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We present further developments in the theory of dressed-state lasers, i.e., lasers that operate on in-

verted transitions between the dressed states of a coupled atom-field system. We take into account the

quantum character of the driving field, and consider the effect of its depletion. We derive effective Ham-

iltonians appropriate for the analysis of both one- and two-photon dressed-state lasers, and then discuss

the stability and statistics of such lasers. We show that pump-depletion effects tend to reduce the degree
of squeezing found in dressed-state-laser output while simultaneously introducing small squeezing effects

into the depleted pump field.

PACS number(s): 42.50.Hz, 42.55.—f, 42.50.Kb

I. INTRODUCTION

In the two preceding recent papers [1,2] we have
presented a theory of lasers that operate on inverted n-
photon (n =1,2) transitions between the dressed states of
a coupled atom-field system. We refer to such lasers as
dressed state lasers. M-ollow [3] pointed out some time
ago that strongly driven two-level atoms may serve as a
one-photon gain medium. The predicted one-photon
gain [4,5], and indeed one-photon lasing based on the pre-
dicted gain, has been observed experimentally [6,7]. Re-
cently, there has been an experimental demonstration of
steady-state two-photon gain in the dressed-atom system
[8]. As the gain is proportional to the number of atoms
involved and may be enhanced through the use of a
high-finesse optical cavity, it appears likely that steady-
state two-photon lasing may be realizable in the dressed-
atom system [9,10].

The principle on which the dressed-state lasers are
based can be explained as follows. A two-level atom
driven by a strong laser beam of frequency cuL and reso-
nant Rabi frequency Q undergoes dressing [11]. If the
driving-field frequency col is detuned from the atomic
transition frequency co, by A, =co, —coL, the dressed-
state doublets are split by an amount equal to the
effective Rabi frequency 0'=(0 +b, i)' . For nonzero
detuning 4„ the steady-state population within the
dressed-state doublets is polarized [12].

Suppose one locates an ensemble of atoms in a high-
finesse cavity of resonance frequency co, . We assume that
these atoms are dressed-state polarized so as to create an
inversion on ~+ )~

~

—) dressed-state transitions. If the
cavity is resonant with a one-photon

~

+ )~ ~

—)
dressed-state transition (i.e., co, =cot +0'), one-photon
lasing will occur for suKciently large atomic density. If,
on the other hand, the cavity is resonant with a two-

photon ~+ )~ —) transition (i.e., co, =coL+0'/2), it is
two-photon lasing that may occur.

In Ref. [1] a detailed semiclassical theory of dressed-
state lasers has been given. The efFective Hamiltonian ap-
proach applied allowed us to estimate the range of pa-
rameters (detunings, atomic densities, driving-field Rabi
frequencies, etc.) over which lasing of the various orders
is possible. Importantly, we have found, by stability
analysis of the steady-state solutions, that the regions of
stability of one- and two-photon lasers are well separated
in parameter space; i.e., there should not be severe com-
petition between the two processes.

The quantum-statistical properties of dressed-state-
laser radiation have been studied in Ref. [2]. It has been
found that emitted laser radiation may be significantly
squeezed. This result is true not only for the two-photon
laser, but also, astonishingly, for the one-photon dressed-
state laser. In both, the squeezing is related to level shifts
analogous to Bloch-Siegert [13] and Stark shifts. These
shifts appear in our theory as a result of antiresonant
transitions between dressed states that are present in the
dressed-states Hamiltonian.

In both Refs. [1] and [2], the driving field was treated
semiclassically and the efFects of pump depletion were
neglected. It is the purpose of this paper to generalize
the theory developed so as to include pump-depletion
efFects.

The paper is organized as follows. In Sec. II a general
description of atom-field interaction in the presence of a
quantized pump is given. We describe here our method
of the self-consistent dressing of atoms. In Sec. III the
efFective Hamiltonians that describe the one- and two-
photon dressed-state lasers are derived. In both cases
pump depletion is taken into account. In Sec. IV the
infIuence of pump depletion on the squeezing spectra of
dressed-state lasers and the pump field itself are studied.

7746 1991 The American Physical Society



THEORY OF DRESSED-STATE LASERS. III. PUMP-. . . 7747

As before [1,2], the technique used is that of quantum
Langevin equations [2,14]. In the concluding Sec. V, we
consider possible generalizations of our approach.

II. SELF-CONSISTENT DRESSING OF ATOMS
BY A QUANTIZED DRIVING FIELD

We consider a system of X two-level atoms of reso-
nance frequency co, located in a "laser" cavity and
pumped by a driving field of frequency cuL. The driving
(pump) field is assumed to have a traveling-wave charac-
ter and to be oriented orthogonal to the axis of the laser
cavity. This orthogonality will serve, as in Ref. [1], to
discriminate against nonlinear gain processes of a wave-
mixing type, which require a phase-matching condition.

It will be assumed that the pump field occupies a single
traveling-wave mode of a unidirectional ring "pump"
cavity. The pump mode will be characterized by the fre-
quency ~z and the width I b. The pump mode is excited
through injection of an external driving field of frequency
coL. The possibility that coL %co~ is not excluded.

Let o 3„, o.„,and o.„denote the standard Pauli matrices
that describe two-level atoms. Individual atoms are indi-
cated by the subscript p. The atoms interact with the
pump mode and a single laser-cavity mode of frequency
co, . Let the pump-cavity mode (laser-cavity mode) an-
nihilation and creation operators be denoted by b and b
(a and a ), respectively.

