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Energy eigenvalues of double-well oscillator with mixed tiuartic and sextic anharmonicities
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The renormalized hypervirial-Pade scheme has been employed to determine energy eigenvalues of a
double-well oscillator with mixed quartic and sextic anharmonicities and the special cases obtained from
its potential by taking either anharmonicity as zero. The renormalization parameters calculated from
two analytical expressions (one of these being suggested as an improvement of the earlier prescription)
are found to be inadequate, while the approach in which this parameter is treated as a variable quantity
works well. The results for a wide range of anharmonicity values are compared with the findings of oth-
er workers and the agreement is good to superb. It turns out that the technique applied here is e6'ectual
when the wells are not very deep. Discussion of the dependence of the renormalization parameter and
the energies on the quantities de6ning the double-well potential and also on the quantum number is also
included.

PACS number(s): 05.30.—d, 03.65.Ge

I. INTR@DUCTION

The double-well potentials obtained by adding anhar-
monic terms to —

—,'mao x can be used for modeling of
two-state systems. Some of the problems to which the
double-well anharmonic-oscillator (DWAO) model has
been applied are the interpretation of the infrared spectra
of the NH3 molecule, infrared and Raman spectra of the
hydrogen-bonded systems, inversion characteristics of
isomers, structural phase transitions, polarizability of
perovskite ferroelectrics, formation of noble-gas mono-
layers on a graphite substrate, macroscopic quantum
coherence in superconducting Josephson devices, switch-
ing and storage devices in computers, and so on [1—9].
Besides, the Brownian particle in a bistable potential has
been used as a model in explaining the chemical reac-
tions, second-order phase transitions, ligand migration of
biomolecules, etc. [10,11]. In the theory of these prob-
lems, the most important characteristics are related to
the separation between the two lowest-lying energy levels
as it defines the tunneling rate through the double-well
barrier.

Although, generally, an oscillator interac:s with the
surroundings, in some cases, particularly when the num-
ber density of the oscillators is low, the effects of dissipa-
tion can be ignored. This has, in fact, sustained interest
in determining the energy eigenvalues of anharmonic os-
cillators as well as double-well anharmonic oscillators.
This type of approach has now been strengthened in view
of recent experiments leading to successful isolation of
single quantum oscillators from the dissipation mecha-
nism and thus facilitating investigation of the dynamics
of individual systems under appropriate conditions
[12—14].

The DWAO that has quite frequently been employed
to interpret the experimental data listed above is

V(x)=m ( ——,'co x + —,'ax ) .

In light of the experience gained from successful model-

ing based on anharmonic oscillators, an obvious step in
the direction of improvement in the precision of the
description of bistable systems is to add a sextic term to
Eq. (1.1), yielding

V(x)=m (
—

—,'co x + —,'ax + —,'Px ) . (1.2)

Obviously, (1.2) reduces to (1.1) for p=0 and to the sextic
double-well oscillator for a =O.

Gorringe and Leach [8] have presented an ansatz for
finding the exact solution to the Schrodinger equation for
the potential given by Eq. (1.2) and have tabulated ener-
gies corresponding to some selected values of a and p.
Also, Chaudhuri and Mondal [15] have used a modified
Hill determinant method to obtain energy eigenvalues for
a few a and p combinations. In addition, the energies of
the two DWAO's obtained by p=0 and a =0 have been
found for different magnitudes of anharmonicity parame-
ters by various workers employing Wick-ordered Borel
summation [16], modified Hill determinants [15,17],
scaled harmonic basis technique [18], supersymmetry
quantum mechanics [7,19,20], two-step approximation
procedure [21]. Taylor-series expansion [22], maximum
entropy theorem [23], exact solution formalisms [3,24],
and some other ingenious methods [25—27].

