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We present a detailed theory of the quantum-statistical properties of dressed-state lasers, i.e., lasers

that operate due to the gain on an inverted transition between dressed states of a coupled atom-field sys-

tem. With the help of quantum Langevin equations, we calculate squeezing spectra of such lasers. One-

photon dressed-state lasers exhibit large squeezing due to antiresonant transitions between dressed states

that lead to Bloch-Siegert-type shift eft'ects. Two-photon dressed-state lasers may also generate squeezed

light.

PACS number(s): 42.50.Hz, 42.55.—f, 42.50.Kb

I. INTRODUCTION

This paper is the second in a series of works on the
theory of dressed-state lasers. Dressed-state lasers [1]
operate as a result of gain on inverted transitions between
dressed states of a coupled atom-field system. Such phys-
ical situations arise when an ensemble of two-level atoms
is driven by a strong nearly resonant laser field. The
atoms are dressed by the laser field, and they may exhibit
gain at frequencies corresponding to one-, two-, or multi-
photon transitions between the dressed states. When a
sufriciently large number of atoms are placed in a cavity
that is tuned to a transition exhibiting gain, lasing may
occur. In fact, one-photon dressed-state lasing has re-
cently been observed [2].

In the preceding paper, effective Hamiltonians were de-
rived and utilized to provide a detailed semiclassical
description of dressed-state lasers [3]. In the e8'ective
Hamiltonian describing one-photon dressed-state lasing,
we included terms corresponding to Bloch-Siegert-type
[4] shifts of the dressed-state energies. These frequency
corrections, while negligible compared to optical frequen-
cies, are important in comparison to the effective Rabi
frequency Q', which measures the frequency difFerence
between the dressed-state sublevels. We have shown that
driven two-level atoms provide a promising gain medium
for observation of the two-photon lasing in the optical re-
gime. We have discussed carefully the competition be-
tween the resonant two-photon process and ofF-resonant
one-photon lasing, showing how robust the first of these
processes is. This paper is devoted to a study of the
quantum-statistical properties of dressed-state lasers.

The problem of quantum fIuctuations of laser radiation
has been the subject of numerous studies since the 1960s
[5]. In the recent years, this problem has been most fre-
quently investigated with the help of the quasiprobability
method [6]. Quantum fluctuations of lasers are described

within this framework with help of Fokker-Planck-type
equations [7] for quasiprobability functions. In the origi-
nal approaches, Glauber's P representation was used [8].
Recently, however, other approaches, based on the Q
function, Wigner function, and the positive or complex P
representation, have been developed [9].

In the standard one-photon laser, quantum effects,
such as photon antibunching [9], have been shown to be
rather small. To a very good approximation, the photon
statistics of a one-photon laser are Poissonian and corre-
spond to those of a coherent state [6]. Two-photon
lasers, on the other hand, are known to exhibit quantum
squeezing eFects [10,11], provided they are coherently
pumped [12]. Squeezing is often described in terms of a
squeezing spectrum S(co) [13]. Negative values of S(co)
indicate intrinsic quantum effects. Modern techniques of
evaluating S(co) are also based on the quasiprobability
approach, and typically they employ positive P, complex
P, or standard P representations [14].

One should stress that in the stationary state in-

coherently driven optical systems, such as the single-
mode laser, typically have some kind of a phase invari-
ance. Thus Auctuations inevitably lead to phase difFusion

[5], which in the long-time limit smears out any squeez-

ing effects and leads to a uniformly positive squeezing
spectrum S(to). In fact, the squeezing spectrum becomes
proportional to the power spectrum of the laser. One
might think that the squeezing spectrum concept does
not apply particularly well to such systems. This is not
the case, however, since there are several methods of
avoiding the coherence destroying efFect of phase
diffusion.

Typically, phase diffusion in lasers occurs on a very-
long-time scale well separated from all the other time
scales of the system. One can thus measure transient
squeezing spectra [15] by limiting observation times to in-
tervals much shorter than the inverse of the phase

7732 1991 The American Physical Society



THEORY OF DRESSED-STATE LASERS. II. PHASE. . . 7733

II. QUANTUM LANGEVIN EQUATIONS
FOR DRESSED-STATE LASERS

In this section we shall begin our discussion of the
quantum-statistical properties of dressed-state lasers. We
use a method that is based on the quantum Langevin
equations, but is slightly different from methods previous-
ly discussed in the literature [5,16]. We give details of the
method as applied to the case of the two-photon laser
only, since the expressions we derive can be easily
transformed to describe the one-photon laser.