We assume that the atoms may undergo spontaneous
emission into electromagnetic-field modes that are nei-
ther associated with the pump- nor laser-cavity mode.
The density matrix of the system then obeys a
Liouville —von Neumann (master) equation of the form
[12]

P= i[% P]+X~P+XFP+J-t p (2.1)

+i(I &+ib3) b i(I b ih3) ——b-
+52a~a+63b~b . (2.2)

The Hamiltonian is written in the rotating-wave approxi-
mation and does not contain any explicit time depen-
dence, since we have already written it in a frame rotat-
ing at the frequency coL. As a result of the rotating-frame
transformation, the first and last two terms in Eq. (2.2)
are proportional to the detunings 5,=co, —~L,
hz=co, —coL, and 63=co& —~L. The term proportional
to the Rabi frequency A describes driving of the pump
mode, while the p-dependent coeKcients g„and p-
independent coeKcients G denote the coupling of atom p
to the laser- and pump-cavity modes, respectively.

The interaction of individual atoms with the pump
should, in principle, contain phase factors that character-
ize the traveling-wave character of the pump field. By an
appropriate choice of phases of individual atomic dipoles,
we have absorbed these phase factors into the definition

The Hamiltonian in Eq. (2.1) is given by the expression

N&=—,
' g (b, io3„+g„o."a+Ger„b+g„"ato +Gb o„)

of atomic raising and lowering operators o.~ and cr„. The
phases of individual atomic dipoles are therefore fixed
relative to the pump field in the expression (2.2), and
thereby a spatially varying phase P„ is introduced into
the g„'s. We assume, on the other hand, that the moduli
of atom-cavity coupling factors are identical, i.e.,
~g„~ =g. The latter assumption can be easily justified in
the case of a ring laser cavity. Alternatively, in the case
of a confocal cavity of the sort used in Refs. [5] and [7],
the cavity resonance is in fact highly degenerated and the
cavity mode corresponds to a combination of di6'erent de-
generated modes of the frequency co, . For such cavities,

lg„l may be assumed to be constant in an average sense.
Note that from the above considerations it follows that

our model does not assume any correlation between the
phases of the pump and cavity fields. For that reason the
atom-cavity coupling s factors have spatially varying
phases, i.e., g =g exp(iP„). The fact that these phase
factors are practically random influences our results
significantly (cf. Ref. [1]). The last three terms in Eq.
(2.1) describe laser-cavity-mode and pump-cavity-mode
damping, as well as spontaneous emission, i.e.,

X~P=21 ( pata,'atap —,'—pata)—, —

X p=2I (bpb 'b bp —'p—b b)——

X~p=2y g (o~o t —
—,'o to ~—

—,'po to.„),

(2.3)

(2.4)

(2.5)

where l"and I & are the laser-cavity- and the pump-
cavity-mode half widths at half maximum, respectively.
2y denotes an atomic spontaneous emission rate (equal to
the Einstein A coefficient). As in Refs. [1] and [2], y will
be chosen to be the frequency unit in this paper.

Note that for infinitely small 6 it is reasonable to
neglect a back interaction of the atoms on the pumping
field . In this case the equation of motion for the pump
amplitude has the form

Qb= —(I" +id ) b ——
b 3 G

(2.6)

After a transient time of the order of 1/I b, the state of
the field in the pump cavity would then become a
coherent state, characterized by a complex amplitude
0/G. In such a case, we could then substitute b and b
for 0/6 in the Hamiltonian (2.2). In another words, in
the limit of small 6 the model described by Eq. (2.1)
reduces to the one discussed in Ref. [1], i.e., the one in
which atoms are located in an external geld of the
strength A~. In such situations the atoms undergo dress-
ing corresponding to a fixed pump-field strength and de-
tuning b, , (compare Sec. II, Ref. [1]).

In the present paper, however, we will study the case of
finite atom-pump coupling constant G. Therefore, the
pump amplitude in our model is a dynamical variable,
and it will depend nontrivially on the atomic response
and amplitude of field in the laser cavity. In particular,
the stationary amplitude of the pump-cavity field, which
we denote as
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(2.7)

will, in general, be complex and different from 0, /G.
The stationary state of dressed-state lasers will have a

phase invariance that leads to phase di6'usion [14]. The
phase of 0/6, however, will be uniquely determined (i.e.,
locked) by the phase of 0/G. We may adjust the latter
phase so that the parameter Q/G will become real. Such
an adjustment of the phase does not change any of the
physical properties of the system in question. The abso-
lute value of 0/G, on the other hand, is not equal to
0/G, even for 63=0, and cannot be adjusted in any way.
The value of 0/6 results from dynamics. It is this sta-
tionary value of the pump-mode amplitude that
effectively dresses the atoms.

Equations (2.1)—(2.5) are written in the basis of the
atomic Hilbert space and consist of bare excited states
~1)~ and bare ground states ~0)„. In order to obtain a
dressed-state picture, we have to change basis, introduc-
ing the dressed states

m =nnmn n
where the unitary operator

n= g exp(iao. „)

(2.9)

(2.10)

diagonalizes the atomic Hamiltonian in the presence of
the dressing field,

tude by Q/6, i.e.,

Q
b —+b+ —.

G

After performing such a transformation, we also require
that the stationary value of the transformed pump-mode
amplitude (evaluated within the semiclassical approxima-
tion) should be zero. This self-consistency condition
determines the value of 0 uniquely. It also fixes the
phase of Q, provided we require that 0 is real.

