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We analyze the pairwise atomic states that are produced when a system of two atoms is irradiated by a
squeezed vacuum field. Included in the analysis is the three-dimensional squeezed vacuum field pro-
pagated over a solid angle Q, the interatomic separation r,, the microscopic Fabry-Pérot cavity, and the
role played by an imperfect coupling between the cavity modes and squeezed input modes. It is shown
that the steady state of the system in free space is the pairwise atomic state when the atoms interact with
a perfect squeezed dipole wave and the interatomic separations are much smaller than the resonant
wavelength (Dicke model). With the interatomic separations comparable to the resonant wavelength or
with an imperfect squeezed dipole wave, the system decays to a state that is not the pairwise atomic
state. The effect of squeezed vacuum field on the system is now manifested by the selective population of
the collective atomic states. For atoms inside a microscopic Fabry-Pérot cavity the pairwise atomic
states are produced with an imperfect squeezed dipole wave. This can occur even for small solid angles
Q. However, this effect is sensitive to mode matching between internal and external fields. It is shown
that with a Gaussian profile for the input squeezed modes the steady state is not the pairwise atomic

states, but a significant reduction of the population in the symmetric state still can be observed.

PACS number(s): 42.50.Dv, 42.50.Fx

I. INTRODUCTION

The interaction of squeezed radiation with atomic sys-
tems has been attracting considerable attention during
the past few years [1-6]. In the field of atomic spectros-
copy, the introduction of a squeezed vacuum field to a
number of classic problems has led to predictions of nov-
el and unusual effects. New phenomena predicted in the
interaction of a squeezed vacuum field with atomic sys-
tems have included the inhibition of atomic phase decays
[1,2], a well-defined phase in a squeezed pump laser [3],
subnatural linewidth spectroscopy [4], two-photon ab-
sorption [5], and squeezing-induced population inversion
[6]. The results show that there exist some essential dis-
tinctions between a squeezed field and the ordinary vacu-
um field. The distinctions originate from the fact that the
squeezed field contains strong internal two-photon corre-
lations, which can be produced by a parametric amplifier
[7]. In a parametric amplifier an intense laser beam at
frequency 2w—the pump beam—illuminates a suitable
nonlinear medium. The nonlinearity couples the pump
beam to other modes of the electromagnetic field in such
a way that a pump photon at frequency 2w can be annihi-
lated to create strongly correlated pairs of photons at fre-
quencies wte. These correlations lead to the unequal
partition of the quantum noise between two quadrature
components E(¢) and E,(t) of the electromagnetic field
E(t) emitted by the parametric amplifier. In the above
works [1-6] an effective two- or three-level atom in-
teracted with such a squeezed vacuum field.

The interaction of a collection of atoms with the
squeezed vacuum field also leads to a number of novel
and interesting phenomena. These show some very in-
teresting deviations from the ordinary decay and ordi-
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nary emission spectra. In particular, the multiatom reso-
nance fluorescence spectrum, apart from a subnatural or
supernatural linewidth of the components [8] observed in
a single atom spectrum, demonstrates an asymmetry un-
der off-resonance excitation by an external coherent laser
field [9]. The two-atom Dicke model interacting with a
squeezed vacuum field may generate a new class of states,
which satisfy the equality sign in the Heisenberg uncer-
tainty relation for angular-momentum operators [10,11].
Moreover, in the squeezed vacuum field the total atomic
population can decay to a pure state in which the atoms
are populated in pairs. This pure state named as a pair-
wise atomic state [12] is also known as two-atom
squeezed state [13]. In this state the collective atomic
states are not all excited [12]. A pair of two-level atoms
separated by a distance r;, that is much smaller than
their resonant wavelength (Dicke model) can be
represented by a single three-level system [14], with the
ground state |1), the intermediate superradiant state
[+ ), and the upper state |2). When this system is in the
pairwise atomic state, the superradiant state |+ ) is not
populated [12]. The system is then in the state which is a
coherent superposition of the ground state |1) and the
upper state |2).

To obtain the pairwise atomic states an ideal coupling
between the atoms and the squeezed vacuum field has
been assumed. In this case the atoms interact only with a
one-dimensional multimode squeezed radiation field, with
no interactions or spontaneous emission into ordinary
(unsqueezed) vacuum modes. This assumption, however,
may prove difficult in experimental realization. It would
be realized in practice using some type of waveguide or
generating of a squeezed perfect electric dipole wave. In
atomic spectroscopy, however, the experiments usually
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use atomic-beam methods [15,16], where the atoms in-
teract with an incoming wave that is not a perfect electric
dipole. In this case the atoms interact not only with the
incoming field, which can be in the squeezed state, but
also with the ordinary vacuum modes. The presence of
the unsqueezed modes can completely mask the effects in-
duced by the squeezed vacuum field [1,6]. Recently, Par-
kins and Gardiner [2] have discussed the inhibition of
atomic phase decays by squeezed light, and have shown
that this difficulty can be eliminated by use of a micro-
scopic Fabry-Pérot cavity. In the microscopic Fabry-
Pérot cavity a strong selection of radiation modes cou-
pling to atoms within the cavity is possible [17], and by
squeezing of these selected modes we can achieve an
effective squeezed vacuum-atom coupling despite the
presence of unsqueezed modes.

In this paper we consider the interaction between two
two-level atoms and the three-dimensional vacuum field
in which some modes can be squeezed. We discuss in de-
tail the possibility of obtaining an experimental realiza-
tion of the pairwise atomic states. As it has been men-
tioned earlier the pairwise atomic states are manifested
by zero steady-state population of the superradiant state
|+ ). Because fluorescence from the state |+ ) is propor-
tional to the population of this state, one can observe this
effect by monitoring the intensity of the fluorescence
from the state |+ ). In Sec. IT we derive the master equa-
tion for the reduced intensity operator p of the two-atom
system interacting with the incident squeezed vacuum
field. We assume that the atoms are coupled to the
three-dimensional field and the incident squeezed vacuum
field is propagated over a solid angle . We also allow
spontaneous emission into the unsqueezed modes. In Sec.
III we obtain solutions for the steady-state population of
the superradiant state | +) when the two-atom Dicke
model in free space interacts with the squeezed vacuum
field. In Sec. IV we discuss the effect of the interatomic
separation 7, on the population of the state |+ ), and on
the pairwise atomic state. In Sec. V we obtain solutions
for the population in the state |+ ) when the atoms in-
teract inside the microscopic Fabry-Pérot cavity with the
squeezed vacuum field. We assume a perfect matching
between the incident squeezed modes and the cavity
modes. In Sec. VI we examine the effect of an imperfect
matching on the pairwise atomic states. We assume that
the incident squeezed field has a Gaussian profile. In Sec.
VII we summarize our results.

