q ~0 limit. The normal-ordered expression (2.5), in
contrast, smoothly goes over to the expression given by
Cxreenberg [6] in this limit. Incidentally, taking expecta-
tion values of N given by (2.5) between the number states
one obtains an interesting identity

(1—
q ) (1—

q )(1—
q ')

A particularly convenient choice is y =
—,
' which gives

[8,8 ]=1, JV:8—8 =N, (2.23)

1/2
(1—q)(N+1)

N+1) a .

Further, using

(2.25)

(2.26)

(2.24)

We have thus constructed bosonic creation and annihila-
tion operators in terms of those of a q oscillator. Using
(2.10) and (2.21) we may rewrite (2.24) as

+ (1—
q )( ) . (1—q)

(1—
q )

(2.12)

and inverting (2.25), we obtain [4,5, 15]
1/2

( 1 %+1)

(1—q)( JV+ 1)
(2.27)

[a,at]=q". (2.13)

From (2.5) it follows that the number operator N can be
written as

which can easily be proved by showing that
S +) —S =1.

The relation (2.11) permits us to write the commutator
[a,at] as

In the special case of q =0, one obtains a relation

a =(1+8'8)-'"b, (2.28)

(2.29)

well known in the quantum-optics literature, defining the
phase operators for a single boson [16].

The eigenstates (2.6) of N may be expressed in terms of
or B~ as

%=a Xa,
where

(2.14)

(2.30)

If we define

=afX, 2 =Xa,
then X may be written as

A=A~a=a~A .

Further it is easily verified that

[a, A ]=1, [A,at]=1,

(2.15)

(2.16)

(2.17)

(2.18)

[J„J+]=+J+, [J+,J ]=2J, ,

and those of su(1, 1) algebra

[K„K+]=+K+, [K,K+ ]=2K,

in terms of a q oscillator. To do this we set

(3.1)

(3.2)

III. REALIZATIONS OF su(2) AND su(1,1)
ALGEBRAS IN TERMS OF A q QSCILLATOR

We now construct Hermitian and non-Hermitian reali-
zations of the su(2) algebra

[N, At]=At, [A,N]=A . (2.19)
J+ =a G(N), J =G(N)a, J, =H(N) (3.3)

(2.20)

A ( A ) is thus a truly canonically conjugate to a (a ).
Using (2.16) and (2.17) we may rewrite (2.18) as

aa X =&+1,

and fix the functional forms of 6 and H by applying the
commutation relations (3.1) on the number states of the q
oscillator. This gives

J+ =a &X &(2a —N), J =&(2a —N)&Xa,

which gives us X as a function of a a

X=(1+qa a) '(N+1) . (2.21)

(3.4a)

(3.4b)

Further, since X is a function only of a ~a, it follows that where a is a real number.
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Following essentially the same analysis as above, we
obtain

=&(2P+N)&Xa, K =a'&X&(2P+N),

of the annihilation operator of a q oscillator have been
constructed by expanding

~

A, ) in terms of the number
states ~n ) and solving the recursion relations for the
coefficients. This gives [4,5]

K, =P+N .

(3.5a)

(3.5b)
[~&=[e,(/X/'}]-'" y [n&,

n=0 &q ~

(4.2)

Using (2.24} and the fact that A'=N, we obtain

J+ =Bt&(2a—JV), J =&(2a —JV)B, (3.6a)

where e (x) is the q generalization of the exponential
function

e (x)= g (x)"
.=O &q'

(4.3)

K =&(2P+A')B, K+ =B &(2P+A'),

K, =P+JV,

(3.7a)

(3.7b)

E =aN, K+ =Na, K, =X+—,
' . (3.9)

The validity of this special realization of su(1, 1) may also
be directly veri6ed by making use of the fact that, owing
to aa ~=1, we have

which are, respectively, the Holstein-Primakoff [14] reali-
zations of su(2) and su(1, 1) in terms of a boson.

In the q =0 case, choosing p= —,', and using the fact
that in this case X=1+N, we obtain a rather simple
looking realization of su(1, 1) generators

K =(N + 1)a, K+ =a (N + 1), K, =N+ —,', (3.8)

which on using (2.2) may also be written as

Further, in analogy with the bosonic coherent states, ~A, )
may also be written as

~X&=[e,(~A,
~ )] ' e (Rat)~0) . (4.4)

The operator A satisfying (2.18) constructed above en-
ables us to rewrite (4.4) more simply as

/X&=[e, (/X/')]-'"e" /0), (4.5)

thereby replacing the q exponential of ka by the ordi-
nary exponential of XA t. The form of ~A, ) thus becomes
completely analogous to that in the bosonic case.

