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We consider a network of N symmetrically interconnected neutrons subject to additive as well as mul-

tiplicative (in the synaptic connections) noise. In a previous paper, the dynamics of a single neuron, in
the presence of additive and multiplicative noise, was obtained through the procedure of adiabatic elim-
ination. We analyze the macroscopic potential that describes the steady-state properties of this effective
neuron, considering the effects of additive as well as multiplicative noise (in the synaptic connections).
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I. IrnaODVCnON

In a previous paper [I] (hereafter referred to as I) the
authors considered a network of N neutrons. Through
the procedure of adiabatic elimination (separation of time
scales) the dynamics of a single neuron interacting with
the "bath" of X-1 neurons was obtained in closed form.
This calculation refIects the recent upsurge of interest in
single- (isolated) or few-neuron dynamics. This interest
dates back to the work of Hopfield [2,3], who suggested a
simple mathematical network that could reproduce a few
of the collective properties of a biological neuron. It is
precisely the relationship between the many-neuron con-
nected model and a single-effective-neuron nonlinear dy-
namics that was explored in I. Other attempts along
these lines include the work of Babcock and Westervelt
[4], who examined simple models involving one or two
nonlinear threshold switching elements which they
modeled as Hopfield neurons. By introducing inertial
terms in the dynamics they were able to demonstrate
complicated bifurcation behavior including chaos. Their
model of a single neuron with additive and multiplicative
noise terms was considered by Bulsara, Ross, and Jacobs
[5]. It was found that multiplicative noise (in the synap-
tic connection) would suppress the bistable character of
the deterministic system as well as introduce bistability in
the "thermodynamic potential" in parameter regimes
where such behavior might not normally be expected. Li
and Hopfield [6] have considered the neural proceedings
in the olfactory bulb. They have found that the oscillato-
ry activities in the bulb (as observed in electrophysiologi-
cal experiments) may be modeled by a small group of
coupled nonlinear oscillators. It is also worth pointing
out that Skarda and Freeman [7] have evaluated elec-
troencephalograph (EEG) data from the olfactory bulb.

They find that many of their observations may be ex-
plained on the basis of simple "connectionist" models
such as that of Hopfield.

In this work, we begin with the Fokker-Planck equa-
tion (or its equivalent stochastic differential equation) for
the reduced probability density function of the single
effective neuron. The steady-state solution of the
Fokker-Planck equation may be expressed in terms of a
macroscopic "potential" which determines how the phys-
ical observables of interest (i.e., moments of tlie relevant
variable) behave at long times. The properties of this po-
tential as a function of noise are examined in detail. In
the remainder of this section, we briefly outline the adia-
batic elimination procedure as it pertains to the deriva-
tion of the effective neuron dynamics. This is followed by
an analysis of the turning points and bifurcation phenom-
ena of the potential as a function of additive and multipli-
cative noise. In particular, we show that multiplicative
noise (in the synaptic connections) may introduce new ex-
trema in the potential as well as suppress extrema which
would otherwise be present. In Sec. III we connect the
results of this work with the studies of Ref. [5], in which
these "noise-induced transitions" were considered for a
single-neuron model having self-connections.

For simplicity, we will adopt the deterministic
Hopfield model [2,3] of the form

du; Q;
C; = g J; tanhuj—

JW/=1 I

7913

Here u, is the potential of the ith neuron with input ca-
pacitance C, and a leakage current due to the intermem-
brane resistance R;. The interesting first term on the
right-hand side of (I) represents the input to the soma
from the other neurons with the characteristic saturation
with potential of their firing rates, taken for simplicity to
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be a hyperbolic tangent function. We will take the neu-
ron connectivity to be symmetric:

Jq=J;
J;;=0 (2)

Q1
C~ U~ = — + [J+5J2(t)]tanhuz+F(t),

R1
(3a)

Q2
C2 U2 = — + [J+ 5J& (t) ]tanhu

&
+F( T) .

2

Here, we have allowed the connectivities to fluctuate:

J,2(t) =J+5J~(t),

J2, (t) =J+5J,(t),

(5J, (t)5J2(0) ) =0,
(5J,(t)5J, (0) ) = (5J2(t)5J~(0) ) =o. 5(t),

(3b)

(4)

5(t) being the Dirac delta function. In addition, an addi-
tive (i.e., Langevin) white background current fluctuation
F(t) having zero mean and variance o., and being un-
correlated with the multiplicative Auctuations is also as-
sumed:

(F(t)) =0=(F(t)5J,(t)), i=1,2

(F(t)F(0) ) =o.'5(t) .

