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Unifying stochastic Markov process and its transition probability density function
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A stochastic Markov process is defined which generalizes a class of processes previously considered by
the author [Phys. Rev. A 42, 4485 (1990)]. The enlarged class unifies such apparently unrelated process-
es as the Ornstein-Uhlenbeck process, the generalized Verhulst-Landau processes, the generalized Ray-
leigh process, the hyperbolic tangent processes, and many other cases of physico-mathematical interest.
The Fokker-Planck equation associated with this unifying stochastic process is solved analytically for
the transition probability density function, using a similar constructive solution method as in the
author's previous work. The result is obtained as an eigenfunction expansion over a generally mixed
spectrum. The discrete eigenfunctions are related (but not identical} to Jacobi polynomials. It is shown
that the results for the above-mentioned processes are obtainable as limiting cases, and that some addi-
tional solvable equivalent Schrodinger problems can be defined.

PACS number(s}: 02.50.+s, 05.40.+j, 03.65.Ge, 03.65.Db

I. INTRODUCTION

A stochastic difFerential equation (SDE) of the
Langevin type

x(t ) =f(x )+g(x )F(t )

formally describes a stochastic Markov process [x(t)] if
F(t) is a (normalized) white-noise excitation, defined by

&F(t))=O,

(F(t)F(t+r))=25(r) .

The transition probability density function (PDF)
w( xt~ x)ofor [x(t)j is the Green's-function solution of
the Fokker-Planck equation (FPE) associated with (1):

B ( wtx) 8 8
Bt Qx Bx

(4)

w(x, t =Oixo) =5(x —xo),
and eventually subject to suitable boundary conditions.

The diffusion and drift coefficients in (4) are given, re-
spectively by [2,3]

and the Green's function, or transition PDF, of the asso-
ciated FPE,

8 w( xt) 8, 8[(ae'+b)w] — [(ce +d)w],
Bt Q~2 Bx

xP[ —~, +oc] (8)

has been derived.
Some well-known physically important stochastic pro-

cesses (e.g., the Toda process and the generalized
Verhulst-Landau and Rayleigh processes) were shown to
be retrievable from (7) by selecting particular sets of pa-
rameters a, b, c, d, and, eventually, a transformation
y(x ).

In this paper a "maximal" generalization of (7) and (8)
will be studied, in a sense that the FPE has the highest
complexity compatible with the constructive solution
method developed in [1]. Physically, this generalization
will cause additional processes to belong to the enlarged
class, which thus becomes unifying for a variety of well-
known stochastic processes from physics and engineering
sciences. Mathematically, a type of orthogonal eigen-
function spins ofF that is unifying for many well-known
polynomials in mathematical physics.

x(t)= c ——e +d+(ae +b)'~ F(t),
2

(7)

8(x)=g (x),

A(x)=f(x)+g Bg
Bx

when the Stratonovich interpretation of (1) is accepted,
considering F(t ) as a zero correlation-time limit of realis-
tic continuous noise. For nonstationary processes, f and
g in (1) and hence 8 and A in (6) may also depend on
time.

Recently [1], the following four-parameter (SDE) has
been considered,

II. UNIFYING STOCHASTIC PROCESS

As a generalization of (8), the following stationary FPE
may be considered:

dw(x, t)
Bt

ae "+6
w

Bx fe"+g
ce +d

~x fe +g
W

xE[—ac, +~] (9)

where parameters a, b, f, and g are taken non negatiue to-
have a valid diffusion equation. The introduction of the
denominator (fe +g ) in drift and diffusion causes these
functions to become bounded over [ —ac, + ~] (except
for cases where some parameters are zero) and does not
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Bw(x, t) 8 e"+a
M

3x Qe "+1

8 2Pe"+2ay
Nae"+ 1

invalidate the solution method of [1], in spite of the ap-
parent complexity of (9).

Equation (9) may even further be generalized (see Sec.
IV) by the introduction of additional parameters, but for
convenience and without a+ecting generality (see Secs.
IV A and IV B), the following minimal parametric version
of (9) will be selected for the subsequent analysis (new x,
t, a, P, andy):

and to natural boundary conditions

BMw(+ ~, t Ixp) =0, =0 for x =+ oo
Bx

(17)

will now be solved for the transition PDF w (x, t
I
x p ),

which completely characterizes the stochastic Markov
process [x(t)(.