In view of these facts, we have carried out a detailed
investigation of the energy eigenvalues of double-well os-
cillators with quartic, sextic, and mixed quartic-sextic
anharmonicities over a wide range of a and p values. We
have achieved our objective using the renormalized hy-
pervirial Pade technique [28—30], which have not been
exploited by any worker for determination of the energies
of DWAQ's. The specific goals we set before us are the
following: (i) to study the e%cacy of Killingbeck's [28,29]
variational approach based on the renormalized hyper-
virial method in the calculation of energies of DWAO's
with respect to the values of co, a, and p and of the quan-
tum number n of the state; (ii) to look for an analytic ex-
pression for the renormalization parameter used in (i) and
to check its usefulness in simplifying the algorithm for
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the computation work; (iii) to investigate the dependence
of the variational parameter of (i) on the values of co, a,
P, and n; (iv) to know the extent to which the use of the
Pade approximants, which have been found by using
Killingbeck's algorithm [31], iinproves upon the results
of (i); (v) to compare the outcome of the above computa-
tions with the findings of various workers, who have used
other methods for some of the co, a, P, and n values con-
sidered here; and (vi) to bring out the effect of (o, a, and
P on the energy eigenvalues for a particular type of
D%AO.

The outcome of the eForts with the above-mentioned
aims and the discussion of the concomitant issues consti-
tute the content of this paper.

II. RECURRENCE RELATIONS
IN THK FRAMEWORK OF

THK RENORMALIZED HYPKRVIRIAL FORMALISM

(o'=( c—o +XI(.',)' ' (2.3)

N(N' —1)&

Sm
(2.4)

Expanding E„and (x )„as a power series in A. , we
have

is the new increased frequency. Using the hypervirial
theorem [32], we get an expression for the exact energy
E„ in terms of the expectation value (x )„ofthe state:

E„&x N )„=—m [(co')2—XZ ] —(xN+') „~ 2 &+2
2 %+1

+ 1 &N+3
4 %+1

+—mX' (x +')
6 "%+1

In order to keep the first-order contribution from the
sextic term in Eq. (1.2) of the same order as the second-
order e6'ect of the quartic term and also to circumvent
any possible complications arising from the presence of
two independent anharmonicity parameters a and /3 in
the recurrence relations, we use a perturbation parameter
A, in place of a and substitute @=A, 2), so that (1.2) is
rewritten in terms of single-perturbation parameter A, as

and

E„= y E(&)u
j=0

(x")„=y C,' )X~.
p=0

(2.5)

(2.6)

V(x) =m (
——'co x +—'Ax + 6iA, rjx ) .

Renormalizing V(x) and hence the corresponding Hamil-
tonian by adding and subtracting the harmonic term
—,'m XKx, we get a new Hamiltonian:

Here

E' '=(n+ ')r~'—
n 2

C(0)—gp Op

(2.7)

(2.8)

+ mk 'Qx
1

6
(2.2)

d, , 2 2 1 g 1+ —,'m(co') x +mA. —x ——I(.x
2D1 d~ 2 4 2

Substituting (2.5) into (2.4) and equating the coefficients
of the same power of A, on the two sides of the resulting
equation, we have the recurrence relation for the expan-
sion coeKcients C' ', viz. ,

C(++2] 2
(N + 1 ) g E(J)C(N) + m~(N + 2)C(N+2) m (N +3 )C(N+ 4)1 1

(N +2)m (co') n p j p —1 4 p —1

6
——m (N+4)C' + '+ N(N2 1)C'N—

p 2 8 p (2.9)

Next, according to the Hellmann-Feynman theorem [32],

(ass) (2.10)

E(j)—

Thus, determining the expansion coef5cients from Eqs.

which, together with (2.2), (2.5), and (2.6) and on equat-
ing the coe%cients of equal powers of A, on both the sides,
gives

(2.9) and (2.8), we can find E„'1' in a hierarchical manner
and hence E„can be calculated from (2.5).

III. DETERMINATION
OF RENORMALIZATION PARAMETER

In his work, Killingbeck has treated K as a variable pa-
rameter to get the best converged value of E„. However,
Chaudhuri and Mondal [15] have argued for finding an
analytic expression for K by equating to zero the
coefficients of (a ) and a in the Hamiltonian expressed
in terms of the creation and annihilation operators. In
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this section we first consider this approach for obtaining
a condition giving K, then find a modified expression to
improve upon this condition, and also comment upon the
variational method.

A. Chaudhuri and Mondal prescription

In terms of the creation and annihilation operators, the
Hamiltonian (2.2) reads

H= —Am' 1 —
2

+
4 (co') 16m (co') 16m (co') 2 (a)') 4m(co') 8m (co')

+ 1&, 1+ co + 3A A, 15iii A g [( t)2+
4 (co') 8m (co') 16m (co')

+
3

a a
16m(co') 16m (co') Sm(co') Sm (co')

AA, 5A A,+ + ) [( t)3 +( t) 3]
4m(co') 4m (co')

+
2 3 [(a ) +6(a ) a+15(a ) a +20(a ) a +15(at) a +6a a +a ] .