The explicit form of the Hamiltonian (2.2) in the
dressed-state basis may be obtained using the unitary
transformation

I+ )„=cosa~ 1 )„+sina~O)„ (2.8a)
&„=—,

' g [b, ,cr3„+Q(o„+cr„)]. (2.11)

~

—)„=—sina~ 1)„+cosa~0)„. (2 8b) The unitary operator n,
In the above expressions the "rotation" angle a, which
belongs to the interval [0,vr/2], is defined through the re-
lations Q =Q' sin2e and 6& =Q' cos2a, where 0' denotes
an effective Rabi frequency, equal to the dressed-state
doublet energy splitting fl, '=(LI +5, )'~ The . major
problem here is that the Rabi frequency Q that dresses
the atoms is a dynamical quantity and has to be deter-
mined from the stationary pump-mode amplitude b.

We propose here a novel method of transforming to
the dressed-state basis which employs a self-consistency
argument. In this method we simultaneously perform
two transformations: the first one changes the atomic
basis in accordance to Eqs. (2.8) with some arbitrary fl,
and the second one shifts the values of the pump ampli-

n =exp — (b —b—)Q
2 g

(2.12)

shifts the expectation value of b by A/6, i.e., provides
the dressing of atoms in an external field 0 [see Eq.
(2.11)] and redefines b in such a way that the stationary
value of b will be zero. A similar transformation has to
be applied to the damping terms [Eqs. (2.3)—(2.5)].

After elementary calculations we obtain an expression
for the Hamiltonian transformed to the dressed basis that
includes nondissipative terms derived from transforma-
tion of the damping term (2.4):

g„*a +GbP [(1+cos2a)cr„—(1—cos2a)o'„+sin(2a }o3„]4

+ g —'[(1+cos2a)o'„—(1—cos2a)cr +sin(2a)o i&](g&a+Gb) . (2.13)

The same transformation applied to the spontaneous emission term (2.5) yields

Xzp= —g I[sin(2a)o3„+(1+cos2a)cr„(1—cos2—a}o ]p[sin(2a)cr3„+(1+cos2a)o„—(1 —cos2a)o ]

—[1+cr3„cos2a—(cr„+cr )sin2a]p —p[1+o 3„cos2a—(o„+cr„}sin2a]] (2.14)
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Obviously, the laser-cavity damping term (2.3) remains
unchanged under the action of the transformation (2.9).
Also, the dissipative part of the term (2.4) retains its form
after the transformation (2.9). We should note, however,
that in expressions (2.13)—(2.14) the symbols o 3„, cr„, and
o.„refer now to the atomic operators in the dressed-state
basis and correspond to the dressed-state inversion, rais-
ing and lowering operators, respectively.

The master equation in the dressed-state basis can be
written using the explicit formulas (2.13)—(2.14) and (2.1)
and constitutes a generalization of the result found in
Ref. [1] (see Ref. [1] for a discussion). We stress that ex-
pressions (2.8)—(2.14) are still undetermined, since we
have not yet determined the value of Q that enters these
equations self-consistently. This will be done in Sec. IV,
where the semiclassical laser equations are discussed.

III. EFFECTIVE HAMII. TONIANS FOR THE ONE-
AND TWO-PHOTON DRESSED-STATE I.ASKRS

Just as in Ref. [1], if the one-photon resonance condi-
tion 0'= b, 2, b, 3=0, holds and the parameters g /0' and
G/Q' are small, we may substitute for the Hamiltonian
(2.13) an effective Hamiltonian. Such an effective Hamil-
tonian includes the lowest-order contributions from non-
resonant two-photon processes. We expect that such
contributions will have, as in Ref. [1], the form of Stark
and Bloch-Siegert shifts [13].

Note, however, that Bloch-Siegert corrections are not
with respect to optical frequency coL, but rather with
respect to O'. The latter are indeed of the order of, say,
g /0' and are quite significant.

We shall now derive an effective Hamiltonian using the
method of Stenholm [16]. As we have already men-
tioned, the Hamiltonian (2.13) does not conserve the total
number of excitations,

M
lq&= y q IM m—&+ y q+IM I—+»

+ g q IM —~ —»+ g g+~M ~+2&
m=0
M —2

+ g q-~M —m —2&.

m=0

(3.2)

gpGD= g " (1+cos2a)cr„, (3.3a)

gpG0= g "(1+cos2a)a„, (3.3b)

Rp
G, = g " sin(2a )o.3„, (3.3c)

gI
G, = g "sin(2a)cr3„, (3.3d)

gp
G2t= —g " (1—cos2a)cr„, (3.3e)

The coefficients g, y, and rl are vectors in the atomic
Hilbert space and in the space of the pump-mode pho-
tons. The lower index m indicates that these vectors cor-
respond to m excited atoms. The vectors ~M —m &,

~M —m+1&, and ~M —m+2& are the elements of the
Hilbert space that describes laser-cavity photons. They
correspond to the indicated, definite number of laser-
cavity photons.

The first term in the above expression thus corresponds
to a definite total number of excitations, @=M. The
remaining four terms describe lower-order corrections
that correspond to 8'=M+1 and 8'=M+2, respectively.