The solution method [1] will simultaneously produce
all components of the eigenfunction expansion

x C[ —ao, + m], 0&a&1 . (10)
—A,

/
t

w(x, t lxp) =w (x ) g p k( x)g I( xp) e
k

(18)

The Langevin SDE for the stochastic process [x(t) J as-
sociated with (10) is [see (1) and (6)]

x(t)= 2aPe "+[(a —I)/2+2P+2a y]e"+2ay
(ae"+1)

where the summation is symbolic, eventually including a
continuous part of the spectrum as well.

The following Laplace and Fourier transforms are
defined:

e +Q
Qe +1

1/2

F(t),

from which it can be anticipated that [x(t )]will be stable
in probability if

8(z,p)= f dt e ~'B(z, t)

= f "dt e "f-" dx e "w(x, t Ix, ),
0 QO

z —Eco, AC[ ~, +~] (19)
P&0, y)0. (12)

These also are sufficient conditions for the existence of a
stable deterministic equilibrium point f(x, ) =0 at

w(x, tIxp)
g(z,p)= f dt e ~'f dx e'—

0 oo Qe"+1 (20)

x lne

Q2 —1 1 Qy
8aP 2a 2P

Q 1 1 Qf Q

8aP 2a 2P P

1/2

(13)

x(t)=(p+y)+(p —y) tanh(x/2)+F(t), (14)

representing a generalization (by addition of the constant
drift p+y) of the tanh process studied by Wong [4] and
recently reconsidered by Jauslin [5]. This already demon-
strates that the enlarged class of stochastic processes
defined by the "unifying" SDE (11) contains new physi-
cally important members.

III. SOI.UTION
OF THE FOKKER-PI.ANCK EQUATION

Conditions (12) will be accepted henceforth as a working
hypothesis.

For a= 1, a constant diffusion subclass of (11) is ob-
tained for which the SDE may be written as 8(z,p ) =ay(z+ l,p )+q(z,p ) . (22)

Substitution of (21) into (15) and LF transforming the re-
sulting equation yields, with (16) and (17), a functional re-
currence equation for g(z, p ):

(ap —z —2Pz )g(z+ l,p )

+ (p —az —2ayz )g(z,p ) =e ' . (23)

Defining now the functions

pp(z)=a(z +2yz),

i.e., 8 is the Laplace (1. ) transformed characteristic func-
tion of the stochastic process [x(t)J and g is the
Laplace-Fourier (LF) transform of the function

w(x, t Ixp)
W(x, t Ixp) = (21)Qe"+1

such that

The FPE (10) qp(z)=z +2Pz, (25)

Bw(x, t) e "+Q
W

Bx Qe"+ 1

r

8 2Pe" +2ay
M

Qe +1

and the "shift" operator 5 by

QkG ( )=h(A" 'G )=G,(z+k)=Gq(z), (26)

x&[—00, + ~], 0&a&1, p&O, y) 0, (15) for any function Gp(z), (23) can be written as an operator
equation:

subject to the initial condition

w(x, OIxp) =5(x —xp)

[(p —po)+(ap —qo)~]Wz, p)=e ',
which formally inverts to

(27)
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ap —
qo

g(z p)= 1+ b,
p po

exp qp

=o p po

zxp
e

p po

zxp
e

Using now the factorizations

p —po(z)=p —a(z +2yz)
= —a[z —u +(p ) ][z —u (p )],

ap qo—(z)=ap —(z +2Pz)

(31)

ap —
q

p pg

kxp
e (28)

with

= —[z —u+(p)][z —u (p)l

' 1/2 1 /2

(32)

with

ZX (}

f(z,p, xo ),
p po

(29)
u —(p)= —y+ y +~

a
~

Re y+ a
o 0

(33)

pl, (z ) = b, "po(z ) =po(z +k ),
qi, (z)=qo(z+k) .