II. MASTER EQUATION

We consider a system of two identical atoms, separated
by a distance r;, and interacting with the quantized mul-
timode three-dimensional field. Each atom is modeled as
a two-level system with the ground state |1); and the ex-
cited state |2),- (i=1,2). The Hamiltonian of the system
in the electric dipole approximation has the following
form:

H= HO+Hmt ’ (1)

with

Z. FICEK 4

2
Hy=1#w, 3, [SH

—sW1+#c 3 [ Ikla'(k,s)a(k,s)d’k
i=1 B

(1a)

and
~i535 3 S [l setratios)st)
s i=lmn=1
m¥#n
+H.c.1d%k , (1b)
where o, is the atomic resonance frequency, and
S =|m), (n| are pseudospin operators for the ith
atom satisfying the well-known commutation relations
S50, 1= 1S58, =S58, 18 - @
In Eq. (1), p,,, ={m|u|n) is the electric dipole mo-

ment transition matrix element between the atomic states
Im) and |n), s is the polarization index (s=1,2), and
g, (r;) is the appropriate mode function, evaluated at the
position of the ith atom. This mode function describes
coupling between the atoms and the quantized three-
dimensional electromagnetic field, and can have a
different structure depending on the configuration of in-
teraction between atoms and the field.

The operators a(k,s) and aT(k,s ), which appear in Eq.
(1), describe a three-dimensional electromagnetic field,
which can be in a squeezed state. In the general case
such a three-dimensional field can be defined by the com-
mutation and correlations relations [6,18]

la(k,s),af(k’,s")]=8%k—k "), ,
(a¥(k,s)a(k’,s"))=n(k,s;k’,s") , (3)
(a(k,S)a(k’,S’))=m(k,S;k',S') .

In the above equation n(k,s;k’,s’) and m(k,s;k’,s’) are
photon number and squeezing densities, respectively, in
momentum space, whose explicit form depends on the
preparation and propagation of the squeezed vacuum
field. Let us assume that the squeezed field propagates
along the z axis and only those modes whose propagation
vectors k have an angle 0, with the z axis less than a
maximum value 6 are squeezed. All other modes are not
squeezed. This can be achieved by defining the squeezing
parameters n(k,s;k’s’) and m(k,s;k’,s’) as [2,6]

n(k,s;k’,s" ) =N(k)UMK)U(k")8(k—k')/k?
4)
m(k,s;k’,s ) =M(K)U,(K)U,(k")8(2ky—k —k') /kk’ ,

where ky=w/c, where o is the carrier frequency
of the squeezing; N(k) and M(k)=MQ2k,—k)
=|M(k)lexp(ip,) are parameters characterizing the
squeezing such that |[M(k)|><N(k)[N(k)+1], where the
equality holds for a minimum-uncertainty squeezed
states, and ¢, is the phase of the squeezed vacuum field.
In Eq. (4), U,(k) is defined as a square normalized mode
function of the input squeezed field that includes only
directions k confined to a solid angle Q;, =(8,,¢,) with
equal amplitude. This mode function depends on the an-
gle of propagation, and can have a different structure de-
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pending on the method of propagation and focusing of
the squeezed field. In particular, it may be chosen to op-
timize the coupling between the atoms and the input
field. In this case, the mode structure of the squeezed
field incident on the atoms is perfectly matched to the
mode structure g, (r), which describes coupling of the
three-dimensional field with the atoms. With the optimal
matching the mode function U,(k) can be chosen as

[NMK)] V2 * gt (ry) for 6, <6

0 for 6,>6, (5)

U (k)=
where r,=(r\",r! ry 9,r!9) is a coordinate of a point at
which the squeezed field is focused. In general, ry can be
different from a point r; at which ith atom is located. In
Eq. (5), NM(k) is the normalization constant defined so
that U, (k) is dimensionless, with

NE)= [ d0, 3 Ipgis(ro)l* (6)

where ) is the total solid angle over which the squeezing
is incident.

A master equation for the reduced density operator p
of the two-atom system interacting with the quantized
three-dimensional electromagnetic field is derived from
the Hamiltonian (1). It can be derived using any of a
number of traditional techniques [19,20].

We apply a Born-Markov method [21-23] adapted to
the situation of a nonstationary reservoir. The time evo-
lution of the density operator W(t) of the atom-field sys-
tem in the interaction picture obeys the equation

iﬁ%W’(t) [HL (), win)], @)
where H,;, is given by Eq. (1b), and the superscript I
stands for operators in the interaction picture.

Formally integrating Eq. (7) gives

Iy — 7l A e, I
wlt) W(0)+iﬁfodt[ I, wlt)]. (8)

Substituting this solution into the right-hand side of Eq.

J

i)+ = p deTrR[H,m(t (HL (t—7),pg(0)

at

I(t._
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(7), and taking the trace over the reservoir states of each
side of Eq. (7), we get

‘ﬁ‘gt‘()

=Trg[HL (1), W(0)]

+—f dt'Trg [HL (O, [HL (), Wi, 9
where p/(t)=Trg W/(t) is the reduced density operator of
the atomic system.

We choose an initial state with no correlations between
the atomic system and the squeezed field, i.e.,
W(0)=p(0)pg (0), where pg(0) is the density operator
for the field reservoir. We also assume that the interac-
tion Hamiltonian satisfies the condition [22,23]

Trg[HL, (t)pr(0)]= (10

This can easily be arranged. The left-hand side of Eq.
(10) is a system operator. If the left-hand side of Eq. (10)
were nonzero, the system Hamiltonian could be altered to
include part in H,, so that when added to the left-hand
side of Eq. (10) zero occurs. The condition (10) can apply
even in the case where the freely evolving reservoir densi-
ty operator pg(t) changes with time, as occurs for the
squeezed reservoir [1-4,19]. On the basis of these as-
sumptions Eq. (9) reduces to

ap’u ﬁzfdt Trg [HE, (1), [HE (¢, WH(t)]]=0 .

(11)

We now employ the Born approximation in which the
atom-field interaction is supposed to be weak [24,25].