It is important to point out that Eq. (1) is far more gen-
eral than the specific application (associative memory)
considered by Hopfield. In that case, the synaptic con-
nectivities yield the number of patterns stored in the sys-
tem via the Hebb rule. However, an equation of the form
(1) has also been derived by Shamma [8] for the response
of a single neuron in a mammalian auditory network,
based on very simple nonlinear feedback circuit models.
In this model, the coeScients represent the gain of the
operational amplifiers and, depending on their sign, the
nature of the excitation. It is precisely the properties of
such a general, fully interconnected electronic network
that we wish to consider in this work. Our work is,
therefore, expected to shed some new light on the statisti-
cal mechanics of coupled oscillators of the form (1) with
an electronic neural network taken to be the specific ex-
ample, as has been done in I.

In I, we considered in detail the case of two connected
neurons, and demonstrated how the results may be ex-
tended to three or more neurons. It is important to note
that because of detailed balance considerations, the calcu-
lation for three or more neurons is markedly different
from the two-neuron case, although the final effective
single-neuron dynamics has the same form. These points
have been considered in great detail in I and will not be
repeated here. For simplicity we will confine our discus-
sion throughout this work to the case of two connected
neurons subject to both additive and multiplicative
Gaussian, 5-correlated noise. The two-neuron coupled
stochastic differential equations may be written in the
form

with

01 J
A, (u „u2)—= — + tanhu2,

1 1 1

Q2 J
A2(u „u2) =—— + tanhu, ,

2 2 2

(8)

2 2
0 Og

&,(u, )= tanh u, +
C2 C2

2 2
O 2 a

&,(u, )=, tanh u, +
C2 C2

(9)

We assume neuron 2 to be statistically rapidly varying
and "slaved" by neuron 1 [12,13]. This may be achieved
(see I) by taking R2(&R, and we may then write
[1,12,13]

P(u„u t2)=h(2~1, t)g(l, t)

with

(10)

f (h ~21, t) ud~=l= f g(l, t)du, .

Here h(2~1, t):—h(u~ ~u„t) is to be interpreted as a con-
ditional probability density function to find u 2 given u 1 .
Substituting (10) into the original Fokker-Planck equa-
tion (7) one may obtain (the procedure is described in I)
separate Fokker-Planck equations for h and g. In partic-
ular, we find for the probability density function of the
"slow" or "stable" neuron

a g(l, t)=-
BI. [F)(u, )g(l, t)]a

BQ1

1+— [D, (u, )g(l, t)],
BQ 1

where, we introduce the quantities

Q1 JFi(ui ):—— + G(ui),
1 1 1

(12a)

D, (u, )—:C, [o,+o H(u, )], (12b)

G(u, )—:f h(2il)tanhu~du~ .

H(u, )—:f h(2~1)tanh u2duz . (12d)

In the above integrals, h(2~1) represents the long-time

(12c)

In the Ito interpretation [9] the corresponding two-
dimensional Stratonovich-Fokker-Planck equation
[9—11] for the probability density function P
—=P(u„u2, t) is

a[A, (u, , u~)P] — [A~( u„u2)P]
BQ1 BQ2

$2p 2 g 2

()g 1 Qg 2 C1C2 ~ 1~92

(7)
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K being the normalization constant. The above solution
is used in evaluating the integrals appearing on the right-
hand side of (11), thereby reducing the latter to an
effective one-neuron Fokker-Planck equation. In I, the
integrals G and H have been evaluated by expanding the
hyperbolic functions about the steady state
u2 =JR2tanhu, . To order (u2 —u2), this leads to

b
G(u, )=

2a
11—

2a
(14a)

H(ui )= b
2a

Q2

2a 2a
(14b)

where

C~ jR2
a =

2 2 2, b =2aJR2tanhu& .
u tanh u&+o.,

In deriving the expressions (14a) and (14b) we have used
the approximation tanhx =x for small x. Further, it has
been assumed that the noise is moderate. Specifically, the
assumptions

a'R2 «C„o'.R2 «C, (15)

have been made. Together with the basic assumption
R2 ((R, (the backbone of the adiabatic elimination tech-
nique), these constitute the only constraints on the pa-
rameters throughout the remainder of the calculation.
The adiabatic elimination technique effectively assumes
that the "bath" is comprised of N —1 nonlinear oscilla-
tors that are actually only weakly nonlinear; in this re-
gard, it makes contact with familiar mean-field-
theoretical methods in statistical mechanics. The impli-
cations of such a procedure for the special case in which
(1) represents a fully connected Hopfield model, used for
instance as a content-addressable memory, are unclear;
for the moment we simply reiterate that Eq. (1) is far
more general and, in what follows, will be treated as a
system of N coupled nonlinear oscillators, of which the
associative network is a special case (depending, primari-
ly, on the choices of the gain parameters). In I, the ex-
pressions (14a) and (14b) have been compared with the re-
sults obtained via numerical integration of (12c) and
(12d). The agreement is impressive as long as the ine-
qualities (15) are satisfied. We now consider the steady-
state solutions of the single-neuron Fokker-Planck equa-
tion (11).

solution obtained from the corresponding Fokker-Planck
equation [1] (the variable u, is treated as a constant when
obtaining this solution, since u2 relaxes on a far shorter
time scale). This solution is readily seen to be a Gaussian
in u2 (assuming vanishing probability fiux at the boun-
daries u2 =+~ ):

2C2
h (2I 1 ) =EL 'exp

o-2tanh2u, + o-2.