(30)

v —(p)= P+(P—+ap)', Re[(P +ap)'~ ])0 (34)

it is easily seen that P in (29) may be written as a general-
ized hypergeornetric expression:

P(z,p, xo)=3Fz(z —u+, z —v, 1;z —u++1,z —u +1;—(e /a)} . (35)

Considered as a function of p, g(z,p) has an infinity of
simple poles at

p =p„(z)=po(z+k ) =a[(z+k+y) —y ],
k =0, 1,2. . . (36)

lim q(z, p)=0 . (37)

Hence an alternative representation of g(z, p ) is given by
the partial fraction expansion [6]

ri (z)
g(z,p)= g

0 p pI, (z)—
Substitution of (38) in (27), multiplying by (p —pj, ), and
taking the limit p —+pk shows the residues to be re-
current:

With ro(z ) following from (29),

ro(z ) = lim (p —po)g(z, p )
Jt 5'0

ZX0=e 'f(z, po(z), xo},
one has

k 1 pk qr„(z)=(—1)" II
m =P Pk Pm

(z+k)xpXe 'f(z+k, pt, (z),xo) .

From (33) and (34) it follows that

u+(pl, (z) }=z+k,
u (pz(z)) = —z —k —2y,
u (pi, (z))=ut, (z—)=uo (z+k)

(40)

(41)

(42)

rl, (z)=— &pk qo
rl, ,(z+1), k)0 .

pk po
(39)

such that (41) can be written as
1

= —PE[a (z+k+y) +P —a y ]'~

ZX0
rl, (z) =e

k
X0 1 (2z+k+2y)1 (z+k u„+)I (z—+k —u„)

I (2z+2k+2y)I (z —
ul,+)I"(z—

ul, )

z+k —u+(pI, (z))+1=1 .

Laplace inversion of (38) gives the time-dependent F transform of the function Wx, t ~xo) [Eq. (21)]:
k

g(z, t)=e ' g e '
k=0 A

1 (2z+k+2y)I (z+k uq+)I (z+k —
ui, )—

1 (2z+2k+2y)I'(z —
ut,+)I (z —

ul, )

XzF, (z+k —
vI,+,z+k —

v1, , 2z+2k+2y+1; —e '/a) .

Xp

X 2Fi z+ k —vk+, z+ k —vk,.2z+2k+ 2@+1;—

where the zF, function follows from contraction of 3Fz [see (35)] by equality of an upper and a lower parameter:

(43)

(44)

(45)
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s =sk =k, k =0, 1,2, . . . ,

of the summator I ( —s ), one obtains
S

Xo
e

ZXO

g(z, t)= I dse ' +
2&l c)

I"(2z+s+2y )

a I (2z+2s+2y)
I [z+s —uo (z+s)]I [z+s —vo (z+s)]

X H(z, s }
r[z —u,+ (z+s)]1 [z —v, (z+s)]

XI ( —s)2F((z+s —uo+(z+s), z+s —uo (z+s);2z+2s+2y+1; —e '/a) .

Replacing the above summation in k by a contour integral in a complex variable s, around the poles,

(46)

(47)

The contour C( encircles clockwise the poles of I ( —s)
without enclosing other singularities of the integrand.
The function H(z, s) is as yet undetermined, but should
satisfy H(z, k)=l, k=0, 1,2, . . ., in order to preserve
equivalence with (45). This suggests that H(z, s) can be
taken as either a constant or a suitably def]Ined periodic
function of s.

For convenience, the further analysis will be related to
the q plane, which is defined by

The conditions

(t*(q)= —k, k=0, 1,2, . . . , (54)

(55)

yield the set of simple poles,

, [ —(k+P y)+D—' '], Re(D' ')&01

1 —a

q=s+z+y . (48}
with

In this plane the locus R of real non-negatiUe eigenvalues
is found from [see (36)]

po(z+s)=po(q —y)=a(q —y )= —
A, ,

Im(A, ) =0, A, & 0, (49)

and consists of the entire imaginary axis ( V),

D=D(k)=a (k+P —y) +(1—a )(P —a2y~) . (56)

e case

Let

Under the working hypotheses 0~a~ 1, p(0, y &0 [see
(10) or (15) and (12)], two alternatives have to be con-
sidered

Re(q ) =0,
p2 a2y2 a2e2 & () (57)

and a segment S of the real axis (H),

Im(q)=0,
~ Re(q)~ ~y . (51)

The argument functions a*(q ) [Eq. (53)] have two imagi
nary branch points at

A Fourier-transformed eigenfunction representation can
now be obtained from (47) by deforming the original con-
tour C( [around the poles of I ( —q+z+y) in the q
plane] so as to coincide with R. This is possible if the in-
tegrand of (47) has no singularities between R and C*, .
The singularities to consider are the following.