With this approximation we can write
Wit =pi(t')pg(0), (12)

and after changing time variable to t'=¢t—7, Eq. (11)
simplifies to

)11=0. (13)

After a Laplace transform over time ¢, with (1b) and (3), Eq. (13) leads to (ignoring the superscript I)

p(0)—zp(z)= [n,(z)—iQM(2)]{[
ij

+ 3 [ (2)+i QM ()]
Lj

Sj+’P(z)Si+ 1+ (8" p(z

S;.p(2)S; 1+ (S plz

%S}

.87 1)

+ 2 Bij(2)p(2)SS;* +8; 8 p(z)—28 p(2)S;]

+ 2 (2 v (2)]p(2)S ST +8F

+i 2[9,,(2 +20{M(2)][S*87,p(2)]+i 3, Q,(2)[SFS

S plz)—28;p

(2)8;"]

)] . (14)

ij

i7j
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Here p(z) is the Laplace transform of p(¢), and the parameters are given by
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QiM(z)=- zf [ g () 11 gies (1)) Gre P kA
(15)
(k—kgy) (kot+k)

M=~ 3 [ [ 105k s ) pgis(x) [b-gieor,)] d’kd’k’,

(z/cP+(k—kol?  (z/¢)*+(ko+k)?

(k—kq) B (ko+k)
(z/¢P+(k—ko)? (z/¢)+(ky+k)?

1 . 2
Q,(z) p ; flﬂ 8k (17)]

Jd3k ,

(k—kg) (ko+k)
(z/c)+(k—ky)? (z/¢)+(ky+k)?

3

>

1 * *
Q== 3 [Ip* gl o) llpgis(r;)]

where z is the complex Laplace transform parameter, and g=p,,. To obtain Eq. (14) we have used the commutation re-
lations (2) and made the rotating-wave approximation [26], i.e., we neglected rapidly oscillating terms with frequency

2w, (the so-called counterrotating terms). In Eq. (14) we have also introduced a shorter notation for the atomic opera-
tors, i.e.,

S‘+=S(2i1):\2>ii(”’ Sivz(sﬁ—)T . 16

!

Now we employ the Markov approximation. This neglects retardation effects [27] and is valid in the long-time limit
t >>wq !, providing this is short compared with the typical relaxation times of the system. Moreover, we assume that
the bandwidth of squeezing is to be sufficiently broad that the squeezed field appears as §-correlated squeezed white
noise to the atoms. With these approximations we can replace the 7(z), B(z), y(z), and Q(z) parameters by their limit-

ing values as z—0+. After this, and using Eq. (4), the inverse Laplace transform of Eq. (14) leads to the master equa-
tion

3
—(,5 ==M 3 n,([S",pS; 148 p, 57 ) —M* 3 n5(S7p,S; 148 ,pS 1)
iLj

iJj

—N 3 B,(pS;7S;" +87 8 p—28"pS; )= 3 (y; +NB;)pS;* S +81S7p—257pS")—i 3 Q,[S*S; .p],
ij ij iJj
i#j

(17)
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where M =M (k,), N=N(k,), and the coefficients in the
equation are

M= ﬂf% fndﬂk ? U, (k)[p- gy (r;)] ]

X fndﬂk,§ Uk pege o(r)] |
ﬁ,-,-=ff—‘z) fndﬂkgvsﬂk)m*g:s(rin‘

X fndﬂk,§ US,(k')[p-gk,,s,(r,.)]} , (18)
vo="5 [ ao, S (8L Npge))]
in:_%fdk e l?:ITcTL kJ:k0

X [d, 3 [p* gk (r)][pgi(r))] .

In the derivation of Eq. (17) we have assumed that the
carrier frequency of the squeezed vacuum field is in reso-
nance with the frequency o, of the atomic transition, i.e.,
wo=w. Moreover, we have ignored the parameters QﬁjM ),
Q™ and Q, as they are negligibly small [28] compared
to the Q;; term, which represents the dipole-dipole in-
teraction between the atoms.

Our master equation (17) is fundamental for the theory
of radiation of two atoms interacting with a three-
dimensional field in which part of the modes can be
squeezed. This is quite general, in terms of mode func-
tions g, (r) and U (k), although it requires that the
correlation functions of squeezed modes be much broad-
band than the decay constants of the system. For the
normal vacuum (N =|M|=0) it is the same as those de-
rived by Agarwal [20]. For isotropic systems, in which
all modes coupled to the atoms are squeezed, and for the
interatomic separations much smaller than the resonant
wavelength (n,;=p;;=y,;;=v), the master equation (17)
reduces to those obtained by Agarwal and Puri [12]. In
the following sections we apply the master equation (17)
to different theoretical and experimental schemes which
can be used to produce the pairwise atomic states.

III. TWO-ATOM DICKE MODEL IN FREE SPACE

When two identical two-level atoms are separated by a
distance r, that is smaller than their resonant wave-
length A, cooperative decay phenomena can occur.
Dicke [14] has found that the exchange of photons be-
tween the two atoms produces new eigenstates with new
decay rates. In the framework of these states, called as a
collective atomic states, the two-atom system is
equivalent to a single four-level system (Fig. 1) with one
upper state [2)=][2),|2),, one ground state
[1Y=]1 >1|1 )2, and two intermediate states: a superradi-
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FIG. 1. Energy diagram for the collective atomic states,
showing the frequency shift Q,, and decay constants 2(y £y ,).

ant state |+)=(1/v2)(|2),/1),+[1),[2),), and a
subradiant state |—)=(1/v2)(|2),[1),—[1),[2),),
where |2); and |1),; denote, respectively, the excited and
ground states of the ith atom. The triplet states |1),
|+, and |2) are symmetrical, while the single state | — )
is antisymmetric under the exchange 1<»2. When the in-
teratomic separation r;, is much smaller than the reso-
nant wavelength (kor;, <<1), the antisymmetric state
| — ) is completely decoupled from the triplet states, and
only symmetric states take part in the interaction with
the electromagnetic field. In this case, the two-atom sys-
tem is equivalent to the three-level cascade system, and is
referred to as the small-sample model or two-atom Dicke
model. In our model such a two-atom system interacts
with the squeezed vacuum field. The one-dimensional
calculation shows [12] that in the steady state and for a
minimum-uncertainty squeezed states the superradiant
state |+ ) is completely unpopulated. The two-atom sys-
tem is then in the pairwise atomic state which is a
coherent superposition of the states |1) and [2). Here
we consider the steady-state population of the superradi-
ant state |+ ) when the two-atom Dicke model interacts
in free space with a three-dimensional field, in which part
of the modes is squeezed. First, we derive general formu-
las for the coefficients of the master equation (17), when
the two-atom system interacts in free space with the elec-
tromagnetic field in which part of the modes is squeezed.
Next, we shall approximate these formulas to the two-
atom Dicke model.

