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A recently developed approach for the direct calculation of electron density is implemented for polya-
tomic molecules: benzene and a tetrapeptide with four glycine residues. The method uses the density as
the basic variable, divides a system into subsystems, and determines the density for each subsystem. Itis
found that the method is capable of describing the electronic structure with accuracy comparable to the
Kohn-Sham method. This substantiates the hope for ab initio calculations of large systems beyond the

reach of conventional methods.

PACS number(s): 31.10.+z, 31.15.+q, 71.10.+x, 71.45.—d

For large and complex systems, first-principles
electronic-structure calculations can provide reliable
structural information, insight and prediction. However,
despite the success for small systems, current approaches,
including the Hartree-Fock-based method [1] and the
Hohenberg-Kohn-Sham density functional theory, [2-8]
encounter insurmountable difficulty associated with large
molecules. This comes from the dependence on a set of
single-electron orbitals as the basic building blocks for
the wave function in the Hartree-Fock theory and for the
total electron density in the Kohn-Sham (KS) theory.

In an effort to develop a theory capable of handling
large systems, we have recently constructed a ‘“divide-
and-conquer” method for direct calculation of the elec-
tron density [9] based on the Hohenberg-Kohn density
functional theory [2—8]. The method uses the total elec-
tron density as the basic variable, in the spirit of the
Thomas-Fermi theory [2-4]. It employs the following
strategy: divide a large system into small subsystems and
then calculate the total energy and the density as the
sums of the subsystem contributions. Thus, the building
blocks are the subsystem electron densities, instead of the
global Kohn-Sham single-electron orbitals; each subsys-
tem density is determined with computational effort simi-
lar to the Kohn-Sham calculation for the subsystem
alone. The final synthesis of the subsystem results is a
simple three-dimensional integration.

Two questions about the method need answers: how
accurate and how efficient is the method when applied to
large molecules? Earlier calculations for the diatomic ni-
trogen molecule demonstrated its ability to describe
chemical bond formation [9], a decisive advance beyond
the Thomas-Fermi-type theories, which also use the elec-
tron density as the basic computational variable but
which fail to describe any chemical bond [2-4].

In this report, we address the first question and exam-
ine the accuracy of the method in calculations for polya-
tomic molecules: benzene and a tetrapeptide with four
glycine residues. For the exchange-correlation energy
functional, we use the Xa approximation and do not ex-
pect our conclusions to depend on the detail of this func-
tional. We find that the method is capable of describing
the electronic structure as accurately as the linear com-
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bination of atomic orbitals (LCAO) KS method.

As described in the previous paper [9], to perform a
calculation using this approach, one has to choose (i) a
division of the molecule into subsystems and (ii) a set of
local basis functions to represent the KS Hamiltonian for
each subsystem.

To divide a molecule, we define the general normalized
partition function for subsystem a as

pa(r>=ga(r)/zg“’<r) , ()
with
g4r)=3 [pdr—R ]*. )
A€a

The summation in Eq. (1) is over all the subsystems, while
the summation in Eq. (2) is over all the atoms in subsys-
tem a. pg‘( [r—R A |) is the spherical atomic density for
atom A located at R 4; accurate KS atomic densities are
used throughout this work. The partition function of Eq.
(1) is thus a simple extension of what was used in our pre-
vious paper [9].

The atomic orbitals, which are used to form the local
basis functions for each subsystem and which are also
used in LCAO KS calculations, are constructed and opti-
mized as follows.

First, we use the accurate spherical atomic KS orbitals
as the minimal basis set for molecular calculations; we
denote this set as S, meanings a single function for each
orbital. This is essentially the same as the minimal set of
other KS molecular calculations [10,11]. But, in order to
facilitate the construction of atomic orbitals beyond the S
set, we solved self-consistently the atomic KS equations
using a linear combination of the following orthogonal
functions [12] as approximate radial wave functions:

L (ry=e M ILEYYAr), n=0,1,... .M —1, (3)

where [ is the angular momentum of the orbital, A is a
scale factor, the L* are the associated Laguerre polyno-
mials, and M is the number of functions. This basis set is
complete if M—co. We use M =30 for all atoms,
A=4.0, for H atoms and A=7.0 for other atoms, produc-
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ing total (spherical) atomic KS energies having 8 or 9 di-
gits agreeing with corresponding converged numerical
values.