2
qs~=+ie=+i —y

tX
(58)

and D(k) is semidePnite positive All po.les qk* are real,
and they are distributed between the two branches a* ac-
cording to

A. Poles of I (s+2z+2y ) = I (q+z+y )

This is a descending series of simples poles at the
points

q=q, k= —k —z —y, k=0, 1,2, . . . ,

which are all to the left of R and do not obstruct contour
deformation.

B. Singularities of I [z +s —u ~+ (z +s ) ]
Using (42) and (48), the arguments of these I functions

may be written as

z+s —uo (z+s)=a —(q)

a+(qk+ ) = —k, a (qI, ) = —k, k =0, 1,2, . . . .

The series qk starts at the zero eigenvalue point,

1
, [ P+y D'"(0)]—=y, —

and. is descending. The qk values are positiUe for

O~k ~(y —p —ae) .

The poles qk+ start at

y(1+a }—2P
qo =

1 CL

(60)

(61)

(62)

=(q+p —y)+(a q +p —a y )'~

(53)
and thus inevitably obstruct the intended contour defor-
mation.
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Let

2. v case "good" poles are found among the qk belonging to the
a branch. These last poles are obtained for k values:

P —ay = —av &0. (63)
0&k &(y —P—v) . (67)

The arguments a (q) [Eq. (53)) have two real branch
points inside S [Eq. (51)]:

They are real, positive, and satisfy

qa &qk —qo 'V . (68)
1/2

CX

(64)
For both cases described above, the "bad" poles in a+
can be "annihilated" by the simple zeros of a properly
chosen H(z, s ) function in (47):

Discriminant D(k) [Eq. (56)] is negative for k values in
the range

0&y —p —v(1 —u )' &k «y —p+v(1 —a )'i (65)

and the corresponding poles qk* are complex conjugate.
They are "obstructing" if their rea/ parts are positive; i.e.,
for k values,

y —p —v(1 —a )'~ &k &y —p . (66)

For k outside the range [Eq. (65)], the poles qk* are real
again, and (60) and (62) apply.

By back substitution of the qp in (54) or just by check-
ing the sign of Re(qk*+p —y+k), it can be concluded
t~at all "bad" poles belong to the a+ branch and that

sinn. [z+s —uo+ (z+s ) ]
H(z, s) = e' '.

sinm[z —uo (z+s)]

I (1—z+uo+ )
e 1'tT$

I"(1—z —s+vo+ )
(70)

and the integral representation (47) in the q plane be-
comes

This H(z, s) merely "Hips over" [1] the I functions with
uo+ (i.e., the a+ branch):

I (z+s —uo ) sinrr(z+s —vo )

I (z —vo+ ) sinu(z —u0+ )

I q+z+y I 1 —z+Uo I q y Uo
ri(z, t)= dq e '

2m.i,* a I 2q I 1+y —q+Uo+ r z —
Uo

&(I (z+y —q)2Fi(q —y —uo+, q
—y uo,'2q+1; e /'~), (7&)

where, as functions of q,

po(q) =a(q' —y'),
+

( ) p+( 2 2+p2 2y2)1/2

Re[( )'~ ] ~0 . (72)

The effect of the "flip over" [Eq. (70)] is more far-
reaching than in [1], where the uo were just q indepen-
dent. The original symmetry of the integrand in Uo is
broken by H(z, s ) [Eq. (69)], so that branch points (58) or
(64) become effective, and branch cuts between them are
necessary to preserve single valuedness. It should be not-
ed that no new poles are introduced by H(z, s), as the
conditions

1 —z+vo (q)= —k, k=0, 1,2, . . . ,

Re(uo )~0

cannot be met simultaneously.
Formally denoting (71) by

2)(z, t ) .=,dq M ( q, z, xo, t ),= 1

27TE c )