For a three-dimensional multimode field in free space,
the mode function g, (r;) is defined as (in SI units)

PN Y T (19)
8is'\T; 2€0ﬁ(27T)3 ks 4
where €,, is the wunit polarization vector, and

r;=(r{",r}",r{") is a coordinate of the ith atom. We as-
sume that the mode function of the squeezed field is per-
fectly matched with the mode function (19). Moreover,
for simplicity, we assume that the squeezed field is pro-
pagated along the z axis, and is focused at a point
r,=(0,0,7)). The atoms are at the positions
r;=(r",0,7") and r,=(r{?,0,7!?)). With these assump-
tions, and with Egs. (5) and (19), the decay constants and
the dipole-dipole interaction term in (18) are
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X [do, 3 i@,

with

N'= f dﬂkzlu CME 2D

where I is the unit vector along the transition electric di-
pole moment u, and p=|ul|. In the derivation of Egs.
(20) and (21) we have assumed that the dipole moments of
the atoms are parallel. This is not an essential feature
since the dipole moments are induced by the electromag-
netic field. For a permanent dipole moments
configurations different from parallel are possible [29].
To carry out the integrations and the polarization sums
in Eqgs. (20) and (21) we can go over to a spherical repre-
sentation in which

fﬂdﬂszoedesinGk foz”dqak , (22)

and the unit orthogonal polarization vectors €, and €,
may be taken as [30]

€1 =(—cosb; cosg;, —cos, singy ,sinb; ) , 23)
23
€, = (singy, —cosgy,0) .

With a circular representation for the polarization vec-
tors, i.e.,

A 1 A AN
ek+:T/§(ekl+lek2) )
(24)
~ 1 AN A
ek—:—‘/_z(ekl—lekz) 5

and dipole moments fi= F(1,%+i,0)/V2 for Am=x+1
transitions, Egs. (20) and (21) after a change of integra-
tion variable (u =cos@, ) lead to

coefficient for spontaneous emission, r is the unit vector

along the r;;, and
N'=1[1—LK (cosB)(3+cos?0)] ,
A,~=—s—f du(l+u2)cos[k0(rz“’—rz”))u]
cosf

XJo(korl?(1—u?)172) (26)
f Au(1+u 2)sin[ko(rl—r)u ]
XJolkor(1—u?)17?) |

with J,, the zeroth-order Bessel function.

The coefficients y;; and (};;, which appear in Eq. (25),
are familiar in the theory of interaction between two
identical two-level atoms [14,31]. They depend on the in-
teratomic separation 7;; and describe collective properties
of the two-atom system For large interatomic separa-
tions kqr; goes to infinity, and then y; and Q; go to
zero, i.e., there is no coupling between the atoms For
the two-atom Dicke model, kyr; <<1, and then y;
reduces to v, and (};; reduces to the static dipole-dipole
interaction potential which, for korl-j —0, tends to
infinity.

The squeezed vacuum field introduces new decay
coefficients n,; and B;; which are due to the coupling be-
tween the atoms and squeezed imperfect dipole wave.
These parameters depend on the atom’s position relative-
ly to the point where the squeezed field is focused. More-
over, they depend on the angle 6 over which the squeezed
field is propagated. For small 6 (6 <<1), 4; and B; go to
zero, and then there is not any effect of the squeezed vac-
uum field on the atoms. In this case, the atoms interact
only with the ordinary vacuum modes. Otherwise, for
large 6 (6~=m) most of the modes coupled to the atoms
are squeezed, and then there is a strong effect of the
squeezed field on the atoms. When 6=, all modes cou-
pled to the atoms are squeezed, and then the atoms in-
teract with the perfect squeezed dipole wave. In this
case, there is not any spontaneous emission to the ordi-
nary vacuum modes.

Now, we use the master equation (17) with the
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coefficients (25) to calculate the population of the super-
radiant state |+ ). In this section we consider the two-
atom Dicke model in which interatomic separations are
much smaller than the resonant wavelength. Moreover,
for simplicity, we choose the center of coordinates at the
point where the squeezed field is focused, i.e., rz(s’=0. In
this 2= riV=rP=p  and then

1) —
case, ri'=rP=r, 2 2
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A,=A,= A and B, =B,=B. The coefficients 4 and B
now depend only on the coordinates r, and r, of the
atoms. By varying r, and r,, we will be able to gauge the
area over which the effect of the squeezed field on the
atoms is important. We use the set of collective states
[1), [4+), and [2) as an appropriate representation for
the density operator

0.25

0.2

Pyy
B

0.1
T
N

0.05
T
~

(a)

0.25

0.2

Pyy
0.15

0.1

0.05

(b)

FIG. 2. Steady-state population of the state |+ ) as a function of r, /A for r,=0, N =2, and different values of the angle 0 over
which squeezed field is propagated: (a) 6=10° (solid line), 6=45° (dashed line), §=60° (dash-dotted line); and (b) =90° (solid line),
6=135° (dashed line), 0= 180° (dash-dotted line).
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p=3p;li) (il (27)  the state |+ ) is unpopulated. If the atoms interact with
ij the squeezed vacuum field, then N0, |M|540, and the

where p;; are the matrix elements of the reduced atomic
density operator in the representation of the collective
states. With the representation (27) the master equation
(17) leads to the following, closed set of three equations of
motion:

ﬁ’zzz_(”+1)P22+(”—1)P+++W|M|P<p ’

pr+=(n—1D—=0Bn—1)p,+2pp—2w|M|p,, (28)

pp=2w|M|—np,—6w|Mlp, , ,

where w=(A*+B?)/N', n=(2wN +1), and
Pe=I[paexp(—igp,)tppexplip,)] .

By setting the left-hand side of Egs. (28) equal to zero
we obtain the steady-state solution of these equations. A
straightforward algebraic manipulation of Eq. (28) leads
to the following solution for the steady-state population
of the superradiant state |+ ):

(n2—1)—4w?|M|?
(3n2+1)—12w3M|?

