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Characterization of Rydberg transitions in the L2 3 absorption spectra of SF6 and PF,
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High-resolution photoabsorption spectra of SF6 and PF, at the L& 3 edge in the gas and solid phase
have been measured with synchrotron radiation. A reduction in the intensity for some of the higher-
energy transitions in the condensed phase indicates significant Rydberg character associated with the
terminating orbitals. This observation is consistent with the assignments suggested by multiple-
scattering Xa calculations and suggests that Rydberg orbitals can penetrate into the potential barrier
created by the electronegative atoms.

PACS number(s): 33.20.Rm, 31.20.Sy, 33.70.Jg

The pre-edge features in the inner-shell absorption
spectra of molecules are potentially useful for providing
important information on the local electronic and geome-
trical structures. Unfortunately, an accurate assignment
of the electronic excitations in this region is a nontrivial
task, and it is often difficult to reach a consensus on the
interpretation of the spectra. A recent example is the
dispute on the character of the weak transitions near the
vicinity of the ionization threshold in the gas-phase E
and Lz 3 photoabsorption spectra of SiC1~ [1—4]. Two
diff'erent assignments have been proposed [1,3]. It is a
general conception that electronegative atoms surround-
ing a molecule will create an efFective potential barrier di-
viding the molecule into an inner-well and an outer-well
region [5]. The diffuse Rydberg orbitals are expected to
reside in the outer-well region and will not contribute
significantly to near-edge excitations [1]. This conjecture,
however, contradicts the rich pre-edge structures ob-
served in SiClz [1,2]. To circumvent this problem, these
transitions are attributed to excitations into antibonding
orbitals where the degeneracy is lifted through Jahn-
Teller distortion of the tetrahedral molecule in the ionic
state [1]. A subsequent theoretical local-density-
functional multiple-scattering (MS-Xa) calculation of the
absorption spectrum gave a diff'erent interpretation [3].
It was shown that low-angular-momentum Rydberg wave
function can penetrate into the inner-well region and ac-
quire some valence character, which enhances the oscilla-
tor strengths of the transitions. The unusual nature of
the transition has prompted a more extensive ab initio
study [4], which also supports the existence of Rydberg-
valence mixed orbitals, although details of the assignment
are still debatable [4].

In an attempt to identify the Rydberg character of the
transitions in these highly halogenated molecules, this in-
vestigation reports and compares the high-resolution Lp 3

absorption spectra of gaseous and solid SF6 and PF5. It is
well known that the signature of a Rydberg transition is a
drastic broadening and reduction in the intensity from
the gas to the condensed phase [6] due to the extended

nature of the difFuse orbital. In contrast, the intensity of
the valence-valence transition will show little change.
SF6 and PF& were chosen for this study because fIuorine
is the most electronegative halogen atom and, therefore,
the repulsive potential barrier efFect will be most prom-
inent in these compounds. A similar study on SiC14 has
been reported recently [7].

The photoabsorption spectra for SF6 and PF5 were
measured at the Canadian Synchrotron Radiation Facili-
ty at the Synchrotron Radiation Center, University of
Wisconsin, Madison, using a Mark II Grasshopper
monochromator [8]. The resolution of the grating at the
energy region 150—200 eV was better than 0.4 eV. The
absolute energy scale was calibrated against the absorp-
tion spectra of gaseous and solid argon. The gas-phase
spectra were measured in the transmission mode using a
gas cell described previously [9]. Solid SF6 and PFs were
obtained by slow condensation of the gases onto a copper
plate attached to a liquid-helium cryostat at 10 K. It is
important to note that at low coverage if the rate of con-
densation is very slow the amorphous structure is favored
and the absorption peaks become very broad [10]. The
crystalline solid is obtained by careful adjustment of the
condensation rate and the coverage [10]. The absorption
spectra of the solids were recorded with the total-
electron-yield method [11]. The Lz 3 photoabsorption
spectra for gaseous and solid SF6 and PF5 are shown in
Figs. 1 and 2, respectively.

The 1.2 3 absorption spectrum for gaseous SF6 has been
reported many times [9,12,13] and requires no detailed
description. The pre-edge absorption spectrum is rather
simple with one strong spin-orbit split peak (1,1 ) below
the S 2p edge (lower curve in Fig. 1). Two or more [14]
sharp transitions of much weaker intensities (2,3) are lo-
cated just below the ionization threshold. There is no
disagreement on the assignment of the strong pre-edge
peak (1,1') to the inner-shell S 2p (t&„) to antibonding
(a

&
) transition. The assignment for the weaker struc-

tures 2 and 3 is less definitive. In view of the narrow line
shape and the very low intensity, it is reasonable to assign
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gain oscillator strength from the mixing with valence an-
tibonding orbitals. A similar observation was made in a
recent study of the Si 2p core-level excitations in con-
densed SiC14 [7]. From the behavior of the absorption
peaks in the condensed phase, it is also concluded that
the high-lying pre-edge absorption is best described as
one-electron core-Rydberg transitions, and there is no
need to invoke multielectron processes such as transitions
to localized, doubly excited states [4]. The results from a

recent discrete-variational Xa study on SiC14 [17] are in
full agreement with the MS-Xu calculation [3] and sup-
port the assignment made here.
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