2

X + tanhQ )
2 2 2

II. THE EFFECTIVE POTENTIAL

u, F, (s)
U(u, )= —2J ds+lnD, (u, ) .

1

(17)

Let us first consider the case of zero multiplicative noise.
In this case, one readily obtains

2Ci
U(u, )=

R 1 la

2
Q )

2
—JRR 1—

1 2

u2, R22

2C2

X ln(coshu, ) (18)

In setting down this expression we have assumed that the
additive noise strengths in the slow and fast neuron dy-
namics are not the same; one may derive Eq. (18) through
a simple modification of the theory of the preceding sec-
tion. For comparison purposes, it is instructive to write
down the deterministic potential Ud(u, ). This is the po-
tential that corresponds to the case of no noise of any
kind and may be obtained directly from Eq. (6) of I (set-
tmg R3=0):

1Q

Ud(u, ) =(R,C, )
' JR,R2ln(—coshu, )

2
(19)

It should be noted that the additional term in o.2, arises
in (18) from the second term on the right-hand side of
(14a). The adiabatic elimination technique introduces a
noise-dependent renormalization of the drift term in the
single-neuron dynamics. Hence, even though the
diffusion term is constant in the limit of zero multiplica-
tive noise, the structure of the potential is changed by
this additional term in the drift.

The deterministic potential is bimodal above a critical
value g, =1 where g—=J R]R2 ~ For the bimodal case,
the minima of the potential occur at

1 —tanh qu, =+ 1 — =g tanhg,
1 —qsech q

the latter expression being true for large g. The potential
has a maximum at u, =0. The stochastic potential (18) is
seen to have extrema at the same locations as the deter-
ministic extrema in the limit of vanishingly small additive
noise. However, in the presence of a finite amount of
noise, the bifurcation point [defined here as the charac-
teristic value r), at which the potential (19) becomes bi-
modal] is a function of noise. Specifically, we must now
define a bifurcation parameter g„—=J R, R2(1
—o 2, R2/2c2 ) which controls the transition from uniino-
dality to bimodality in the effective potential (19). It is
interesting to note that the noise in the fast neuron dy-
namics changes the bifurcation behavior of the show or

The long-time solution of the Fokker-Planck equation
(11) may be written in the form [9,11,14]

g(u, ) =N 'e (16)

N being the normalization constant and U the effective
"potential" defined by
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"effective" neuron dynamics; this is a consequence of the
nonlinear character of the adiabatic elimination. For
given values of J,R „R2 such that the deterministic po-
tential (19) is bimodal, the introduction of additive noise
shifts the transition point for the onset of bimodality.
Indeed, the noise causes the locations of the potential
minima to change. One readily observes that for a criti-
cal noise strength

0.024

0.018-

n.013-

0.007-

2C2
CT 20c R

1—
2

1

J R)R2
(20)

0.002-

r

2Ci u i R2
U(u, )= —J RiR2 1 (crz, +cr—)

R io. i, 2

X ln(coshu, ) (21)

a potential which is bimodal in the absence of noise
(J R, Rz ) 1) will become monornodal. The above effect
may be further quantified through a computation of the
most probable value (defined by the condition
dU/du, =0, d U/du| )0) as a function of the noise
variance oz, . The most probable value displays a pitch-
fork bifurcation below the critical value crz„. Above this
value, the potential is a parabola centered at u& =0 and
the most probable value is zero. The above effects have
been noted [15] in a mean-field description of an ensemble
of linearly coupled nonlinear oscillators. Although
noise-induced bifurcations in the macroscopic potential
are quite common in the presence of multiplicative noise
[5,16—18], they are not normally brought about by
Langevin noise. However, the nonlinear nature of the
transformations described in Sec. I and the subsequent re-
normalization of the drift term lead to the additive noise
effectively postponing the onset of bistability in the
single-neuron dynamics. Hence, our system does not
violate Kurtz's theorem [19]. The effects discussed above
are analogous to postponements induced by Langevin
noise in swept-parameter nonlinear dynamic systems
[20,21]. In these systems, the presence of the swept bifur-
cation parameter is a necessary condition for the transi-
tion to bimodality of the potential; the Langevin noise
then delays or postpones the bifurcation. By contrast, in
the problem at hand, the postponement occurs because of
the separation of time scales in the coupled neuron sys-
tem; this separation leads to the renormalization of the
drift term in the single-neuron Fokker-Planck equation as
described above. It should be noted that although the
potential (18) becomes monomodal for o2, )crz„an ac-
curate analytical description in this retime is not possible
within the framework of our theory because of the con-
straints imposed by the inequality (15). In Fig. 1, we
show the efFective potential (18) for three difFerent values
of the additive noise variance o. . For the parameters of
this figure one has o.„=10.The destruction of bimodali-
ty with increasing noise is evident. Before going on, it is
instructive to consider the case of very small multiplica-
tive noise cr . In this case, the potential (18) may be writ-
ten as