Second, for each atomic angular momentum / that is
occupied, one additional function is added to the S set to
form a D set, meaning double functions. The additional
function is constructed by projection and optimization:
for each I, we project out the components of the S set in
the finite M-dimensional space. In the remaining smaller
space, the lowest-energy radial eigenfunction of the po-
tential —Z* /r is chosen to add to the S set to form the D
set; Z* is nonlinearly optimized by the KS (Harris func-
tional [13]) calculations for closed-shell diatomic mole-
cules at equilibrium bond length (H, for H atom, C, for C
atom, N, for N atom, and CO for O atom).

Third, the polarization basis set P is the D set plus one
function of the angular momentum ! =/, +1, where /.
is the angular momentum of the highest occupied atomic
orbital. This additional function is just a hydrogenic
function approximated as a linear combination of ¢, with
a Z* optimized by the diatomic calculations. Compared
with the corresponding Slater basis set, the S, D, and P
basis sets are more optimal in calculated KS diatomic en-
ergies.

Finally, the projection and optimization procedure can
be repeated again to add more functions to each /. A set
(432) constructed in this manner is used in our calcula-
tions; it contains 4s, 3p, and 2d functions for all atoms
(except 3s and 2p functions for H atoms). Further details
of the atomic basis set construction are to be published
elsewhere.

Other technical details in our molecular calculations
are the following: all the multicenter three-dimensional
integrations are carred out by the method of Delley [11],
with a scaled generalized Gauss-Laguerre quadrature rule
for the radial coordinates [14]; the electrostatic potential
is calculated by the partition method of Delley [11]; and
the exchange-correlation energy functional used both in
atomic and molecular calculations is the x, approxima-
tion with ¢=0.7.

Tetrapeptide of four glycine residues. We use this mole-
cule of 31 atoms (Fig. 1) to compare the accuracy of our
method with the LCAO KS method. The non-self-
consistent Harris functional calculations [13] are per-
formed for both methods; this simplifies the calculation
and the comparison. The only difference between the two
methods is in the approximation to the value of 23 V"%,
where N is the number of electrons and g, is the ith eigen-
value of the Kohn-Sham potential generated by the
molecular density that is the sum of all the atomic densi-
ties. The molecular geometry is fixed in a fully extended
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zig-zag flat sheet: repeating units have the same
geometry; the N—H bond length is 1.015 A, and the
C—H bond length is 1.091 A, taken from the experimen-
tal values for NH; and CH,; four pairs of hydrogen
are out of the plane, each bond between the backbone
atom and the out-of-plane hydrogen forming a 120°
angle with the molecular plane; the bond angle Z(H—
N—H)=106.6".

The molecule is divided into 13 subsystems, each con-
taining one backbone atom and the hydrogen or the oxy-
gen atoms attached to the backbone atom.

Before we describe the local basis sets, let us introduce
the concept of buffer atoms: buffer atoms of subsystem a
are defined as the atoms that are not part of, but are in
the neighborhood of, subsystem a and that contribute
their atomic orbitals to the local basis set of subsystem a
to better represent the KS Hamiltonian in its density cal-
culation. The use of a local basis set for subsystem « in
place of the full atomic orbital set introduces a trunca-
tion, the effects of buffer atoms are to lessen the trunca-
tion error. This was suggested in our previous paper [9].

In our calculations for each type (S, D, or P) of atomic
orbital, we use six schemes for the local basis sets:
scheme O for each subsystem is just the union of atomic
orbitals from all the atoms in the subsystem considered,
with no buffer atoms; scheme 1, in addition to scheme O,
includes as buffer atoms the first-nearest-neighbor atoms,
which are connected to the subsystem by one chemical
bond; scheme 2, in addition to scheme O, includes as
buffer atoms up to second-nearest-neighbor atoms, which
are connected to the subsystem by up to two chemical
bonds; etc. The most extensive is scheme 5, including as
buffer atoms up to fifth-nearest-neighbor atoms.

The calculated Harris-energy-functional results are
summarized in Table I. The second column contains the
LCAO KS Harris functional energies; the values in the
third column, Exg—E (432), are lower-bound estimates
of the error of the LCAO KS energy [E(432)
=898.91349 a.u. is the result of the basis set (432) de-
scribed in the preceding text].