Let us denote the atomic operators that enter Eq. (2.13)
as

N=a a+ pa„o.
P

(3.1)

gp
G~ = —g " (1 cos2a—)cr„,

p

(3.3f)

and the operators that combine atomic and pump vari-
ables asQn the other hand, an effective Hamiltonian that de-

scribes the processes of one-photon lasing should con-
serve this quantity. Such an effective Hamiltonian will be
derived therefore within second-order perturbation
theory with respect to the interactions that do not con-
serve the excitation number (3.1). We shall not attempt
to calculate an effective form of the damping terms (2.14);
instead, we shall perform a secular approximation and
keep only the resonant contribution of this part of the
Liouville —von Neumann operator.

On the other hand, since h3-—0, we expect that transi-
tions between the dressed states that do not change
g„a 3„may occur. Such transitions may occur as a result
of absorption or emission of pump photons, without dissi-
pating much energy. For this reason, &,s is not expected
to conserve the total number of the pump photons, b b.

We shall assume that the wave function corresponding
to an eigenvector of the Hamiltonian (2.13) has the form

F0 = g —(1+cos2a )cr„,G

FDt = g —( 1+cos2a )o„,G

GF, = g —sin(2a)cr»,
p

F2 = —g —(1—cos2a)o „,G

P

F2 = —g —(1 cos2a)cr„—.G

P

(3.4a)

(3.4b)

(3.4c)

(3.4e)



7750 J. ZAKRZEWSKI, M. I.EWENSTEIN, AND T. W. MOSSBERG

If we introduce for brevity the notation

E,* =i(I'b+ih3)

, Q —Q
Ei = —i(I b ib—3) 6 (3.5b)

D2 =—(1—cos2a),6

6
D =—sin2a3

(3.5d)

(3.5e)

6
Di =—(1+cos2a), (3.5c)

we may write down the Schrodinger equations for the
coefficients P, qr, and g in the compact form

Eg =[62(M —m)+Q'm+b3btb+E', b +E,b+F, (b+b )]g +(Fob +F2b)y+~, +(Fob+F2b )y

+Go&(M —m)Q ~, +Go&(M —m +1)f,+G, v'(M —m)y +GtiV (M —m +1)(p+

+G2&(M —m + 1)q+ ~, + G2+ &(M —m )q (3.6)

The above equation is exact in the sense that it contains all couplings of the vectors with 8'=M to those with
8 =M+1, M+2. We stress here that we are effectively constructing the lowest-order expansion with respect to g/b, 2

or g/Q', which is formally the same as an expansion in those of the operators (3.3) and (3.4) that do not conserve 8; i.e.,
G ] G ] 62 6 p or F F F2 F2. Therefore, in the equations for the coeKcients cp and g, we may keep only the terms
that describe back coupling of these vectors to the g 's:

Eq)+=[Q'm+52(M —m +1)+b3b b+E*, b +E,b+F, (b+b )]p++G, &(M —m +1)g +(Fob+b "F2)g

(3.7a)

Ep =[Q'm+62(M —m —1)+b3b b+Eib +E,b+F, (b+b )]p +G, &(M —m)g +(Fob +bF2)g

(3.7b)

Eg +i=[Q'(m +1)+bz(M —m +1)+b3b "b+E*,bt+E, b+F, (b+bt)]g++, +G2t&(M —m + l)g

Eg i=[Q'(m —1)+b~(M —m —1)+b3b"b+Eibt+E, b+F, (b+b )]i),+62&(M —m)g

(3.7c)

(3.7d)

In the expressions (3.6) and (3.7), the energy is shifted by a constant E =E'+NQ'/2, where E' is an eigenvalue of the
Hamiltonian (2.13). The vectors y and g may be eliminated from Eqs. (3.6) by solving Eqs. (3.7). In the lowest or-
der, the solutions of Eqs. (3.7) are obtained by substituting for E its approximate zeroth-order value E =62(M —m)
+Q'm or by any other equivalent (with respect to the resonance condition Q'=62) combination of 62 and Q' In the.
process of eliminating the vectors y

+—
, q+—, we may also neglect the operator

S2 =a,b'b+E*, b'+E, b+F, (b+b'), (3.8)

which enters the right-hand side of Eqs. (3.7). Self-consistency of our resonance approximation requires that b, 3 =0 and
that the stationary values of the pump amplitude b and its complex conjugate b' be zero. Neglect of the terms (3.8)
turns out to lead to errors having magnitudes on the order of 6/Q'.

After employing the approximations discussed, we obtain the eff'ective Hamiltonian that conserves 8':

26 G
&,~=52ata+ g cr +36ta+DatG +50bb3+Eibt+Eib+F, (b+bt) , +—,[Gz, Gz]

26 6
, [Fobt+F2b, F&~&b+Fzb ]+,[G&a,Fob +F2b]+, [Fob+Fib, G&a] .