-.004
-3.00 -1.80

I

-0.60 0.60 1.80

FIG. 1. Effective potential (18) for (R l, C&,R„C„J)
= (20, 1,0. 1,1, 1) and o, = 5 (bottom curve), 10 (middle
curve —threshold case), and 15 (top curve).

with the critical additive noise variance now being given
(for constant albeit small o. ) by

2
O2ac = 2C2 11—J R]R2R2

o. R

2C2

The multiplicative noise lowers the threshold value o.2„
from its value in the o. =0 case.

We now turn to the case in which the multiplicative
fluctuations are stronger, with variance o . It is well
known [16—18] that such fiuctuations can qualitatively
change the physical state of the system. As seen above,
the Fokker-Planck equation for this case has a noncon-
stant diffusion term. By solving the Fokker-Planck equa-
tion in the steady state and computing the moments
( u i (t ) ) one obtains expressions for the physical observ-
ables in the system. At this point, two major differences
between additive and multiplicative noise processes
emerge. (1) The most probable value of a monomodal ad-
ditive noise driven process in the steady state is simply
the deterministic mean value, whereas the corresponding
quantity for the multiplicative noise case depends on the
noise strength. This means that the peaks of the long-
time probability density function g ( u

&
) no longer occur

at the deterministic mean values; their location depends
on cr . (2) For an additive noise process, global stability
of the deterministic problem guarantees stability of the
noise problem; this is no longer the case when multiplica-
tive noise is introduced. The above comments constitute
a general "rule of thumb" to distinguish between additive
and multiplicative noise driven processes. Our system is,
as seen in the preceding paragraph, an exception to the
rule since additive noise can change the structure of the
potential in a quantitative way for the case of coupled os-
cillators considered in this work.

We consider the potential (17) with F, and D, given by
the expressions (12). Throughout the remainder of this



SINGLE EFFECTIVE NEURON: MACROSCOPIC POTENTIAL. . . 7917

work we assume that 01 =02 since our goal in what
follows is to explore specifically the effects of finite multi-
plicative noise on the long-time neuron dynamics. In gen-
eral, one cannot evaluate the potential U analytically for

I

arbitrary 0. . However, one may readily compute the
"switching curve" whose zeros yield the extrema of the
potential. This curve is obtained by setting dU/du1—:f ( u i ) =0. One obtains, after some calculation,

2
2

O.,R2f(u )=—u —JRR 1—
1 1 1 2 2( 2

o R22

tanhu1
2

0. R1 2J R2o., 0. R2+ 2J R2- +
2C1 C2 C2

J2R R2g2 2JR R 0.
1 2

tanhu1sech u, — 2tanh u, sech u, . (22)
2 C1C2

and

1 —a1J +b1o. J +b2o. =0

8+ A 6J2+ A 4J2+ A 2J2

(23a)

+A, o. J+A6o. J+A o +A J =0

where

(23b)

o.,R22

a=RR 1—
1 1 2 2( 2

R1R 2
2 22

It is evident that the zeros of f(u, ) will depend on the
multiplicative noise variance cr, and for this case, on the
additive noise variance cr, as well (although this is not
generally the case, as noted above). The turning points of
f may be found by setting df /du, =O=d f /du i. For
the problem at hand, we can neglect the last term on the
right-hand side of (22), recalling that R 2 is very small, by
assumption. The calculation of the critical curves is then
completely analogous to the calculation of Ref. [5], with
the important difference that the coupling parameter J
and the multiplicative noise variance o. appear in the
coe%cients of tanhu1 as well as tanhu1sech u1 in con-
trast to the situation discussed in Ref. [5]. Following the
procedure of Ref. [5], however, we may eliminate u, from
(22) as well as the first and second derivatives of f(u, ).
We then obtain the pair of curves in the (J,cr ) plane:

I

pling to other neurons). There are also some marked dis-
similarities. These will be explored briefIIy in the
remainder of this section and more fully in Sec. III. We
first note that unlike the phase diagram of Ref. [5],
changing the additive noise variance o., results in a shift
of the curves described by (23). This is evident upon an
examination of Fig. 2. In particular, one observed that
the point of intersection of the upper curve with the vert-
ical axis is displaced upward with increasing o, Since
this point represents the value of J at which the poten-
tial changes from monornodal (below this point) to bimo-
dal (above this point) in the absence of multiplicative
noise, the observes shift is merely a manifestation of the
effects described at the beginning of this section: additive
noise can change the number of peaks in the probability
density function in this case, even in the absence of multi-
plicative noise. We note in passing that for the case of a
general assembly of coupled nonlinear oscillators de-
scribed by (1), the parameter J can take on any value [J is
related to the gain parameter of the nonlinear element in
a single elemental circuit contained in (1)]; for the special
case of an associative memory, the allowed J values are
restricted by the Hebb rule which determines the number
of stored configurations. It is important to note [as is evi-
dent from an examination of (22) and (23)] that the criti-
cal dynamics of the network involve the product J R1 in

R1R 2
o.,R2b1= 1— R1R2 1.60

A, =4b2, A~ =4b2(2b, —3a2),

A3=4a, b2, 2~=12(a~ b, ), —

A;=5a2+4b, —12a2b, , A6=2a, (2b, —3a2),
A7= —12b2, A8=a1 .

Equations (23a) and (23b) define a pair of parabolas in the
(J,cr ) plane. They are plotted in Fig. 2 for two difFerent
values of the additive noise variance o„the upper curve
in each case corresponding to Eq. (23a).

We now discuss this phase diagram in detail. Much of
our discussion will parallel the treatment of Ref. [5] since
there are striking similarities between the two systems
(the work of Ref. [5] pertains to a single electronic
Hop6eld-like element in a neural circuit, having a
nonzero fluctuating self-coupling term and negligible cou-

1.28

0.96

0.64

0.32

0.00
0.08 0.32 0.96 1.28 1.60

FIG. 2. Multiplicative noise: critical curves defined by {23a)
and (23b) for o, = 1 (solid curve) and 10 (dotted curve).
{R

& Cl R2 C~ J)=(50 1 0.075 1 1).
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400

2.40 2.40

0.80
0.80

-0.80 --
-0.80-

-2.40 --
-2.40

-4.00
-.0396 -.0132 0.0132

&(U1 )

0.0396

I
I

0.066

-4.00
-0.13

I

-0.08 -0.03
f(U1)

0.02
I

0.08 0.13

FIG. 3. Svntching curves (22) for J=0.8, o.,=l and u =0.5

(dashed curve), 0.8 (dotted curve —threshold case), and 1.1 (solid
curve). Other parameters as in Fig. 2.

FIG. 5. Switching curves for g, =1, J=0.4 and g =0.96
(dashed curve), 1.16 (dotted curve —threshold case) and 1.6 (solid
curve). Other parameters as in Fig. 2. Other parameters as in

Fig. 1 ~

0.074

0.052

0.029

0.007

-.015
-4.00 -2.40 -0.80

U1

0.80 2.40

FIG. 4. Potential g(u, ) corresponding to the cases of Fig. 3:
o. = 1.1 (top curve), 0.8 (middle curve), and 0.5 (bottom curve).

all the terms. Hence, one may also achieve the bifurca-
tion phenomena described in this section by keeping J
fixed and varying the resistance R& of the slow neuron
(making sure that the basic conditions of Sec. E are al-
ways met).

The phase diagram may be divided naturally into three
regions. In region A, the potential is always monomodal.
This region encompasses a small set of values of J for
which the potential would be expected to be bimodal in
the absence of multiplicative noise. One sees, therefore, a
suppression of the bimodality of the multiplicative noise.
In region B, the coupling parameter J dominates the
structure of the potential. As one passes from region A
to region B the switching curve passes through a point of
inffexion and develops two stable branches, (i.e.), Eq. (22)
has three real roots. The potential U which is monomo-
dal in region becomes bimodal in region B, having a max-
imum at u, =O. This is also the location of the point of
inAexion on the switching curve for the critical case in

which the parameters J and o. are taken to correspond to
the point T. The coordinates of this critical point, re-
ferred to in Refs. [5] and [18] as a noise-induced triple
point, may be found by solving the simultaneous equa-
tions

a J —a Jo. =4
1 2

(b, —a2)J o +b o
(24)