48m (co')
(3.1)

which can be solved for cu' and hence K for known values
of co, A, , and g. Obviously, the E value so found is in-
dependent of n, and we identify it by using subscript c
with K, viz. , K, .

If we take g =0, Eq. (3.2) becomes the condition giving
E, for the quartic case. This reads

2m (co') +2m' co' —3iriA, =O . (3.3)

B. Second-order perturbation-theory approach

With the intention of generalizing the result of Eq.
(3.2) to obtain n dependence, we first note that for the
Hamiltonian [Eq. (3.1)] the expectation value with
respect to the harmonic-oscillator state

l
n ) is given by

Here we have used Eq. (2.3) to get the expression in co'.
Putting the coefficients of (a ) and a equal to zero, we
get

4m (co') +4m co (co') —6mhZ. co' —15iri A, r1=0,

(3.2)

Treating co' as a variational quantity and deciding to
determine it in such a way that (n lHln ) becomes
minimum, we have

4(2n + 1)m [(co') +co (co') ] 6(2n—+2n + l)mA'Xco'

—5(4n +6n +Sn+3)iri A, g=O . (3.5)

Taking n =0 in (3.5), we get Eq. (3.2). Thus we observe
that the procedure laid down in Ref. [15] amounts to
determining (OlHlO) with co' as a variational parameter
and finally finding it corresponding to the requirement
d(OlHlO)/de'=0. Consequently, the expression in co'

given by (3.5) is the condition to be fulfilled by the varia-
tional parameter corresponding to the quantum number
n. Once again, n =0 leads to a condition for the case of a
double-well oscillator with quartic anharmonicity.

But we know that (n lHln ) represents the diagonal
elements of the matrix for H, and hence by considering
(3.4), we are essentially evaluating E„ to the second order
in perturbation, ignoring the contribution of the nondiag-
anal elements in the expression

(n IHln ) = n+ — 1—1 AQ)

(~')' E„=(n lHln )+ g (H ) (E„' ' E' ') . —(3.6)
2

+ (2n +2n +1)
16m (co')

5A A,+ (4n +6n +Sn+3) . (3.4)
48m (co')

So, to improve upon the K parameter determined from
(3.5), we find out E„by considering the complete expres-
sion in (3.6). This gives us

2 2 2

(co') 16m (co') (co')'

2—(2n +1) 1+
(ai')'

L

AA, 5A A.

2 ~
(34n +51n +59n +21)+ ~ (4n3+6n~+Sn+3) .

128m (co') 48m (a)')3

2

(3.7)
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Differentiating E„with respect to co and equating to zero the expression so obtained, we finally get

24(2n+ 1)m (co') [(co') +co ] —96(2n +2n+1)mfii[(co') +co co']

—40(4n +6n +gn +3)fi A, g(~') +5(34n +Sin +59n +21Hz & =0 . (3.8)

Obviously, we can solve this sextic equation in ~' to know m' and hence K for a particular set of values of ~, A, , q, and n.
In order to distinguish the K determined by the second-order perturbation treatment from the other K values, we use a
prime on it. Putting rI=O in Eq. (3.21) gives us condition for the case of a double-well oscillator with quartic anhar-
monicity. This reads

24(2n +1)m (co') [(co') +co ]
—96(2n +2n +1)mA'A[(co') +co co']+5(34n +51n +59n+21)A' A. 0 . (3.9)

C. Vsriational method

IV. CALCULATIONS AND NUMERICAL RESULTS

The determination of the expansion coefficients C'
from the recurrence relation (2.9) shows that

g(2M+1) 0P (4.1)

where p, M =0, 1,2, 3, . . . The calculations for the ener-
gies have been performed by truncating the series sum-
mation in (2.5) at j=32. However, the listed results cor-
respond to the case for which the largest possible number
of digits converged. In addition, the computations have
been carried out with double precision, though the values
of the energy are being given up to the digit for which the
stability was the best. It may be mentioned that all the

As mentioned earlier, Killingbeck recommended treat-
ing K as a variational quantity in the final expression for
E„ to be chosen in such a way that the best number of
stable digits is obtained for its value. His approach has
been shown to be fully qualified for the calculation of en-
ergy values of anharmonic oscillators [30,33,34].

results being reported here are in units corresponding to
6=m =1.