P++~ (29)

The steady-state solution (29), apart from the parame-
ter N, also include the absolute value of the parameter M,
which means that the squeezed vacuum field affects the
steady-state population of the state |+ ). When the
atoms interact with the thermal field, then N0, |M| =0,
and the steady-state population of the state |+ ) is always
different from zero. This means that with thermal field it
is not possible to obtain pairwise atomic states in which

steady-state population p,, can be reduced. For the
minimum-uncertainty  squeezed states, i.., for
|M|?=N(N +1), Eq. (29) reduces to

(n—1)(1—w)
[3n —)(1—w)+2]

Since 0 =w =1, the steady-state population in the state
|4+ ) can be reduced, and is equal to zero when w=1.
This is illustrated on Fig. 2 where we have plotted the
steady-state population of the state |+ ) given by Eq. (30)
in function of the atomic distance r, from the point
where the squeezed field is focused, for N =2, r,=0, and
different angles 6 over which the squeezed field is pro-
pagated. These graphs show that the population of the
state |+ ) is strongly dependent on the angle 6 over
which squeezed field is propagated. As the angle 6 in-
creases from small values to 6=/2, the population of
the state |+ ) increases [see Fig. 2(a)]. For angles 6
larger than 7 /2, and r, =0, the population in the state
|4+ ) decreases with increasing 6, and is equal to zero for
6=, i.e., when the atoms interact with the perfect
squeezed dipole wave. Figure 3 shows the steady-state
population of the state |+ ) as a function of the atomic
variations in the z direction for N=2, r, =0, and
different 6. It is seen that the population in the state |+ )
for the atomic variations in the z direction is slightly
different from that for the variations in the x direction
[see Fig. 2(b)]. The effect of squeezing can still be seen for
sufficiently small », and the angles 6 larger than /2.
The reduction of the population persists over as large an
area in the z direction as in the x direction. The present

0.2 0.25
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0.15
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0.05

FIG. 3. Steady-state population of the state |+ ) as a function of r, /A for r, =0, N =2, and different values of 6: 6=90° (solid

line), 6=135° (dashed line), 6= 180° (dash-dotted line).
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results show that the reduction of the population in the
state |+ ) is only possible when the squeezed field propa-
gates over the angle 0 greater than 7 /2. This means that
the experiments in which the input squeezed field is
directly incident on the atoms cannot be used to observe
the pairwise atomic states. The production of a squeezed
vacuum field incident on the atoms under the angles 6
larger than 7/2 will therefore be an important com-
ponent of the experimental verification of this effect.
This would evolve placing the atoms at the focal point of
an appropriately large parabolic mirror. Other methods
of producing near dipole wave would include recent ex-
periments with atoms fixed in organic layers [32] or in
crystals [33] and placed near a conducting metal surface.
In light of these developments the experiment under dis-
cussion seems to be plausible.

IV. TWO ATOMS IN FREE SPACE
WITH THE INTERATOMIC SEPARATION INCLUDED

In Sec. IIT we have assumed that the two-atom Dicke
model interacts in free space with the squeezed vacuum
field. In the Dicke model it is assumed that the intera-
tomic separations are much smaller than the resonant
wavelength, and all effects connected with the spatial dis-
tribution of the atoms are ignored. This assumption,
however, may prove difficult in experimental realizations
of such a model in free space. In atomic-beam experi-
ments or atoms fixed in organic layers [32,33] the atomic
separations are on the order of a resonant wavelength.
Therefore it seems natural to study in some detail what
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metric state |— ) cannot be decoupled from the sym-
metric states |1), |+ ), and |2). The presence of the an-
tisymmetric state | —) may effect dynamics of our two-

atom system. We limit the discussion to the case of vari-
ations in the atomic position along the x axis and we as-
sume that r{V'=r=0. By choosing the center of coor-
dinates at the point where the squeezed field is focused,
one finds from Eq. (17) that 4, A4, and B;=0. More-
over, y;77, and now the antisymmetric state [—) is
coupled to the other symmetrical states (see Fig. 1). Us-
ing an appropriate representation (27) for the density
operator with the antisymmetric state | — ) included, the
master equation (17), with the coefficients (25), leads to
the following closed set of seven equation of motion,
which can be written in matrix form as

—‘—i—-X =AX+I,

dr
where 7=2yt, X is a column vector with the real com-
ponents

(31)

X1=pi+4, X=p_—,

X3 =[pyexp(—id,)+pexplig,)] ,
(32)

X4=prn, Xs=(py_tp_1), X¢=—ilpr_—p_4)
X;=i[pyexp(—id,) —ppexpli¢,)] ,

and the inhomogeneous vector term I has the nonzero
components

i to the toscmant wavelonntts 0y distances com- L=N,, L=N, L=2aM|, I,=uN. 3
With the interatomic separation included, the antisym- In Eq. (31), A.is the real 7X7 matrix
J
(3N, +1+a) N, M, —(1+a) O 0 0
N, (3N,+1—a) —M, —(1—a) O 0 0
2AM,+alM]|) —2(M,—a|M]) n 0 0 0 0
A= —N, —N, —a|lM| (n+1) uN 0 0 (34)
2uN 2uN 0 4uN n b 0
0 0 0 0 —b n —2u|M|
0 0 0 0 0 —2ulM| n

For simplicity, in Egs. (32)-(34) we have introduced the
notation

N,=(w+a)N, N,=(w—a)N,
a=yp/y, b=0,/7, (35)
M,=(w+a)M|, My,=(w—a)M|, n=QwN+1),
with
w=(A3+ A3 /2N', u=(A2—A4})/2N",
a=A,4,/N",

(36)

where 4,, A,, and V' are defined in Eq. (26).

By setting the left-hand side of Eq. (31) equal to zero
we obtain the steady-state solution of this equation. The
steady-state solution of the X; component of the vector
|X, ;vhich describes population in the superradiant state

+),is

D, P, +(a—2)P;— D,
4P, P, +ad;) ’

X\ =py+= (37)

where
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@, =1[(n*—4u?|M|*)(n*—4u’N?*)+n?b?],
®,=n[n?—(2aN+a)?]

+2|M |} 2aw(2aN +a)—n(a?+w?],
®,=n(n’+b2—4u?*|M?) (38)

X [nN(wa —a)+2a(w—aa)|M|*],
®,=Lin(n?+b*—4u’M|?)

X [2(wa —a)(nN —2w|M|*)+n(1—a?)] .

The steady-state solution (37), apart from the squeezing
parameters N and |M|, depends also on the interatomic
interaction parameters ¥y, and Q,,. Figure 4 shows the
stationary populations p,, as a function of
r.=rV+r?)/2, which is the center of the interatomic
axis, for N =2, the squeezed field incidents over the angle
6=, and different interatomic separations r;,. It is seen
that the steady-state population of the state |+ ) strongly
depends on the interatomic separation. For |r,|<A/2
the stationary population p, , decreases with decreasing
of the interatomic separation r;, and is equal to zero for
very small r,,. However, in this case equal to zero popu-
lation in the state |+ ) does not mean that the system is
in the pairwise atomic state. This is due to the presence
of the antisymmetric state | — ), which has a population
different from zero for small interatomic separations. It
is not difficult to show from Egs. (31)-(36) that in the
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steady state the population in the antisymmetric state
|—)is

@0, +(a+2)D,— D,

4D, D, +ad,) (39)

p——

Figure S illustrates the effect of the interatomic separa-
tion on the population in the state |— ). It is seen that
the population in the state |— ) for |r .| <A/2 is always
different from zero and increases when r;, decreases.
Since the antisymmetric state | — ) is populated the sys-
tem is not in the pairwise atomic state.