For the multimode generalization of the q =0 case, i.e.,
for the case of infinite statistics of Greenberg [6]

a, a =5, (4.6)

we had constructed, in our earlier work operators A.
which satisfy

N = g (2n —1)a "a" .
n=1

(3.10) [a;, At]=5;. .

These operators are given by

(4.7)

8~a, 8 ~A~ . (3.11)

Vfe now' turn our attention to non-Hermitian realizations
of su(2) and su(1, 1) in terms of the q annihilation and
creation operators. actually, our construction of the
operator A given by (2.18), which is canonically conju-
gate to a provides us with a powerful method for turning
known bosonic realizations such as (3.6} and (3.7) into q-
oscillator realizations by simply making the replacements

A,"=a,t+ g akta, tak+ g aktai a, aiak+ . . (4.8)
k k, l

They, however, do not commute with each other.

[A;, A~ ]%0 . (4.9)

These operators enable us to construct multimode
coherent states A, ) satisfying

In the case of su(1, 1), for instance, there is a well-known
bosonic realization used in the construction of squeezed
coherent states [17]

= ' (2~+ 1) (3 12)

a, ~X) =X, ~X&,

and are given by

~

X &
= 'ge, ( ~X, ~') -'"~exp(X, A,') ~0) .

(4.10)

(4.1 1)

Using (3.12) we obtain its q counterpart as

K+ =—'A, K =—'a K =—'(2N+1), (3.13)

IV. COHERENT STATES

The eigenstates

a~a& =X~X& (4.1)

which has been used to construct "squeezed" coherent
states for the q oscillator in analogy with the bosonic ones
[13].

Note that since 2, do not commute with each other,
each ordering in the product of exponentials that occurs
on the right-hand side leads to a diFerent state. All these
states, however, correspond to the eigenvalue A, ,

- of a; and
therefore constitute a degenerate set of solutions of the ei-
genvalue equation (4.11).

Finally, we consider the pair coherent states [18,19] for
two modes a, and a2 obeying (4.6). In analogy with the
bosonic case, we define pair coherent states ~g,p ) as the
simultaneous eigenstates of the operators a

& a2 and
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(4.12a)

(4.12b)

(5.2)

where B and 8 given by (2.26) or (2.27) satisfy bosonic
commutation relations. If we now define

where

N;=a;a;+ osaka;a;ak+ yakata, a, a/ay+
k k, 1

(4.13)

are the number operators for the two modes. The pair
coherent states ~$, 0& corresponding to the zero eigenval-
ue of the number diIterence operator X& —X2 can easily
be constructed by noting that the algebra a;a~=5;. im-
plies that 6 —=aia2 satis6es

Q
—gtb Qt

then it is easily seen that

H =coIQ, Q I, [Q,H]=0, IQ, Q I =0,
which is the usual supersymmetry algebra.

(5.4)

bb~= 1 . (4.14)
VI. CONCLUSIONS

The eigenstates of b satisfying (4.14) have already been
constructed. Hence the pair coherent states ~$, 0& are
given by

=(I—
/g )' g (gatat)"/0 0&

n=0
(4.15)

V. SUPKRSYMMETRIC q OSCILLATOR

H =co(N +b tb ), (5.1)

The results given in Sec. II permit an easy construction
of a supersymmetric q oscillator. Consider the Hamil-
tonian

We have investigated some aspects of q Heisenberg
algebra. We have shown how one can construct su(2) and
su(1, 1) generators in terms of the q creation and annihila-
tion operators. An important construction in our work is
that of the operator A which is canonically conjugate to
a. This enables us to convert known bosonic realizations
of su(1, 1) and su(2) algebras into those in terms of q
creation and annihilation operators. It also enables us to
express coherent states of q oscillators as having been ob-
tained by the action of a displacement operator on the
vacuum state. For the case of infinite statistics of Green-
berg, we have generalized our single-mode construction
to obtain the corresponding coherent states. These
states, which are simultaneous eigenstates of the annihila-
tion operators, interestingly, turn out to be degenerate
owing to the noncommutativity of the displacement
operators for each mode.

where 6 and b are fermion creation and annihilation
operators and N is the number operator (2.7). For a q os-
cillator. We assume that the creation and annihilation
operators of the q oscillator commute with b and b . As
noted above, N can be written as
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