In order to see the relative eKcacy of the three
methods for the determination of the renormalization pa-
rameter in giving precise energy eigenvalues, we carried
out computations for n =0 and 1 for a few typical cases
of the three types of double-well oscillators using K„K',
and K values. However, the results for only the quartic
anharmonicity are projected in Table I. A perusal of this
table shows that (i) generally, K )K') K, ; (ii) while the
K, approach fails in most cases, the K' approach is
inadequate for a (co; (iii) use of K' produces better con-
vergence than that of K„but the energy values deter-
mined with K are the most accurate and, hence, reliable;
and (iv) for a particular co, the number of stable digits in
the energy value increases with an increase in the values
of o. and n. The conclusions drawn in the other two cases
are essentially the same as mentioned above, except that
the convergence even with K is poor for co )a,P.

The superiority of the variational approach over the
method using the two analytical expressions is under-
standable because these expressions have been obtained
from perturbation theory —K' is found by including the

TABLE I. Comparison of energy eigenvalues for some representative quartic double-well oscillators
obtained from K, and K' values and by treating K as a variational parameter.

1.0 0.4

40.0

3.09
3.09
0.39
0.39

3.38
4.13
0.47
0.66

a
0.1

1.4
4.99

7.5
7.5
1.5
1.5

—0.154
0.142 76
1.371 566 9
4.989 416 52

400.0 0.18
0.18

3.0 0.22
0.30

F 1
11.0

0.6
0.6

3.069 478 40
11.033 081 0

5.0 2.0

400.0
2.66
0.18
0.18

2.60

2.74
0.22
0.31

2.9
10.7

9.0
12.5
0.6
0.7

—1.8
2.943 549 56

10.721 123 666 1

'Oscillatory and divergent.
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nondiagonal elements in the second-order perturbation
and, as such, is an improvement over K„where only di-
agonal elements are considered. In contrast, in the varia-
tional method we look for the most stable value in the
number obtained in computation.

In view of the above observations, we have listed in
Tables II—IV results based on the variational approach
for double-well oscillators with quartic, sextic, and mixed
quartic-sextic anharmonicities, respectively. However,
the knowledge of K' has been exploited to choose the ini-

tiating value of K because K)K'. Also, for (co') to be
positive, (2.3) shows that K &co /1, . Also included in

these tables are the energy values found from the Pade
approximants E(P) to the series expansions with the K
parameter. These computations have been carried out by
keeping the number of terms in the sequence as 34. But
the energy values given in the tables are the best con-
verged ones. With a view to compare the present findings

with those of earlier workers, the available results having

a maximum number of stable digits are also projected in

these tables.

V. DISCUSSION AND CONCLUSIONS

From the entries of Tables II—IV, we note the follow-
ing.

(i) For the values of co, a, P, and n listed in these
tables, the renormalized hypervirial method yields
reasonably good values of the energy. However, the con-
vergence of the series is relatively poor if the anharmoni-
city parameter a or P is less than co, and this aspect be-
comes more prominent with an increase of co and n

values. In fact, this approach failed for large values of n

and co pertaining to the situation co & a,P. Accordingly,
such results are not displayed in the tables. Nonetheless,
the number of stable digits obtained for a, P)&co is quite
heartening. For example, in the case of a quartic double-
we11 osci11ator, the energy eigenvalues for a=400.0 for
all ~ and n have been found to be convergent to nine or
more significant figures. In the sextic oscillator this num-
ber is five for P=600.0, and in the mixed quartic and sex-
tic oscillator the convergence is best for +=400.0 and
P=600.0. This feature of the results is understandable

TABLE II. Calculated energy eigenvalues for some quartic double-well anharmonic oscillators for various states. (0 represents

other values. )