(73)

the contour can now be deformed, so as to cover the
locus R [Eqs. (50) and (51)]. During this process the finite
number of "good" qk poles located on the rightmost part
of S [Eq. (51)] cross the contour (see Figs. 1 and 2). It is

(75)

where the sum contains the residues at the above-
mentioned poles, with N given by

N=N, = int(y —p —ue) (76)

or

N=N, = int(y —P—v), (77)

for the e and v cases, respectively. The 8 path is adjacent
to the vertical branch cut in the e case (Fig. 1) or turns
around the right half of the horizontal cut in the v case
(Fig. 2). Accordingly, the V path consists of the remain-
ing parts of (e case) or the entire (v case) imaginary axis.
Suitable half-circle indentations around the branch points
may be shown to have a zero contribution.

The resulting three-part eigenfunction solution is rem-
iniscent of the quantum-mechanical result for a bounded
Schrodinger potential, where the three components of
(75) would correspond, respectively, to bound, rejecting,
and free states [7]. It should be noted, however, that
there is no simple equivalent Schrodinger potential for
the FPE (10) in the general case (see Sec. IV F).

I

found that
N 1 1

rt(z, t)= g Res (M)+ . I dq M+ . I dq M,
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Residue calculation proceeds as follows. With qk
from (55), D(k ) from (56), and v 0 (q) from (72), one has

q. —y —vo (q. )= —k q. y— v—.+ = —k+2P+2h

(80)

h =h(k)=vo (q„)= [ —P—a (k —y) D'—~ ],1

1 —0.

(78)

Res I (q —y —vo (q))= ( —1) (P+h )

I t

po(q„) =a[(q„) —y ]=a(h —k )(h —k+2y ),

(81)

(82)

vo (qk )= —2P —h,

'h —k
N xo

e at(h —k)(h —k+2y) za
k=0 a

(79) so that the finite sum in (75) can be written as
I

I (z+h —k+2y)I (1—z —2P —h ) ( —1)" (P+h ) I (z —h+k)
r(2y+2h —2k)I (1—2p —2h+k) k! D'~' r(z —h )

X2F, ( —k, —k+2h+2P; —2k+2h+2y+1; —e '/a) . (83)

From this expression it appears that the discrete eigenvalue spectrum is given by

Ak = —a(h —k )(h —k+2y) =ay —a(h —k+y), k =0, 1,2, . . . ,N

with X from (76) or (77), and that the corresponding eigenfunctions pk(x ) are proportional to

gk(x)=(ae ")" "zF, ( —k, —k+2h+2P; —2k+2h+2y+1; e"/—a),

(84)

(85)

where the polynomial part 2F, is expressible by Jacobi po-
lynornials [8]

2Fi( —k, —k+2h+2P; —2k+2h+2y+1; e"/—a)
1(k —2h —2y)
I (2k —2h —2y)

with parameters m& and m2.

m, = —2h —2P,

mz=2P —2y —1 .
(87)

Via h [Eq. (78)], the parameter ~, is nonlinearly depen-
dent upon the degree k.

The line integrals in (75) will not be elaborated further

/m(q)A Im(q) P

q plane

e case

I-o-'bio ——o- —o——
I

= B
1

I

1

qy

+&~
I

bj

Rc(q)

!

I

CgP

I

-O)C C -Q—

q plane
y case

/ i////~A~rr/r// r /r ~ r r

Re(y)

FIG. 1. Final q-plane configuration for the e case. FICx. 2. Final q-plane configuration for the v case.
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here. It is clear that the corresponding continuous spec-
tra are found from

w(x, t ~x0;a, p, y)=w( x—, t~ —x0;1/a, —y —p) (96)

(88)g —%+pe

A(p)=a[y —(v —p) ], p&[0, v] (89)

for the 8 integral around the horizontal branch cut in the
v case (reflecting states), and from

D(k)= D(k), h(k)=k —h(k) .=1
~4

(97)
(90)g =lP

A(p)=a(y +p ), pH[ —ao, + ce] (91) Further, it is seen that

provides the continuation of the derived solution for a
values larger than 1 and expresses the symmetry of the
PDF under reAexion of x.