(3.9)

Finally, we may make use of the fact that the phases P„of the g„'s that enter formula (3.9) through the definitions (3.3)
and (3.4) are random. Summing over p may therefore be replaced by averaging over g„. Then, except for a nonessen-
tial constant, we obtain the final expression

Q'
&,s=—S3+b2a a+b3b b+E&b+E~&bt+D3S3(b+ b)t+gzS (a3a+ —,')+g&(Sta+atS)

+A2S3(blab+ —,')+A, ,S3[b +(bt) ]+A3(btSta+a bS)X4(Stba+atb S), (3.10)
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1+cos2ag)= g ~

2

(1—cos2a)
8(3b 2+ II')

(1—cos 2a) Gq
8(62+0')

(1+cos 2a)
4(b,2+ 0')

( 1 —cos2a) sin2a
4(b,2+ 0')

( 1+cos2a )sin2a
4(b,2+ 0')

(3.1 1)

S= g o.„exp( —iP„),
p

its conjugate

St= g o texp(+i/„),

(3.12a)

(3.12b)

In the above formula, we have introduced the macroscop-
ic polarization

where

f, = (1+ cos2a )sin2a g
4Q'

0' +(1+cos2a) (1 —cos2a) g
462+0' 8

sin 2a 6
262+ A' 8

] +co$2(g G
25 +Q' 4

(3.15a)

(3.15b)

In the above formulas, we have introduced the two-
photon polarization

S= Q o„exp( 2i—g„), (3.16)

and its conjugate.
As we see, the pump dynamics introduce new terms

into the two-photon effective Hamiltonian (3.14) that are
similar to the first (a} and second (b) type found in the
one-photon case. No terms of the Raman type [(c) above]
are present in Eq. (3.14).

and the macroscopic inversion

S3= 0 3p (3.12c)

The inhuence of pump dynamics on dressed-state lasers is
manifested through the appearance of several new terms
in the Hamiltonian (3.10). Those are (a) the terms pro-
portional to S3(b b+ —,') that describe dynamical Stark
shifts of the atomic frequency, due to virtual emission
and absorption of the pump-mode photons; (b) the terms
of the form b +bt, S3(bt+b), and S3[(bt) +b ] that de-
scribe the creation and annihilation of single pump pho-
tons and pairs of pump photons, such processes being as-
sociated with atomic transitions between dressed states of
the same type; and (c) quasiresonant and off-resonant Ra-
man processes described by the terms b S a, a Sb, etc.

A discussion of the one-photon dressed-state-laser dy-
namics consequent to the Hamiltonian (3.10) will be
presented in the next section.

The same method can be applied to the case of two-
photon resonance, when 0'=26, 2 and A3 remains small.
The effective Hamiltonian will then conserve (for details,
see Ref. [1], Sec. V) a generalized number of excitations
given by

N,s=a a+2+ o„cr„. (3.13)

Using steps similar to those employed in the one-photon
case, we obtain the effective Hamiltonian for the two-
photon dressed-state laser:

IV. SEMICLASSICAL LASER EQUATIONS
AND QUANTUM FLUCTUATIONS

From the Hamiltonian (3.10), one can easily derive the
semiclassical equations that describe the one-photon
dressed-state laser.

It is convenient to assume that, in the stationary limit,
the atomic polarization and laser-cavity field amplitude
will oscillate as

S(t)=e S,
S'(t) =e S'

at(t)=e a

a = —[I +i(62 bL )]a ig—2S3a ig, S——
—i A3bS —i A4b *S, (4.la)

a *=—[I i(62 bL )]a—*+ig2S—3a*+ig,S*

+i A,3b*S*+ik4bS*, (4. lb)

where AL will be determined from the stationary solution
through the "frequency-pulling formula" (see Eq. (4.12)
in Ref. [1]}. After introducing this ansatz, we obtain

0'
S~+b2ata+b3btb+E, b+E*,bt

+D3$3(b + b )+f2S3 (a a + —,
'

)

+f, [Sta + (a t) S]+A~S3 (b tb + —,
'

)

+A,S3[b +(bt) ] (3.14)

S = —[y, + i(Q' —b l ) ]S 2iD3(b +b" )S—
—2ig2S(a*a+ —,')+ig, S3a —2iA. ,S[b +(b*) ]

2i A2S(b*b+ —,' )+i A3b*S—3a+iA4S3ba, (4.1c)
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(4.1e)

b= —(I +id, )b iE*,—iD S —iA, S—b —Zik, ,b*S
—i A,3S*a—i A,4a 'S, (4.1f)

b (I Q l 63)b + (E& +tD 3S 3+ (RES 3b*+2 (A
& bS3

+i A,3Sa *+iX4S*a, (4.1g)

where the damping rates of the dressed-state polarization
and inversion are given by

2+sin 2(x
71

and

yz=(1+cos Za)y,

respectively, whereas the dressed-state inversion in the
absence of lasing is

S3=—2N cos2a
1+cos 2o;

Self-consistency requires that

b =b*=0 .

This condition immediately leads to an implicit equation
for Q:

0+ [D3S3+iA3S*a+ik4a*S]=A . (4.2)63+i I b

From the above expression, it is easily seen that the phase
of 0 is controlled by the phase of Q. Since the physics
cannot depend on this phase, as we mentioned already,
we can adjust the phase of Q, so that 0 will be real.

It is worth checking that Eq. (4.1) allows for a below
threshold solution in which a =a'=0 and S3=S3. In
such a case,

S *=—[y, i—(Q' b—t )]S*+2iD3(b+b*)S*

+Zig~S*(a *a+ ,' ) —ig—,S3a *+Zi A, ,S*[b +(b*)~]

+2i A&S*(b*b+—') —i A3a*bS3 i—A&a *b*S3, (4.1d)

S3 = —y~(S3 —S3)+2ig, (a*S—S*a )

+2i A3(a*bS b'—S'a ) +Zii~( a*b*S—S"ba),

The same approach can be used in the case of the two-
photon laser. Semiclassical equations are conveniently
represented after eliminating the asymptotic temporal be-
havloI':

S(t)=e S,

and
—ih~ta(t)=e a,

at(t)=e a
where AL will be determined from the frequency-pulling
formula (see Eq. (6.2), Ref. [1]).