38

39

1.0

5.0

7.429 336 31
1.0

5.0

1.0

1.0
5.0

1.0
5.0

0.4
2.0
4.0

40.0
400.0

04
1.6
2.0

400.0
4.0
0.4
2.0
4.0

40.0
400.0

0.4
1.6
2.0

400.0
0.4
2.0
4.0

40.0
400.0

2.0
2.0

400.0
2.0
2.0

400.0

7.5
4.0
3.0
1.5
0.6

14.5
4.0
9.0
0.6
7.S
7.5
4.0
3.0
1.5
0.6

10.0
4.5

12.5
0.7
8.5
4.0
3.5
1.5
0.6

12.0
12.5
2.0

12.0
12.5
2.0

—0.154
0.328 827
0.514 780 41
1.371 566 9
3.069 478 40

—0.96
0.103 20

—2.1

2.943 549 56
—2.1

0.142 76
1.417 268 1

2.020 552 12
4.989 416 52

11.03 308 10
—0.76

0.875 1197
—1.8
10.727 236 661

1.0099
3.081 950
4.19071S
9.888 492

21.694 05S

138.160094 732
122.183 482 2
827.326 346 209
143.033 637 294
126.791 650 1

856.158 489 152

—0.154 126
0.328 826 503
0.514 780415 53
1.371 566 851 96
3.069 478 403 20

—0.83
0.103 200 94

—1.78
2.943 595 5664

—1.78
0.142 765 1

1.417 268 101 06
2.020 S52 1220
4.989 416 525 31

11.033 081 008 438
—0.748 66

0.875 119810 80
—1.623

10.727 236 662 01
1.0102
3.081 950 63
4.190715 85
9.888 492 495

21.694 OS4 888
138.160094 731 658 5

122.183 482 182 290 4
827.326 346 208 819 5

143.033 637 294 269 7
126.791 650 143 763 1

856.158 489 152 1730

0.4709'
0.328 826 502 595

1.377 816 88'
3.070 103 41'

—0.816 75'
0.103 25'

—1.705 071 380 62

—1.761 382
0.767 76'
1.417 268 10106

4.995 666 52'
11.033 706 01'

—0.748 75'
0.875'

—1.625 337 681 14

1.634 85'

9.894 742 35'
21.694 679 67'

138.160094 733
122.183 482 182 25'

143.033 637 294
126.791 650 143 763'

'Reference [16].
Reference [18].

'Reference [3].
Reference [23].

'Reference [22].
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TABLE III. Energy eigenvalues of few double-well oscillators with sextic anharmonicity. (0
represents other values).

1.0

2.0

1.0

1.0
1.0
1.0
1.0

'Reference [17].
Reference [24].

'Reference [15].

0.03
0.12
0.3
3.0
6.0

60.0
600.0

0.03
0.3
6.0

60.0
600.0

0.03
0.3
3.0
6.0

60.0
600.0

0.3
6.0

60.0
600.0

3.0
3.0
3.0
3.0

140.5
64.0
39.5
9.0
6.5
2.0
0.6

616.0
40.0
7.0
2.0
0.7

156.0
31.0
9.5
6.5
2.0
0.7

46.0
6.5
2.0
0.7

11.0
12.0
13.5
14.0

E(E)
—1.7
—0.273
—0.025

0.408
0.545
1.136
2.111

—1.0
—0.68

0.396
1.060
2.0690

—0.7
0.503
1.7975
2.2703
4.416
8.0621

—0.38
1.9451
4.2427
7.9666
4.080
6.9314

10.2521
13.981

E(P)
—1.2
—0.258
—0.022 12

0.408 324
0.545 437 96
1.136 678 93
2.111458

—3.5+0. 1
—0.62

0.396 779
1.060 800 7
2.069 988

—1.0122
0.5032
1.7975
2.270 305
4.416 339
8.062 15

—0.411
1.945 05
4.242 63
7.965 96
4.0796
6.9322

10.251 72
13.981 73

E(O)
—1.027 124 45'
—0.2575
—0.022 212 05'

0.545 379 45'
1.136678 9'
2.111458 2'

—1.005 617 8'
0.503 152'

2.270 305 0'
4.416 395 3'
8.062 152'

TABLE IV. Comparison of the calculated energies for double-well oscillators with mixed quartic and sextic anharmonicities for
different values of a and p as obtained by us and other workers.