For calculational purposes the following transforms
are useful [see (56) and (78)]:

for the integrals along the imaginary axis in both cases
(free or reflecting plus free states).

Finally, Fourier inversion of the coeScient of the kth
time exponential in (83) yields

M
Pk(x )V k(xo)

axe + 1

(
—1)" (P+h )

D 1/2

X
I (2k —2h —2y)

I (k —2h —2y )B(2y+2h —2k, 1 —2P —2h +k )

X(ae )' ~(1+ac )
~ r 'yk(x)yk(x0),

p2 a2y2 — (p2 a2y2 )
-2-2= 1

(98)

which means that for an e-case combination of parame-
ters a, p, and y, with a & 1, one has to use the formulas
for a v case, with

V =(X 6

and vice versa for a v case.

B. Constant difFusion subclass: a=1

The physical significance of this subclass was already
mentioned in relation to the SDE (14). The derived solu-
tion is adapted for this case by substitution of

w, (x )= 1 — y B(2y, 1 —2P)

X(1+ac )(ae ")'

X(1+ac ") ~ ~ ', p&0, y&0

(92)

where B is the p function [8] and gk is given by (85). Set-
ting k =0 gives, for the normalized steady-state PDF,

D'~ (k)=y —P—k,
and a limit for h (k ),

h(k)= lim (a y P ak —D' —)—1

1 1 —O,'

y —(y —k)
2(y —P—k )

The steady-state PDF becomes

(100)

(101)

Xyk(x )yk(x0),

which clearly displays the normalization constant.

(94)

IV. APPLICATIONS

and factorizing this out from (92) yields the product of
the normalized eigenfunctions,

( —1)" (P+h) I (2k —2h —2y)
Pk Pk 0

B(2y, 1 —2P)(1 —a y/P)
B(2y +2h —2k, 1 —2P —2h +k )

w, (x)= B(2y, 1 —2P)

Xe2 "(1+e ) « (102)

but otherwise no particular simplifications of the results
are possible in general, as the expression for h [Eq. (101))
is still nonlinear in k.

Results for the classical tanh model [4] are retrieved by
additionally specifying

(103)

which eliminates the constant drift from the SDE (14):

A. Systems with a&1

The preceding analysis has been performed under the
working hypothesis 0& a & 1 [see Eq. (10)]. When a & 1

the transformations

a= 1/a &1, p= —y &0, y= —p&0,

x (t ) = —2y tanh(x /2) +F(t ) .

Qne finds

w, (x ) = [2 cosh(x /2) ]
I (4y)

and with

(104)

(105)

x= —x, t=t,
w(x, t)=w( x,t)—

leave Eq. (10) absolutely invariant, so that the relation

(95) D 1/2

h =k/2,
one has, for the discrete part of the spectrum,

(106)
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Ak = ,'k—(4y k—), k =0, 1, . . . ,N=int(2y) . (107) yk(x ) =e "" 2F, ( —k, —2y;1 —k+2y; —e"), (108)

From (85) it can be seen that the eigenfunctions are pro-
portional to

where 2F1 has suitable parameters for a quadratic trans-
formation [8] to be applicable, such that

4egk(x)=(1 —e )"(e r )"2F& ——, ', 1 —k+2y;—
1 —e

= [ —2 sinh(x /2) ] 2F, ——, ; 1 —k +2y; —sinh
k 1 —k (109)

which are polynomials in sinh(x/2). This reconstructs
the results found by Wong [4], in terms of the variable
x~~~ = sinh(x/2) and the parameter a~~~=2y, although
it should be clear that many alternative representations
(e.g. , in terms of Legendre functions) are possible.

C. Extended parameter set

lim D' = —P=- c
f~0 2a

lim h(k)=0,
f~O

1/2
d . ab

lim (Akt)=rk k —— lim a
o b / o f

(113)

While the preceding solution has been obtained in
terms of only three parameters a, P, and y, additional pa-
rameters may be introduced so as to obtain a more gen-
eral (stationary) FPE,

e
11m
f~0 0,'

(a.~/b )'" a=e~lim =—e~,
o a b

Bw
a7.

ae "~+6

By fe "~+g
ce"~+d

fe "~+g

which clearly allows one to reproduce the results of [1]
(with y and r standing for x and t, respectively).