It should be emphasized here that in the limit of small
ri, the steady state of the system, with the interatomic
separation included, does not reduce to that of the Dicke
model. This fact is connected with conservation of S? for
the Dicke model and S? not being a constant of motion
for the system with the interatomic separation included
[34]. To explain it we express the square of the total spin
of the two-atom system in terms of the density matrix ele-
ments as

S§2=2—2p__ . (40)

It is evident from Eq. (40) that S is conserved only in the
Dicke model, in which the antisymmetric state | — ) is ig-
nored. For a system with the interatomic separation in-
cluded the antisymmetric state is populated and S? is not
conserved. This state is populated even for small intera-
tomic separations (a—1). The Dicke system reaches
steady state between the triplet states |1), |+ ), and [2).
The singlet state |—) remains unpopulated. The S?
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FIG. 4. Steady-state population of the state |+ ) as a function of r, /A for N =2, 6=180", and different interatomic separations:
712 =A/2 (solid line), ¥, =A /4 (dashed line), r;, =A /12 (dash-dotted line).
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breaking system reaches steady state between all triplet
and singlet states. With Eq. (39), and in the strong field
limit (N >>1), Eq. (40) takes the value 2, independent of
the interatomic separation r;,. This value signifies the
same population of all triplet and singlet states of the sys-
tem.

We can, however, employ the S? breaking system to
create the pairwise atomic state. This could be achieved
assuming that the observation time is shorter than
(27)~ 1. The singlet state |— ) decays on a time scale
~[2(y —71,)1"!, which for y,~y is much longer than
(2y)7! (see Fig. 1). However, this time must be small
compared to observation times in order that the steady
state (39) be reached, with the singlet state participating
fully in the interaction. On the other hand, the superra-
diant state |+ ) decays on a time scale ~[2(y +7,,)]7},
which for small interatomic separations is shorter than
(27)~ L. Clearly, as we consider short observation times
[order (2y)7!], the singlet state does not participate in
the interaction and the system reaches the steady state
only between the triplet states. For times of order (2y) !
and for small interatomic separations, only the ground
state |1) and the most excited state |2) are populated,
and the steady state behaves as the pairwise atomic state.

In conclusion, with the interatomic separation includ-
ed the steady state of two atoms interacting with a per-
fect squeezed dipole wave is not the pairwise atomic
state. This is due to the presence of the antisymmetric
state | — ) when the interatomic separations are included.
This state shows a large steady-state population in con-
trast to the superradiant state |+ ), which is not popu-
lated for small interatomic separations. This system,
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however, can be in the pairwise atomic state providing
that interatomic separations are small and the observa-
tion time is shorter than (2y)~!. For observation times
larger than (2y )~ ! the system is not in the pairwise atom-
ic state even for small interatomic separations. In this
case the effect of squeezed vacuum field is manifested by
the selective population of collective atomic states. This
is a novel effect, which does not appear in the thermal as
well as in ordinary vacuum field. The experiments dis-
cussed in Sec. III are fully applicable to this model. Since
the antisymmetric state |—) does not radiate in the
direction perpendicular to the atomic axes [14,31], a
detector located in this direction will observe only the
population of the state |+ ).

V. EFFECT OF A MICROSCOPIC
FABRY-PEROT CAVITY

The interaction of the squeezed vacuum field with the
two-atom system leads to the selective population of the
collective atomic states. In free space the two-atom
Dicke model can decay to a pure state in which only the
ground state |1) and the state |2) are excited. The two-
atom system with the interatomic separations included
always decays to a mixed state in which the superradiant
state |+ ) is not populated only for small interatomic
separations. These effects are sensitive to the angle 6
over which the squeezed vacuum field is propagated and
in free space can be observed when more than 50%
modes coupled to the atoms is squeezed. The production
of a squeezed wave incident on the atoms over a large an-
gle 6 will therefore be an important component of the ex-

FIG. 5. Same as in Fig. 4 but for the antisymmetric state | — ).
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perimental verification of these effects. To avoid this we
shall examine the interaction of the squeezed vacuum
field with the atoms located inside a microscopic Fabry-
Pérot cavity. Inside the cavity, a strong selection of radi-
ation modes coupling to atoms is possible [17] and only
the modes whose propagation vectors lie within a small
solid angle about a line perpendicular to the mirror sur-
faces are coupled to the atoms. Recently, Parkins and
Gardiner [2] have applied this model to the inhibition of
atomic phase decays by squeezed light. They have
demonstrated that a significant reduction in fluctuations
experienced by the atom can be achieved in one quadra-
ture even for a small angle 6 over which the squeezed
light is propagated. Here we examine the pairwise atom-
ic states in the two-atom Dicke model located inside the
microscopic Fabry-Pérot cavity. Our treatment is based
on the quantum theory of spontaneous emission from the
microscopic Fabry-Pérot cavity recently developed by
DeMartini et al. [35].

Assume that we have the plane-mirror Fabry-Pérot
configuration (Fig. 6) with two mirrors which lie parallel
to the xy plane. The first is a perfectly reflecting mirror
located at z =0, and the second a partially transmitting
lossless mirror is located at z=L. The partially transmit-
ting mirror has a real reflectivity R and transmittivity
i(1—R?%)!2__the same for both directions. We assume
that the mirrors are very large, so that end effects can be
ignored.

By a consideration of boundary conditions at the mir-
rors [35,36], we derive the following expression for the
mode function gy (r) inside the cavity:

172
ck ik"r)
S b

(r)= | ———= | Y(6,;,L)(&,e* +8e
8ks Zeoﬁ(27r)3 k ks k

(41)

where Y(6,,L) is the cavity transfer function

I(I_R 2)1/2
9,, ’
Y(6,L)= 1—R exp[ —2ikL cosf, ] (42)

with 6, the angle between the k vector and the cavity

z=0 z=L

FIG. 6. Geometry of the microscopic Fabry-Pérot cavity.
The left mirror is perfectly reflecting.