From Table I we note that (i) scheme 0, not having any
buffer atom, results in substantial deviation from the
LCAO values; (ii) scheme 1, having first-nearest-neighbor
buffer atoms, already reduces the errors of the present
method to the values that are in magnitude smaller than
or similar to the errors inherent in the corresponding
LCAO results (second column); (iii) further use of buffer
atoms in schemes 2-5 continues to decrease the deviation
from the corresponding LCAO results. Such a decrease
is particularly fast for the calculations with minimal
atomic orbitals (S)—the deviation is practically nil when
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FIG. 1. The tetrapeptide, with bond angles and bond lengths (A) for the backbone indicated.
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up to fifth-nearest-neighbor buffer atoms are included.
This has to do with the fact that the atomic orbitals in
the S set are shorter ranged than in the D and P sets. Itis
satisfying to see two very different calculations converge.
(iv) There are two numbers in each combination of atom-
ic orbitals and construction schemes of the local basis sets
for the subsystems. The first number is from the calcula-
tion at =100 a.u. (B being the inverse temperature for
the Fermi function); the second is from the calculation at
=200 a.u. They do not differ in a significant way. This
establishes the reliability of calculations at finite value of
B, instead of the infinite value corresponding to the
absolute-zero temperature.

We have also investigated the use of two other forms of
partition functions, different from Eq. (2); they are

gUN=3 4eapd(It—R4),
g =3 4eapdlt—R ) /Ir—R 4| .

Our observations about Table I equally apply to the re-
sults with these two partition functions. The differences
between results of different partition functions decrease
with the increasing use of buffer atoms. Our current pre-
ferred choice is Eq. (2), which give an overall slightly
smaller derivation from the LCAO result.

These calculations confirm that the new method can be
as accurate in calculating total energy as the LCAO KS
method, as long as a certain degree of buffer atoms are
used.

To appreciate the distinction and the efficiency of our
method, consider the following. The LCAO KS pro-
cedure requires construction and diagonization of one
matrix of dimension: 99, 181, and 308, respectively, for
S, D, and P atomic-orbital sets. The method we use re-
quires construction and diagonization of 13 matrices of
dimensions: 11-20, 20-36, and 33-56, respectively, for
S, D, and P atomic orbital sets, all with scheme 1 for the
local basis set for subsystems (which gives comparable re-
sults to the LCAO KS calculations).

Benzene. The foregoing study encourages the use of
only the first-nearest-neighbor buffer atoms in the con-
struction of the local basis sets for subsystems. We now
investigate this idea in a stringent test: benzene, an
aromatic compound. Benzene is well known for its com-
pletely delocalized 7 bonds that cause its aromaticity.
The application of the procedure used here means that
completed delocalized 7 bonds no longer contribute to
the calculation of the density and the energy. Can the
method stand such a test?

We divide the benzene molecule into three subsystems,
each having two connected carbon and two hydrogen
atoms attached to the carbon atoms. Two first-nearest-
neighbor carbon atoms are included in the local basis sets
as buffer atoms for each subsystem. Total self-consistent
energies as functions of the symmetric stretching of the
C—C and C—H bonds are plotted in Figs. 2 and 3. All
calculations are done with the inverse temperature
B=100 a.u. We observe that the deviations of our
method from the KS method are all within the error of
the LCAO KS solution, and that these deviations de-
crease with the use of better atomic orbitals. The method

TABLE 1. Comparison of errors in total energies (a.u.) via Harris functional by the present work (PW) for the tetrapeptide, with three atomic basis sets and six schemes of using
buffer atoms. The numbers 0,1,...,5 on top of the columns indicate the schemes. Eg is the LCAO energy with the corresponding atomic basis set. Two errors for each combination

200 a.u. (Numbers in square brackets are the powers of ten.)

100 a.u. and the second for B

are given: the first one for
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FIG. 2. Comparison of energies as a function of the C—C
bond length for benzene between self-consistent calculation by
the LCAO Kohn-Sham method (dashed lines) and by the
present method (solid lines). The C—H bond length is fixed at
experimental value of 1.084 A. The curves for both methods,
from top to bottom, are, respectively, the results of S, D, and P
atomic orbital sets.

can accurately describe an aromatic system, even without
the use of completely delocalized 7 bonds.

The confirmation of accuracy being the focus, we do
not address the efficiency. Our computer program, coded
from scratch, is still in its developmental phase. A com-
parison of timing would be more meaningful at a later
stage.

We anticipate the implementation of the method on
coarse-grained massively parallel computers with each
processor handling a subsystem of several atoms. Har-
nessing the additive power of many such processors

FIG. 3. Comparison of energies as a function of the C—H
bond length. The C—C bond length is fixed at experimental
value of 1.397 A. Other specifications are the same as in Fig. 2.

would tremendously enhance the capacity of the ab initio
quantum theory in its application to large systems.
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