1 ax =py+ —ln
2 bg

1/2
2 abt=p

g
' 1/2

ag
P=, y=c d

2pa
'

2pb

This proves the equivalence of (110) [or (9)] with (10) and
prepares for the subsequent retrieval of interesting limit-
ing cases.

D. Retrieval of the subclass of Ref. [1]

This subclass, which was shown to contain the
Verhulst-Landau and generalized Rayleigh processes, is
obtained by the following choice of parameters in (110)
[see also (8)]:

@=1, g=l, f=0. (112)

The singularities in x and t [Eq. (111)]for f~0 are com-
pensated by o.~O in a suitable limiting process. As an
example, one has [see (56) and (78)]

y E [ —ca, + oo ],a, b,f,g + 0 (110)

by applying the following transformations to the stan-
dard equation (10):

K. Ornstein-Uhlenbeck process

One possible way to reduce the unifying stochastic pro-
cess to the Ornstein-Uhlenbeck process is first to set

a=f =b=g, (114)

in (110), so that a constant diffusion (a= 1) FPE results.
Choosing further

2a cT
(115)

and taking the limit @~0,the FPE (110)becomes

Bw

a7

a' 2a+o. (yw), yE[ —~, + ~]
Qy By

(116)

which clearly is the FPE for the Ornstein-Uhlenbeck pro-
cess. The limiting processes necessary to produce the en-
tirely discrete spectrum and the well-known Hermite-
polynomial eigenfunctions of (116) out of the general
solution will not be given here as they are rather tedious
and of academic interest only.

The example illustrates the possibility of other FPE's,
with non exponentially state-dependent coe%cients, be-
longing to the same class. The one-sided Ornstein-
Uhlenbeck process, i.e., (116) with y H [0, + ~ ] and
rejecting boundary at y=0, has been considered by
Wong [4] and Stratonovich [9]. It is clear that this pro-
cess can be seen as a special case of the generalized Ray-
leigh process, with Laguerre polynomials [1,9] turning
into even Hermite polynomials. So it turns out that part
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F. Associated Schrodinger equations

It is well known [2] that a constant diffusion FPE with
drift f(x ),

aw=B'w —a (f )2 (117)

of the class [4] (Pearson's equation class) is also a subclass
of this unifying stochastic process and thus has a com-
mon representation for the transition PDF's too.

1 —2cf(z ) = . —d tanh(z /2)
sinh(z )

—' —c —(d —c+—,
'

) tanh(z/2)
tanh(z /2)

( —,
' —c )e' —d(e' —1)

(e '—1)
zE[0, +oo] (125)

and the associated one-sided Schrodinger potential fol-
lows from (118),

can be transformed to an equivalent (imaginary time)
Schrodinger equation which has the potential

e&
V(z) =

~ +c~ tanh (z/2)+c3,
tanh (z/2)

(126)

V(x)= +
4 2

(118)
with

A constant diffusion subclass of the unifying stochastic
process is obtained parametrically by choosing a= 1 [see
Sec. IV B and Eq. (14)]. The drift in this case becomes

c2 =
—,
' [(d —c+ 1) —

—,
' ],

c3 =
—,'[2(c —d )(1—c)——,'] .

(127)

f(x)= =(P+y)+(P —y) tanh(x/2),2e+2y
e"+1

(119)

and the associated solvable Schrodinger case has the
two-parametric potential

V(x)= 2, xE[—~, +~]( e"+y) +( —y)e"
(e"+ 1)

(120)

z(y)= f dy (121)

Although this integral can be worked out, the result is
hardly useful. The transformation is not readily inverti-
ble in general so that the drift of the resulting constant
diff'usion FPE (and the associated "unifying" Schrodinger
potential) cannot be expressed in terms of known simple
functions of z.