Z. FICEK 4

axis. We have assumed that the reflectivity R is the same
for both polarizations. The polarization vectors €, and

€, can be written as a sum of components parallel and

perpendicular to the xy plane as

A At Al A
e{‘(s’ eks_eks——_ey(s > (43)

A

€, —eks +
and similarly for the wave vectors k and k'’
k=k'+k!, k'=—k'+k!. (44)

The mode function (41) for the cavity is modified, com-
pared to that for free space (19), by the presence of mir-
rors which is manifested by the function Y(8,,L). The
effect of Y(60,,L ) is most clearly exhibited in the form

o (1—R?)
(1—R )*+4R sin*(kL cos6,,)

|Y(6,,L) , (45)

which is identified as the Airy function of the cavity [37].
If R is close to 1, then this function displays a series of
sharp peaks for angles of incidence such that
sin(kL cosf, )=0. If L=A/2, the function (45) will ex-
hibit a peak centered at cosf, =1. It means that a strong
coupling is affected only with those modes which are con-
tained in a small solid angle centered at z axis. In our
model the two-atom Dicke system is coupled to these
modes, part of which can be squeezed by input squeezed
field. To maximize the coupling between the atoms and
squeezed input field we assume perfect matching between
the input squeezed modes and the cavity modes. Later
we shall examine imperfect matching, where we shall
match a focused Gaussian beam with the cavity modes.

With the mode functions (5) and (41), and on using
22)-(24) and (43)-(45), the decay constants and the
dipole-dipole interaction term in Eq. (18) take the follow-
ing form:

_3_ (+R) sin?(kyr,u)

3 (U+R) 1
T2V (1=R) NV

f du(1+u?) -
cosé 1+F sm2( kOLu )

2
XJo(kore (1—u?)!7?)

’

2
3 (1+R) 1 1 o, sin“(kor,u)
== ” du(l+u*)
Bi=3V =R W | o A Fsin?(koLu)
2
XJo(kor, (1—u?)172)
. (46)
1 +R) smz(korzu )

i.— (14+u?
Vi Y(1-R) f 1+Fsin2(k0Lu)
(I+R) 2k
Q=— _u dk k3 | —=——
v 4mefi (1 f k2—k}2 ]
2
1 sin“(kr,u)
X [ du(l+u?)—————
J 0 1-+F sin*(kLu)
X Jolkry(1—u?)'"?) ,
where now
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‘2
sin“(kqr,u)

U du(1+u?) ot ,

cosf 1+ Fsin“(koLu)

and F=4R /(1—R )~

In derivation of Egs. (46) and (47) we have assumed
that the squeezed vacuum field is focused at r,=(0,0,r,),
and the two-atom Dicke system is located at r=(r,,0,r,).
The parameters (46) and (47) differ considerably from
that for free space. In the limit R — 1, with »,=L /2 and
L =1/2, the parameter y,; approaches 1.5y, which is in
agreement with the result found by Milonni and Knight
[38] and experimental testing by Hulet, Hilfer, and
Kleppner [39]. This result shows that the spontaneous-
emission rate is three times greater than the free-space
rate when the atoms are between plane parallel perfect
mirrors separated by half a wavelength.

The master equation (17), with the parameters (46) and
(47), leads to the equation of motion for the density-
matrix elements similar in form to the free-space equa-
tions (28), but now the parameters n and w are

n=QwN+D), w=A42%, /N, (48)

N=

(47)

where A4.,,=n,;/y=B;;/y and D=y /v.

These new parameters reflect the effect of the cavity on
the interaction between the squeezed vacuum field and
the Dicke system. Replacing n and w in Eq. (28) by the
parameters (48), and for minimum-uncertainty squeezed
states, Eq. (28) leads to the following steady-state popula-
tion of the state |+ ):

(n—D)D—w)

_ , 49
P+ 3(n—D)D—w)+2D? (49)
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Equation (49) is the exact formula describing the steady-
state population of the superradiant state |+ ), valid for
any values of the intensity of the squeezed field and the
angles over which the squeezing is propagated as well as
for different parameters of the cavity. This formula is il-
lustrated graphically in Fig. 7 as a function of r, /L for
R=0.99, r,=0.5L, L=A/2, N=2, and for different
values of the angle 6 over which the squeezed field is pro-
pagated. These graphs show that a pronounced reduc-
tion of the population in the state |+ ) can be obtained
even for small angles € over which the squeezed field is
propagated. The complete reduction of the population
can be achieved for 6>20° at r, /L =0, i.e., when the
atoms are at the point where squeezed field is focused. In
other words, the pairwise atomic states can be observed
even when the atoms interact with an imperfect squeezed
dipole wave. As one can see from Fig. 7, at r, /L =0
there is relatively little variation in population for 6
larger than 10°. This reflects the fact that inside the cavi-
ty the atoms are coupled only to these modes which are
nearly perpendicular to the mirrors.

It is important to consider also the sensitivity of the
effects to small changes in the mirror spacing L. This
will be very pertinent to any practical experimental ar-
rangement as the distances involved are extremely small.
For L <A/2, the mode density inside the cavity is greatly
diminished, and we enter the regime of inhibited spon-
taneous emission [17,39]. Figure 8 illustrates the popula-
tion in the state |+ ) for the same parameters as in Fig.
7, but with L =0.49A. The population is still consider-
ably reduced for sufficiently small r, /L, however, the
maximum relative reduction at r, /L =0 is less than that
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FIG. 7. Steady-state population of the state |+ ) as a function of r, /L for R =0.99, r,=0.5L, L=A/2, N =2, and for different
values of the angle 8: 0=5" (solid line), 6= 10° (dashed line), 6=20° (dash-dotted line).
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obtained with the same parameters for L =A/2. More-
over, in the x direction the area over which significant
reduction of the population occurs is considerably re-
duced in comparison to that for L =A /2. Figure 9 illus-
trates the population in the state |+ ) for the same pa-
rameters as in Fig. 7, but for L slightly greater than A /2.
In this case p;  shows pronounced oscillations in the x
direction. This occurs due to the greater number of
modes available for coupling when L is larger than A /2.
The reduction of the population does not persist over as
large an area as for L =A /2, but the advantage now is
that the magnitude of the reduction at r, /L =0 is not
changed, and we can still observe the pairwise atomic
states.

In conclusion, by use of the microscopic cavity with
L =A/2, the pairwise atomic states can be produced by
an imperfect squeezed dipole wave. It happens for small
angles 8 (6>20°), over which the squeezed field is pro-
pagated. There appears to be a reasonable range over
which L may be varied and yet allow the pairwise atomic
states. This range is biased towards values of L equal to
or slightly larger than A /2, as opposed to values of L less
than A /2, where this effect is slightly reduced.