The effects of crossing the critical curve from region B to
region C are demonstrated in Fig. 3, in which we plot the
switching curves corresponding to values of (J,o ) in re-
gion B, on the critical curve, and in region C. The poten-
tials corresponding to these cases are shown in Fig. 4.
One observes that a point of inAexion develops on the
switching curve (at u, =0) and, upon crossing into region
C, that Eq. (22) has an additional real zero; an additional
minimum develops in the potential at u, =O. Region C
corresponds to the region in which multiplicative Auctua-
tions play a significant, perhaps dominant role in the be-
havior of the eff'ective potential. En Ref. [5], it was seen
that in general one observes additional minima in the po-
tential, and in region C only for certain values of an
external symmetry-breaking constant (i.e., dc) driving
term. A similar effect is observed in this case. As an ex-
ample of this behavior we plot in Fig. 5 the switching
curves corresponding to three values of o in the regions
A —C. It is evident that for the most part, the curves ad-
mit of only one zero. However, for certain appropriately
chosen values of an external constant driving term Eq.
(22) would indeed have three zeros. This point has been
treated in great detail in Ref. [5] and will not be discussed
further. It is important to note, in concluding this sec-
tion, that the potentials calculated in this section are ob-
tained via the approximation (14), with the noise variance
always selected so that (15) is satisfied. The curves of Fig.
4 differ very slightly from the "exact" potential which
would be obtained via numerical integration in (12c) and
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(12d). In particular, the approximation used here yields
the correct turning points and extremum behavior of the
potential for the parameter ranges considered in this
work.

III. CONNECTION WITH OTHER WORK:
THE CASE OF A PRIORI SELF-COUPLING

Throughout this work we have assumed that self-
coupling terms involving the coefficients J;; in (2) are zero
a priori. However, as has been shown in I, a purely deter-
ministic treatment of the X-neuron problem results in an
expression for an effective" self-coupling term
J»tanhu, after the adiabatic elimination is carried out.
Our treatment of Ref. 5 concerned the case when this
self-coupling term was present a priori in the stochastic
problem of a single Hopfield-like computation element
and, moreover, was much greater than the cross-coupling
terms. In fact, in this treatment, the neuron was
effectively isolated. As discussed in the preceding section
many of the effects of multiplicative noise observed in the
system of Ref. [5] are duplicated in the problem at hand,
although there are several important differences (notably
the effects of purely additive noise). In what follows we
derive, in a self-consistent manner, the single-effective-
neuron dynamics for the case when self-coupling terms
are included at the outset, namely, we consider the fact
that J,, is nonvanishing. Once again, we consider the
case of two coupled neurons, one of which (the "fast"
neuron) evolves to its steady state on a much faster time
scale. Our treatment follows that of I but several impor-
tant differences will emerge. Ultimately, we show that
this treatment leads, under certain conditions, to the re-
sults of Ref. [5].

In the presence of self-coupling effects, the terms
J»tanhu1 and J22tanhu2 are added to the right-hand
sides of Eqs. (3a) and (3b), respectively. We further as-
sume that Gaussian 5-correlated Quctuations are present
in the self-coupling:

J» =J, +6J»,
J22 Js +~J22 (25)

as
at

a a
[q, (u„u~)P] — [q~(u „u2)P]

au1 au2

1 a' 1 a+— [Q, (u „u2)P]+— [Q2(u, , u2)P
2 au 1

2 au 2

a2a+
C, C, au, au, ' (26)

where we define the quantities

(5J,, ) =0, (5J,, (t)5J;., (t &)) =o„5(r), i =1—, 2. .

It is also assumed that there are no cross correlations be-
tween 5J;; and 5Jk occurring in (3) or with the Langevin
noise F(t ) (we assume the same additive noise variance
cr, in the slow and fast neuron dynamics). Proceeding as
in I we construct the Fokker-Plance equation for the
probability density function P(u „u2, t ):

q&
= — +C, '(J, tanhu, +J tanhuz)

1

1C1

+ —,
' C1 o,1tanhu, sech u1

qz = — +C2 (J,tanhu2+ J tanhu, )
u2 —1

2 2

+—,
' C2 o,2tanhu 2sechu 2

Q, =C, (cr tanh u2+o„tanh u&+o, ),
Qz=C2 (cr tahn u, +o,ztanh uz+cr, ) .

(27)

We now assume that the joint probability density func-
tion P may be factored as

P(u „u2, t )—:h, (2l 1,t )g, ( 1, t ) (2g)

with h, and g, being separately normalized to unity. We
then obtain separate Fokker-Planck equations for the
density functions h, and g, :

and

c)h,

at

ags

at

(q2h, )+— (Q2h, ),a 1 a2

Bu2 2 c)u 2

1 a[A(u, )g, ]+— [8(u, )g, ] .
c)u ( au 1

(29)

(30)

Equation (29) must be solved in the steady state, treating
u, as a constant. A solution may be formally set down in
the form (17), however, the integral occurring in the solu-
tion cannot be evaluated analytically. If such a solution
were available, however, it would be used to compute the
drift and diffusion expressions in (30). These expressions
are