For special parameter combinations and limiting cases,
however, (121) is invertible, and as a nontrivial example,
the Schrodinger potential for the subclass of Ref. [1] (see
Sec. IV D) can be obtained as follows:

Let, without loss of generality,

p=a =b =g=1,
=0. (122)

Then, from (121),

z(y ) = f dy(e + 1) ' = —2 arcsinh(e ~~ ),
or, after removing the minus sign by z ~—z,

(123)

e ~ = sinh(z/2), zE[0, + ~] . (124)

The FPE drift becomes [see also Eq. (16) of [1] ]

which, for y )0 and P & 0, is a bounded potential well.
The other way to arrive at a constant diffusion FPE

such as (117) is a transformation of variables. Consider-
ing the generalized form [Eq. (110)] of the unifying sto-
chastic process FPE, the necessary transformation is
given by

1 /2

V. CONCLUSIONS

Expressing the non-negative character of a fIuctuating
physical quantity q(t ) in an obvious way by setting q =e"
gives rise to FPE's with exponentially state-dependent
coefFicients, which eventually suggests special solution
methods [10,11]. The most general FPE allowing for the
maximum complexity of a erst order func-tional re-
currence relation, such as (23), has been identified, and
the underlying stochastic process turns out to have par-
ticularly rich unifying characteristics. The process not
only synthesizes many well-known and separately studied
cases into one single solvable (three-parametric) class, but
is also interesting in itself because of the boundedness of
its drift and diffusion coefficients. Although globally sto-
chastically stable in probability (for P & 0, y )0), the pro-
cess behaves for x ~+~ as two different and essentially
unstable Wiener processes with constant drift, as can be
seen from the coefficients of the FPE (10). The sign of the
drift at +~ is such that the process is restored toward
the origin, resulting in global stability. Further, it is clear
that by suitable transformations [e.g. , y =e,
y = tanh(x/2), etc.], the SDE (11) can be given many
different appearances. It should be mentioned, however,
that an additive noise version of (11) is not evident, as the
transformation y(x ) leading to a unitary diffusion [i.e.,
the coefficient of F(t)] is non inuertible in general (see
also Sec. IVF ).

The connection between very different stochastic mod-
els and between their PDF's may be interpreted a pos-
teriori as the physical counterpart of the mathematical in-
terrelations between orthogonal polynomials, as they
have been synthesized in "Askey's scheme for hyper-
geometric orthogonal polynomials" [12]. It is believed
that the results in this paper give a convincing example of
this parallelism.

Finally, the solution method developed in [1] and
slightly generalized in this paper proves to be a powerful
tool for "extended operational calculus. " The usual
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guesswork for the identification or solution of a new ei-
genvalue problem is completely absent here. [Consider,
e.g. , the reduction of (10) to a hypergeometric di6'erential
equation, which a posteriori appears to be possible. ] The

use of the Fourier transform, which in this particular
case is linked to the choice of the state variable x and the
type of equation, is not a prerequisite for the constructive
solution method to be applicable.

[1]A. Debosscher, Phys. Rev. A 42, 4485 (1990).
[2] H. Risken, The Fokker Plan-ck Equation, Methods of Solu

tion and Applications (Springer-Verlag, Berlin, 1989).
[3] W. Horsthemke and R. Lefever, Noise Induced Transi

tions, Theory and Applications in Physics, Chemistry and
Biology (Springer-Verlag, Berlin, 1984).

[4] E. Wong, Proc. Symp. Appl. Math. 16, 264 (1964).
[5] H. R. Jauslin, J. Phys. A 21, 2337 (1988).
[6] P. Henrici, Applied and Computational Complex Analysis

(Wiley, New York, 1975), Vol. 1.
[7] P. M. Morse and H. Feshbach, Methods of Theoretical

Physics (McGraw-Hill, New York, 1953).
[8] Handbook of Mathematical Functions, edited by M.

Abramovitz and I. Stegun (Dover, New York, 1965).
[9] R. L. Stratonovich, Topics in the Theory of Random Noise

(Gordon and Breach, New York, 1963).
[10]A. Debosscher, Phys. Rev. A 40, 3354 (1989).
[11]A. Debosscher, Nucl. Sci. Eng. 69, 354 (1979).
[12]J. Labelle, in Polynomes Orthogonaux et Applications, edit-

ed by C. Brezinski et al. , Lecture Notes in Mathematics
Vol. 1171 (Springer-Verlag, Berlin, 1985).