The semiclassical equations have the form

a = —[I + i( b, z
—b L ) ]a 2if,a *S—ifzS3a, — (4.5a)

a *= —[I i ( b z bL ) ]a—'+ Zi f—, aS '+ if~S3a *, (4.5b)

S=—[y, +i(Q' —ZEL )]S 2iD3(b +b—*)S

Zif~S(a*a+ —,
'—)+if,S3a 2i A,S [b +—(b") ]

Stationary solutions of the system of equations (4.1)
can be easily found. In fact, since b =0, the equations for
stationary values of other variables decouple and can be
solved analytically for a fixed A, as discussed in Appen-
dix A of Ref. [1]. Solutions may then be inserted into Eq.
(4.2), thereby reducing the problem to solving a single
nonlinear equation for Q. The stability of the solutions
can be investigated by linearizing Eqs. (4.1) around the
stationary solution. The solutions are stable when all of
the eigenvalues of the stability matrix (see Appendix)
have negative real parts.

The quantum properties of the laser radiation as well
as the pump radiation may be studied using the quantum
Langevin equations [14,15] as in Ref. [2]. In order to do
it, one introduces quantum noise terms into Eqs. (4.1) and
studies linear fluctuations of the solutions around the sta-
tionary state, which are linear functions of the noise
terms. The only new element of such a calculation in
comparison to the one presented in detail in Ref. [2] is
the introduction of the new noise forces F&,F& that
characterize the pump mode and fulfill the standard
white-noise commutation relations,

(4.4)

GD3S3Q=Q+
53+iI b

(4.3)
2i AzS ( b *b +——,

' ),
S *= —[y, —i(Q' —ZEL ) ]S*+ZiD3(b + b * )S*

(4.5c)

Obviously, for small G and below threshold, ~Q~ = ~Q~, as
we expect. This relation will also hold above threshold,
provided that the correct branch of the solutions of the
Eqs. (4.1) is chosen. Above the threshold, in principle,
the equation for Q may admit bistable solutions. For one
of these solutions, the relation ~Q~ = ~Q~ will also hold.
The second solution will have a form dissimilar to (4.3).
We shall not discuss the problem of bistability here in de-
tail (see also the next section), and we shall consider only
the solutions of (4.2) that fulfill ~Q~ = ~Q~ in the limit of
small G.

+ZifzS'(a "a+—,') —if, S3a*+ZiA,S*[b +(b*) ]

+2i A~S*(b*b+ —,'),
S3 = —yz(S3 —S3 )+2if, [(a*) S—S*a ],

(4.5d)

(4.5e)

b = —(I &+i 63)b iE*, —iD3S3 i AzS—3b 2i A, b —*S3—,

(4.5f)

b *=—(I'~ —ib3)b+iE, +iD~S3+iA~S3b*+2i A, bS, .

(4.5g)
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GD3S3Q=Q+
3+l b

(4.6)

Below threshold, when a =S =0, we obtain the same re-
lation between 0 and 0 as in Eq. (4.3). Above threshold
the phase of Q determines the phase of Q and vice versa.
We may therefore choose the first one so that the second
one will be zero. Solving Eqs. (4.5) in the stationary limit
above threshold may be reduced to solving a single equa-
tion for 0, just as in the one-photon case (see Appendix
B, Ref. [1]). Stability of the stationary solutions is
governed by the linear stability matrix, given in the Ap-

The above equations have to be solved in accordance
with the self-consistency condition b =b =0, i.e.,

pendix. Again, the linearization of Eqs. (4.5) supplied
with the quantum noise terms allows for studies of the
quantum properties of the laser and pump radiation.

We have performed a detailed analysis of the stability
and quantum-statistical properties of the dressed-state
lasers in the presence of the pump depletion. We have
concentrated on the regime of small G, i.e., the case when
the pump depletion effects are small. Quite generally, the
stability properties of the one- and two-photon dressed-
state lasers are practically unchanged and are satisfacto-
rily described by the theory presented in Ref. [1]. In this
paper we shall concentrate therefore on the discussion of
the quantum-statistical properties of the laser and pump
radiation.

As in Ref. [2], we shall present results concerning
squeezing spectra of the laser and pump radiation:

S,(co)=min lim 2I' f dre ' '&5'[M(t+r)e '+M (t+r)e '][58(t)e '+5a t(t)e '])t~ oo oo
(4.7)

Sb(co)=min lim 2r, f '"dr e '-& V-[5b(t +'r)e +5b t(t+r)e '][5b(t)e '+5b t(t)e ']),t~ oo
q

(4.8)

S, b=minS, b(co) . (4.9)

where the operators 5a, M, 5b, and 5b denote quan-
tum fluctuations around the semiclassical solutions of the
cavity and pump fields, correspondingly. The symbol V'

indicates the appropriate ordering of the operators in
Eqs. (4.7) and (4.8), i.e., normal ordering of creation and
annihilation operators and apex time ordering.