1.0

2.0

10.0
14.0
1.0

2.0

10.0
14.0
1.0

2.0
10.0
14.0

1.0

2.0
10.0
14.0

4.0
400.0

4.0
—4.0

4.0
4.0
4.0

400.0
4.0

—4.0
4.0
4.0
4.0

400.0
4.0
4.0
4.0
4.0

400.0
4.0
4.0
4.0

3.0
600.0

3.0
3.0
3.0
3.0
3.0

600.0
3.0
3.0
3.0
3.0
3.0

600.0
3.0
3.0
3.0
3.0

600.0
3.0
3.0
3.0

6.0
1.0
6.0

—7.0
14.0
14.0
6.0
1.0
6.5

—14.0
24.5
25.5
6.5
1.0
7.5

15.0
40.5

8.5
1.0

14.0
25.5
56.5

0.638 138
3.296 709 6
0.500 00

—0.59
—1.70
—6.0

2.5025
12.010205
2.1865

—0.3
—1.4
—4 4

5.270
24.038 20
4.872
1.74

—2. 1

8.61
38.231

8.13
4.5
0.3

E(P)

0.638 138 724
3.296 709 679 874
0.499 999 999

—0.49
—1.499
—3.6+0.2

2.502 513 714 8
12.010204 796 94
2.186 500 529

—0.08
—1.138
—3.55

5.269 587
24.038 193464
4.871 82
1.7

c
8.606 836 50

38.228 363 454
8.130954
4.1097
2.1

E(O)

0.500'
—0.499 993 5
—1.5'
—3.617'

2.187'
—0.077 046 5
—1.138'
—3.532'

4.872'
1.672'
0 335'

8.131'
4.110'
1.967'

'Reference [8].
Reference [15].
The Pade approxirnants were highly oscillatory in nature.
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because (co') is small for large co and small a, but large if
0. is also large.

(ii) For particular values of co and n, K decreases with
an increase in a or P, but aK always increases. For ex-
ample, in the case of a quartic double-well oscillator, K
decreases from 7.5 to 0.6 as n increases from 0.4 to 400.0
for cu =1.0 and n =0. However, the product aK varies
from 3.0 to 240.0. Similarly, from Table IV we note that
K is 6.0 for co = 1.0, a =400.0, and P=300.0 for n =0.

The variation of K with n for same co and same anhar-
monicity parameters shows difFerent trends in difFerent
types of double-well oscillators. In the case of quartic
anharmonicity, K does not show significant variation
with n for the same cu and o, , though it increases for very
large n. E.g. , for cu =1.0 and +=2.0, K is 4.0 for n =0,
1, and 2 and becomes 12.0 for n =39.0. For the double-
well oscillator with sextic anharmonicity, an increase in
K with n for the same co and /3 values is a little more
clear. For example, for co =1.0 and P=3.0, it increases
from 9.0 to 14.0 when n varies from 0 to 5.0. In contrast
with this, the variation in K with n for a quartic-sextic
double well is not that visible.

As regards the dependence of K on the value of co for
same n, a, or P, it generally increases with an increase in
~, though the variation is difterent for difFerent types of
systems. For large values of a and /3, K is essentially in-
dependent of co because (co') = —co +AK =AK whether

—1 or 5.
(iii) In most of the cases, the Pade approximants to the

energy improve upon the precision of the values, except
for co =2.0, a=0, and @=0.03 for n =0 and for
co =1.0, a=4.0, and P=3.0 for n =3.0

(iv) As regards the comparison of the present results
with the findings of other workers, we note that in almost
all cases the agreement is very good when co (a or P, but

is not very encouraging for co )a or P. Nonetheless, the
degree of precision of the results obtained makes us be-
lieve that all the present values for co (a or P must be
correct. The agreement of Eo for co =1.0, a=0.0, and
/3=0. 12 with the exact value reported by Chhajlany and
Malnev [24] is indeed heartening. But still we cannot
generalize it to comment upon the discrepancies between
our results and those of others for co )P or ct. It may
also be mentioned that the degree of accuracy obtained
by the present technique does not seem to depend upon
the parity of the state. This is in contrast with the con-
clusion drawn by Hodgson and Varshni [22], for a quartic
doub1e-well oscillator, in which case the present tech-
nique has yielded larger but the same number of stable di-
git for E38and E39 listed in Table II.

(v) Since the renormalized hypervirial Pade approach
has not worked well for the case of deep wells (large co ),
we have not obtained nearly degenerate energy states, a
special feature of the DWAO's. The dependence of E„
on a or P (increase with anharmonicity) and on co (de-
crease with increase in co ) is as expected.

To conclude, we observe that the renormalized hyper-
virial Pade method in which K is treated as a variational
parameter is quite successful in giving the accurate ener-

gy values for double-well oscillators with quartic, sextic,
and mixed quartic-sextic anharmonicities provided
Co (cx, it3.
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