&(u&)= f q, (u, , uz)h, (2ll)du2

which may be cast in the form

(31a)

2u1 ~s1 2A (u, )= — +J,tanhu, + tanhu, sech u
&R1C1 2C1

+ f tanhu2h, (2ll)du&,
J

1

(31b)

and

8(u&)= fq&(u„uz)h, (2ll)du& (32a)

which may be cast in the form

8(u, )=C, (cr„tanh u, +o., )

+o' C& f tanh u2h, (2l1)du& . (32b)

These conditions are tantamount to assuming that the
Auctuations in the self-coupling term of the fast neuron

Rather than evaluate the solution h, (2l 1) in general, we
consider the special case

2 20 s2 ~s2&2
(& 1, «1.

2
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are small; the second condition follows naturally as a
consequence of this condition and the conditions
R, «R, for adiabatic elimination. Under these condi-
tions, we may set down, after some calculation, a steady-
state solution for h, (2~ 1):

h, (2~1)=N '(u, )e

2C2/R2 u 2

2 2 2
—J,8 &in(coshu 2 )

o., +o. tanh u&

(33)

—JR&u2tanhu
&

N(u
&

) being the normalization (with respect to uz). This
solution is seen to differ from (13) in the presence of the
self-coupling term in the exponential. We may now
evaluate the integrals occurring on the right-hand sides
of (31) and (32). If in addition to the assumption of small
o.,z, we assume that the cross-coupling terms are small
(J ((J, and o. ((o.„),we can show (this has been car-
ried out numerically) that the terms containing the in-

tegrals on the right-hand sides of (31b) and (32b) are
negligible compared to the remaining terms in these ex-
pressions. We then obtain the steady-state solution for
the effective neuron in the form

g, (u, ) —=K 'exp[ —4(u, )] (34)

and

8(u, ) =C, (o„tanh u, +cr, ) . (35b)

This is precisely the potential of Ref. [5]. We thus see
that our previously considered model of a single isolated
neuron with self-coupling (derived from a feedback loop
in the electronics) may be obtained in a consistent
manner, via the adiabatic elimination procedure, from an
¹neuron network.

IV. DISCUSSIGN

In this work, we have extended our earlier calculations
[1] to include an analysis of the long-time behavior of the
probability density function that describes a single
efFective neuron. The effective neuron dynamics were de-
rived in I by assuming it to be adiabatically coupled to a
"bath" of neurons which may be treated as being in their
steady states. Although we have considered the case for
just two coupled neurons in this work, the treatment of I

with the potential N given by an expression of the form
(17):

4(u, ) = 2f — ds + lnB (u, ) .
"~ 3 (s)

8 (s)

In light of the preceding analysis, the drift and diffusion
terms are now given by

u) J, ~si
A(u, )=- + tanhu, + tanhu &sech u

&R )C] C] 2C]

(35a)

should make it evident that the results may be carried
over to the ¹ euron case. Both additive and multiplica-
tive noise effects have been considered. An interesting re-
sult is the suppression of the transition to bimodality in
the potential, induced by Langevin noise. The result,
which would not occur in the case of a single isolated os-
cillator (e.g. , the single isolated element of Ref. [5]) is
similar to an observation by Shiino [15] on a network of
coupled bistable oscillators described by a mean-field
theory. The central result of Ref. [15] is that such sys-
tems of many coupled nonlinear oscillators may exhibit
mean-field-type phase transitions, and the critical behav-
ior may be explored via the reduced Fokker-Planck equa-
tion describing the dynamics of a single oscillator. Strict-
ly speaking, the term "phase transition" applies to a qual-
itative change in the physical observable (usually the
most probable value) as well as changes in the shape of
the many-body probability density function. Further, the
term generally applies only in the "thermodynamic limit"
of a large number of oscillators. In this context, it seems
reasonable to ask the question of what does one mean, in
a practical situation, by a larger number of oscillators?
Certainly we have seen in this work that two coupled
nonlinear oscillators may exhibit the effects described in
Ref. [15]. The theory developed in I indicates that our
results would be qualitatively similar if we considered the
N-neuron problem (although the calculation is likely to
be overly tedious). Since the effect of Langevin noise is to
modify the shape of the potential through modification of
the nonlinearity g defined by (19) (we are, in fact led to
define an additional bifurcation parameter q„ in the pres-
ence of Langevin noise), it seems reasonable to assume
that the Langevin noise does in fact introduce a pitchfork
bifurcation in the long-time dynamics of u &,

' this bifurca-
tion is observed in the most probable value of u

&
above

the critical g„, an effect also observed in Ref. [15]. It is
of interest to note that the effects of the Langevin noise
are similar to those that result from multiplicative Auc-
tuations with one important difference: the Langevin
noise may shift the transition point (from unimodality to
bimodality) in the effective single-neuron potential, but it
cannot introduce additional minima (of the kind observed
in Fig. 4, for example) in the potential. We have seen
that the effects of Langevin noise alone manifest them-
selves through an additional u&-dependent term in the
drift I', appearing in the potential (17). However, the
diffusion term D& remains a constant, unlike the case
when multiplicative fluctuations (cr )0) are included.