Both spectra, defined above, are optimized with respect
to the quadrature angle (see Refs. [17] and [18));i.e., they
correspond, for each co, to the specific quadrature of the
field that has possibly the smallest Auctuations. In ex-
pression (4.7) phase-diff'usion effects of the generated laser
field are neglected. That means that the calculated spec-
trum corresponds to the transient case, when the observa-
tion time is larger than all the other characteristic time
scales of the system, but much smaller than the time scale
of the phase diffusion [19]. Other possibilities, as dis-
cussed in detail in Ref. [2), are that the calculated spec-
trum corresponds to the self-homodyning of the laser ra-
diation or the locking of its phase. It should be stressed
that no phase-diff'usion eff'ects are present in the dynamics
of the pump mode. The stationary amplitude of the
pump mode has a locked phase, uniquely determined by
the phase of the driving field Q. The quantum Auctua-
tions of the pump amplitude that enter Eq. (4.8) have
correlation functions that decay on a much faster time
scale than that of the phase difFusion. Operators that de-
scribe such fluctuations commute with the operator that
corresponds to the difFusing phase.

Apart from squeezing spectra (4.7) and (4.8), we shall
also discuss, as in Ref. [2], results concerning optimized
squeezing factors, defined as

V. RESULTS AND DISCUSSIGN

The stability regions and the squeezing properties of
radiation produced by dressed-state lasers have been
studied in detail in Refs. [1] and [2], respectively. There-
fore, we concentrate here on the statistical properties of
the depleted pump and the inQuence of the pump de-
pletion on the squeezing spectra of dressed-state lasers.

To study the e6'ect of pump depletion, we have intro-
duced in the previous sections three parameters G, A3,
and I b. It will be recalled that the coupling constant G
describes the strength of the coupling of the pump mode
with the active atoms; 1 b is the half-width of the addi-
tional, external pump-mode cavity and gives the decay
rate of the pump mode, while A3 is the detuning of this
cavity with respect to the driving-field frequency. To-
gether with the quantities describing the laser itself, the
number of parameters involved in the problem is rather
large. Therefore, to keep the discussion within reason-
able bounds, we have to restrict ourselves to selected
values of the parameters. In particular, we shall always
set 63=0, assuming, in quite a natural way, that the
pump cavity is driven by a resonant signal. When the
coupling constant G is too large, the active atoms interact
mainly with the external pump cavity. This prevents the
buildup of the dressed-laser mode. In the limiting case
when the pump mode dominates the dynamics, our sys-
tem smoothly evolves into a model for optical bistability
[20]. This is beyond the scope of the present paper. Thus
we shall typically choose G «g, especially discussing
dressed-state lasers in a confocal cavity (large g).

Note also that in all the graphs presented below we
give the value of the eftective Rabi frequency Q', inside
the cavity. This parameter better characterizes the atom-
ic (and dressed-laser-mode) dynamics than the "external"
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FIG. 3. Squeezing spectrum for the one-photon dressed-state
laser, S,(m), in the high-g case. Here 0'=110, b&= —100,
5&=110, I =2, g =0.5, and N =10'. The solid curve gives the
spectrum for 6=0 (no pump depletion). In the case of the
dashed curves, 6 =0.01, 63=0. For the long-dashed (short-
dashed) curve, I'b=1 (I b=0.03). The frequency (co—

coL, } is
given in units of y, i.e., one-half of the free-space atomic spon-
taneous emission width.

FIG. 5. Squeezing spectrum of the two-photon dressed-state
laser, S,(co), corresponding to conditions of Fig. 4 and 5&=8.5.
Solid curve, 6 =0; (long-dashed curve, 6 =0.001 {noticeable
only around e—eL =0); short-dashed curve, 6 =0.01. The fre-
quency (co—coL ) is given in units of y, i.e., one-half of the free-
space atomic spontaneous emission width.
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N =10'. The pump parameters for the dashed curve are 63=0,
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rarneters are the same except that 6 =0 (no pump depletion).
The frequency hz is given in units of y, i.e., one-half of the free-
space atomic spontaneous emission width.

FIG. 6. Squeezing spectrum of the two-photon dressed-state
laser, S,(co), for the different values of 6 indicated in the figure.
Other parameters are 0 = 140 6

&

= 100 Ap =61 F' =2

g =0.5, N=50000, I b=1, and 6,=0. As before, pump de-
pletion tends to destroy squeezing around co —coL =0. The fre-
quency {e—eL ) is given in units of y, i.e., one-half of the free-
space atomic spontaneous emission width.
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short-dashed curve to I b =10. Here G =0.5 and the values of
other parameters are the same as in Fig. 6. The frequency
(co—coL ) is given in units of y, i.e., one-half of the free-space
atomic spontaneous emission width.

of pump depletion tends to decrease the squeezing of the
dressed-laser mode more in the case of two-photon lasing
than in the case of one-photon lasing. This is illustrated
clearly in Fig. 5, which shows the corresponding squeez-
ing spectra for the two-photon laser. Two-photon lasers
evidently display maximal squeezing close to the
co —

coL =0 frequency region. This is at the same time the
frequency region is most strongly affected by pump de-
pletion, as we already learned from the analysis of Figs. 2
and 3. That is why squeezing of two-photon lasers is so
strongly degraded by the pump depletion.