VI. EFFECTS OF IMPERFECT MATCHING

In this section, we investigate the effect of imperfect
matching between the cavity modes and the input
squeezed modes on the steady-state population of the
state |+ ). In practice, a perfectly matched input may
not be possible, so it is important to repeat our calcula-
tions with the input mode function U (k) given not by
Eq. (5), but rather by some approximation to that func-

0.25
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tion. We choose a Gaussian profile for the input
squeezed field as an example of an approximate match. It
is reasonable to expect that in the experimental setup a
system of lenses will produce a focused squeezed field in a
form of Gaussian beam. Since the atoms inside the cavity
are coupled only to those modes which are nearly perpen-
dicular to the mirrors we can use the paraxial approxima-
tion for a focused Gaussian beam [40]. In this approxi-
mation, the mode function U(k), for 6, <6, can be writ-
ten as

Us(k):_/\/alﬂy *'flts(ro)
Xexp[ —8sin%0, —i(n—g@sin?6,)] , (50)

where

172

ck ik-r,
(8y,e  °+e.e

ik"r,
—_— ) s
2e.fi(2m)?

fks(r0)= (51)

and N is the normalization constant.

The parameters 8, 77, and ¢, which appear in Eq. (50),
characterize the input Gaussian beam in the paraxial ap-
proximation. The parameter § represents the beam spot
size, ¢ represents the radius of curvature of the wave
fronts, and 7 is the phase shift between this beam and the
idealized plane wave.

Using the expression (50) and U,(k), and (41) for
8is(r), with (22)-(24) and (43)-(45), the damping
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FIG. 8. Same as in Fig. 7 but for L =0.49A.
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FIG. 9. Same as in Fig. 7 but for L =0.51A.

coefficients 7;; and f3;; take the form where

3 (1+R) e ¥ 2 1
== (G—iH)?, (52) = [ du(l+u’
1573V 1=R) N, 6= An+u ARO[+ F sin2(koLut)]

sin®(kor,u)

— 21— — —y?
B_':iy(l‘*'R)L(Gz_,_HZ) 53 X {cos[@(1—u?)]—R cos[2koLu —¢(1—u*)]}
i= 2V (1—R) Ng ’ Xe 8=y (kor (1—u?)172) (54)
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FIG. 10. Steady-state population of the state |+ ) as a function of r, /L for the imperfect matching with §=120, n=—m/2,
R=0.99, 6=5° r,=L /2, L=A/2, N=2, and different values of ¢: ¢ =0 (solid line), ¢ =100 (dashed line), ¢ =200 (dash-dotted
line).
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_fl (1+u2)sin®(kgr,u)
cosf “ (1—R )[1‘+‘FSil’l2(k0Lu )]

X {sin[@(1—u?)]+R sin[2k Lu —p(1—u?)]}

Xe'ﬁ“*“z)JO(korx(1—u2)1/2) , (55)

and
No= [ dui+ue “80-uNgin2(koru) . (56)
We note that the remain parameters y;; and Q;;, which

appear in the master equation (17), are not altered by the
Gaussian profile of the input beam, and are the same as in
Eq. (46).

With the parameters (52) and (53), the master equation
(17) leads to the steady-state population of the state |+ ),
which is the same as for the perfect matching [Eq. (49)],
but with the parameter w replaced by

1 24 12
w Ny (G*+H?),

(57)

where G,H, and N; are given by Egs. (54)-(56).

Figure 10 shows the population in the state |+ ) as a
function of r, /L, for R =0.99, 6=5°, r,=L /2, N=2,
8=120, n=—m/2, and different . These graphs show
that with the Gaussian profile of the input squeezed field
the population in the state |+ ) is always different from
zero, but still can be significantly reduced around
r, /L =0. The magnitude of reduction strongly depends
on the choice of ¢, emphasizing the need for good match-
ing of the mode functions. Reduced populations at
r, /L =0 are found for values of ¢ in range 0-200. Fig-
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ure 10 shows that the reduction of the population is
strongly dependent on ¢. This effect is also sensitive to
variations in 8, as we demonstrate in Fig. 11, where we fix
@ =280, and compare results for different 5. Reduced pop-
ulations at r, /L =0 are found for values of & in range
50-300. Figures 10 and 11 show that the area in the 7,
direction, over which the populations are reduced is
slightly changed in comparison to that for the perfect
matching (see Fig. 7).

In conclusion, the imperfect matching between the in-
put squeezed modes and the cavity modes has a destruc-
tive effect on the pairwise atomic states. Despite this, for
a large range of the parameters characterizing a Gaussian
profile of the input beam, it is still possible to obtain a
significant reduction of the population of the state |+ ).

VII. SUMMARY

We have studied here the problem of interaction be-
tween a two-atom system and a three-dimensional
squeezed vacuum field. We have been especially con-
cerned with the steady-state solution for the population
of the superradiant state |+ ), when (a) the two-atom
Dicke system is in free space, (b) the two-atom system is
in free space with the interatomic separation included,
and (c) the two-atom Dicke system inside the microscopic
cavity interacts with an imperfect squeezed dipole wave.
In case (a) the population of the state |+ ) depends on
the angle 8 over which the squeezed field is propagated,
and for small 0 increases with increasing 6. For 0 greater
than 77 /2 the population decreases with increasing 6 and
is equal to zero for 6=, i.e., when the atoms interact

0.2 0.25

Piy
0.15

0.1

0.05

1 'l 1

FIG. 11. Same as in Fig. 10 but for fixed ¢ =280 and different values of &:

dotted line).

0 5 10 15 20
r/L

8=50 (solid line), 8= 120 (dashed line), =300 (dash-
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with a perfect dipole wave. In this case the two-atom
Dicke system is in the pairwise atomic state in which
both atoms are in their excited states or in their ground
states. Case (b) exhibits features completely different
from (a) in that the two-atom system with the interatomic
separation includes decays to a state that is not the pair-
wise atomic state. This is due to the presence of the an-
tisymmetric state | — ) when the interatomic separation is
included. However, the effect of squeezed field on the
two-atom system is still evident and is manifested by the
selective population of the collective atomic states. In
case (c) the population in the state |+ ), unlike the free-
space case, can be reduced to zero at a small angle 6 over
which the squeezed field is propagated. However, this is
sensitive to the mode matching between the input
squeezed field and the cavity, and occurs only when the
input squeezed modes are perfectly matched to the cavity
modes. For an imperfect matching, as with a Gaussian
profile for the input beam, the effect of the squeezed field
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is less evident, but still we observe a significant reduction
of the population in the state |+ ).

The present analysis of pairwise atomic states show
that this effect is sensitive to the angle of propagation of
the squeezed field. If the experiment were prepared with
the atoms in free space, the production of a squeezed
electric dipole wave will be an important component for
the verification of this effect. Our results show that this
can be avoided by using the microscopic Fabry-Pérot
cavity. Experiments with the optical microscopic cavity
have been performed recently [35] and, as we have shown
here, can be applied to observation of the pairwise atomic
states.
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