Multiplicative noise (which enters the system through
fiuctuations in the cross-coupling terms) also alters the
structure of the potential. Specifically, the multiplicative
noise can postpone or advance the onset of bimodality.
In some cases (exemplified in Figs. 3 and 4), the multipli-
cative noise may actually introduce additional wells in
the potential. In other regimes (region C of Fig. 2) the
multiplicative noise introduces bimodality only for cer-
tain values of the system and noise parameters (as dis-
cussed in Ref. [5], the transitions in this regime take
place for certain well-defined values of an external
symmetry-breaking dc term). The stationary probability
density g(u

&
) permits us to obtain all the moments ( u

&
)
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of the system. In practice these constitute the physical
observables, although it has been demonstrated [22] that
the stationary probability density is itself an experimental
observable. Before leaving this subject, it is instructive to
compare the results of Sec. II with our earlier work [5] on
the stochastic generalization of the simple single-neuron
model with self-coupling terms only. At first glance it
might appear that the effects of multiplicative noise
(exemplified in Figs. 3 —5) are qualitatively similar to
those encountered in Ref. [5]. However, there exist
several quantitative differences between the two theories.
Perhaps the most striking dissimilarity is the role played
by the Langevin noise in the system considered in this
work. We have seen that in the presence of additive as
well as multiplicative noise, the phase diagram of Fig. 2 is
actually displaced by changes in the variance o., of the
Langevin noise; the noise plays the role of a symmetry-
breaking "order parameter" with the noise-induced triple
point T being a function of o, As described above, this
is a consequence of the nonlinear character of the adia-
batic elimination procedure which forms the basis of this
work. No such effects occur in the method of Ref. [5];
the effects of Langevin noise in that case are to simply
alter the width of the probability density function. The
above effects may be observed in the equations governing
the switching curves in Figs. 3 and 5. The coefFicients
multiplying the hyperbolic functions in (22) are functions
of both the cross-coupling strength J as well as the multi-
plicative and additive noise variances. This leads to the
somewhat complicated equations (23a) and (23b) describ-
ing the phase diagram (Fig. 2). The situation is markedly
simpler in Ref. [5] in which the coefficient of tanhui in-
volves only the nonlinearity parameter and the coefFicient
of tanhu&sech u& involves only the multiplicative noise
variance. The switching curve in Ref. [5] does not de-
pend at all on the additive noise variance, unlike the situ-
ation encountered in this work.

It is important to point out that we have not addressed
the dynamical evolution of the probability density func-
tion. It is well known that in the neighborhood of a criti-
cal point one observes "critical slowing down, " i.e., the
system responds on a time scale that becomes progres-
sively larger as one approaches the critical point. Such

behavior has indeed been observed near a noise-induced
critical point in some exactly solvable model systems [16].
The study of such behavior typically focuses on a compu-
tation [9,14] of the first eigenvalue A, , of the Fokker-
Planck equation. This eigenvalue describes the long-time
behavior of the system and may be identified with a
"switching rate, " i.e., the rate at which the system under-
goes transitions between the most probable states
(characterized by the peaks of the probability density
function). For the system at hand, if A, i is small and the
time scale (=A,

&
) on which one observes noise-induced

transitions is much greater than the time scale that de-
scribes hysteresis, then the additional noise-induced
steady states are indeed physical, manifesting themselves
as multivaluedness in the mean value ( u i (t) ). A detailed
consideration of these issues is beyond the scope of this
paper.

Finally, we have shown that the simple model of a sin-
gle Hopfield-like electronic element that formed the basis
of our earlier work [5] is indeed consistent with the re-
sults of this work. Specifically we see that starting with
the X-body Hopfield model (in which ab initio self-
coupling terms are included) we may obtain, in a self-
consistent manner, precisely the potential that was dis-
cussed in Ref. [5]. Both Langevin as well as multiplica-
tive fIuctuations have been included and it has been as-
sumed that the cross-coupling terms are very weak.
Moreover, it is assumed that the fluctuations in the self-
coupling terms (arising from the feedback) are negligible
in the "fast" neurons. This assumption is reasonable
since these neurons are assumed to have attained their
steady-state values on a faster time scale than the "slow"
neuron; this assumption is the basis of the slaving princi-
ple.
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