In Fig. 6 squeezing spectra for a different regime of
dressed-state lasing (strongly off-resonant pumping,
5,= —100) is shown. As previously, squeezing at fre-
quencies located around co —

mL =0 is affected most
strongly by pump depletion, whereas squeezing at higher
frequencies is only weakly affected. For strong enough
coupling with the external cavity G =g, squeezing is des-
troyed completely. The pump depletion leads to a small
squeezing of the pump mode as shown in Fig. 7. Again,
as in the one-photon lasing case, the squeezing is only of
the order of few percent. In Fig. 7 we also study the
inAuence of cavity width on squeezing. The largest
squeezing is obtained for narrow cavities (long-dashed
line). The squeezing then, however, is narrow band and
limited to a very narrow region of frequencies around
zero. Moderate values of cavity width (I b =@) decrease
the degree of squeezing, but broaden the frequency region
over which it occurs. Finally, very broad cavities reduce
and broaden both squeezing and other features in the
pump squeezing spectrum.

In conclusion, the results presented show how pump
depletion may affect the stability and statistical proper-
ties of dressed-state lasers. We have formulated a novel
theory of self-consistently transforming to a dressed-state
basis. The dressing pump field in such a transformation
is chosen in such a way, so that its mean value is deter-
mined from semiclassical laser equations (4. 1) and (4.5).
These equations include, of course, the dynamics of the
pump. Our method allows for a self-consistent construc-
tion of the effective Hamiltonian of the dressed-state
lasers.

For small values of atom-pump coupling G, pump-
depletion effects practically do not inhuence the stability
properties of dressed-state lasers. The inhuence of pump
depletion on squeezing is typically destructive and slight-
ly more pronounced. It turns out. that in the case of reso-
nant pumping (b,3=0) squeezing in the lasing mode is
most strongly affected at frequencies close to the lasing
frequency (i.e. , around co —col =0 in Figs. 3, 5, and 6).
On the other hand, spectral components well separated
from the pump-light frequency are only weakly affected
by pump depletion (as shown in Fig. 3 for the single-
photon dressed-state laser). Similar effects are observed
for the two-photon laser. It is worth stressing, however,
that in the limit of high-g cavities and not too large G,
pump depletion does not destroy large squeezing effects
as predicted in Ref. [2]. We have also found that pump
depletion leads to a small (several percent) squeezing in
the depleted pump radiation.

The present paper completes our presentation of the
theory of dressed-state lasers based on the effective Ham-
iltonian approach. We restricted ourselves to one- and
two-photon lasing as these effects have either been ob-
served experimentally [6,7] or, we hope, as in the two-
photon lasing case, should be accessible to experiments in
the immediate future. The theory presented is easily gen-
eralized to X-photon (e.g. , three-photon) dressed-state
lasing. The effective cavity enhanced coupling between
dressed states involved in the lasing transition scales,
however, such as g, while nonresonant effects (Bloch-
Siegert terms or Stark shifts) such as g in the lowest or-
der. Therefore, the effective Hamiltonian approach
developed in Refs. [1], [2], and [8] and in this paper has
to be used very carefully in the case of higher iV. In par-
ticular, the competition between different lasing processes
(e.g., X-photon and N —1 oF-resonant photon) may play
a crucial role. Ideally, a theory should be developed that
will allow one to treat different competing processes on
the same footing. Such a theory must go beyond the
effective Hamiltonian approach utilized here. Work in
this direction is in progress.
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APPENDIX

In this appendix we present explicit forms of stability matrices that result from the linearization of Eqs. (4.1) and (4.5)
around the stationary-state solutions and that govern the stability of those solutions. The stability matrix for the one-
photon dressed-state laser in the presence of the quantized pump [Eq. (4.1)] is

—r a

0

lg)S3 2lgpSQ

2ig2S*a *

2lg )S
—i A.3S'

+i A,4S'

0
—r*

a

—2&g2SQ

—ig )S3+2ig2S*a

2lg )S
—i X4S

+ ik3S

lg)

0

0

2lgia

l X4Q

+ 1 X3Q

0

Lg)

0

p zlc

1

2~g&a

l A.3Q

+ ik4a

lg2Q

lg2Q

lg)Q

lg)a

/D3

iD3

—i A,3S

+i A,4S*
—2/D3S + l X4S3Q

+2iD3S —i A, 3S3a

—i A,4S

+ ik3S*
—2iD3S+ i X3S3Q

+2iD3 —ik4Q *S3

0 —(r„—ia, )

2i A.3a S—2i X4S*a 2i A.4Q *S—2i X3S*a

—(I b+ib3)

(A 1)

where

I,=I +i(b, 6)+—ig S, I,*=I i(b— 5—)
—ig S3, I i=y, +i(Q' b, )+2ig —(~a~ +0.5),

and

I *, =y, —i(A' —b, ) —2ig (~a~ +0.5) .

Analogously, the stability matrix for the two-photon dressed-state laser in the presence of the quantized pump [Eq.
(4.5)] is

—r a

2if, S*
2if, S,a 2i�f�z-

Sa2i�f"a

4if, S*a—

—2ifiS
—r'

Q

—2ifzSa
—2if, S,a*+2ifzS*a

4if, a*S

2tf ia

tf,a'
0

2if, (a *)' —2if, a '

—if, a

if, a*

'f ia
—if, (a*)

T2
—iD3

—2iD3S

+2iD3S*

—(I „+iA,+iA S )

2i A, S3

—2iD3S

+2iD3S*

—2i A1S3
—(I —ih —iA S, )

(A2)

where this time we have denoted

I', =I +i(bz —bl )+ifzS3, I',*=I —i(hz —bL) —ifzS3,

I,=y, +i(Q' 2bl )+2ifz(~a~ +0.—5), I', =y, i(Q' 2b—l ) —2ifz(~a~ +0.—5) .
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