As a preface, we briefIy recall the terminology of Ref.
[1]. Two-level atoms of transition frequency co, are
driven by a monochromatic pump field of frequency coL .
The atoms are within a cavity having an isolated reso-
nance at the frequency co, with a half width at half max-
imum of I'. We let 6&=~, —coL and 62=co, —coL. The
pump field has a resonant Rabi frequency of Q and a gen-
eralized Rabi frequency of 0'=(0 +hi)' . We also
define the angle u by the relations O=Q'sin2a and
6

&

=0' cos2a.
In the quantum Langevin description, we write down a

generalization of the Heisenberg equations that include
damping terms and fluctuating quantum Langevin forces.
These equations describe the interaction of the system
with a quantum reservoir of a specific sort. For quantum
Markov processes, this description is in fact equivalent to
a description based on the master equation [5].

For instance, the master equation given as Eq. (2.1) in
Ref. [1] is equivalent to the following set of Langevin
equations. For the cavity mode, we write

a = —I'a +H, +F(t), (2.1)

where H, denotes the usual Hamiltonian part, and ac-
cording to the quantum Auctuation-dissipation theorem,
the quantum white-noise operator F(t) fulfills the condi-
tion

diffusion constant.
We shall calculate below the squeezing spectra for

dressed-state lasers, using quantum Langevin equations
[16]. In Sec. II we present a brief description of our
method, applied to the two-photon laser. Quantum
Langevin equations in the dressed-state basis are derived
there. We linearize these equations around stationary
semiclassical solutions, describing dressed-state lasing.
The discussion of phase diffusion and its inhuence on the
squeezing spectrum is included in Secs. III and IV, re-
spectively. Section V contains a discussion of our results
for both one- and two-photon dressed-state lasers. The
most fascinating result is that the one-photon dressed-
state laser may exhibit large squeezing entirely as a result
of antiresonant transitions between dressed states that
lead to Bloch-Siegert shifts of the dressed-state energies.
The two-photon dressed-state laser also exhibits consider-
able squeezing effects. Technical details of our calcula-
tions are presented in Appendixes A and B. This paper is
followed by a third one [17], in which we discuss de-
pletion efFects of the pump (dressing) laser beam.

(2.2)

The master equation of Ref. [1] (or its analog derived
with the help of the elfective Hamiltonian &,s of Ref. [1],
(Sec. V) describes the evolution of the reduced density
matrix averaged over the noise degrees of freedom. Such
an average is evaluated under the assumption that the
reservoir is in the vacuum state

~

vac ), i.e.,

F(t)ivac) =0 . (2.3)

Similarly, the atomic Langevin equations in the bare-state
description are

g QO p+H + l 0 3 Fp

o„=—yo„+H t —I',I~g3 (2.4)

o 3„= 2y(—o3„+I )+H +2i(F„o„otF„.)—,
3p

where H, H denote the Hamiltonian parts, a.
p cJ3p

p 3p

denote atomic polarization and inversion operators, 2y
denotes the free-space spontaneous emission rate of the
atoms, and

(2.5)

We now transform the above equations to the dressed-
state basis, using the unitary transformation, given by ex-
pression (2.7) of Ref. [1]. If the Hamiltonian part is given
by &,s- (Eq. (5.5) in Ref. [1]), it is convenient to intro-
duce the macroscopic polarization and inversion opera-
tors

2ih, Lt —2iyS=e pe "o„,
p

2lkI t 2lgS =e e "g
p

p
(2.6)

where AL is to be determined from the "frequency-
pulling formula" (Eq. (6.2) in Ref. [1]), and the y„are
phases of the atom-cavity mode couplings g„entering Eq.
(2.2) in Ref. [1]. Note that, according to the theory of
Ref. [1] in the stationary limit, the operators
S= g„exp( —2iy )o„and S = g„exp(2iy„)o„behave
as exp( 2i b I t) X const and —exp(2ib, L t) X const, respec-
tively. We have included oscillating factors in Eq. (2.6) to
cancel the asymptotic oscillatory behavior of S and S
above threshold so that the operators S and S are slowly
varying in the long-time limit. After some algebra we ob-
tain Langevin-Bloch equations for the macroscopic
operators defined in Eq. (2.6):
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[y}+i(& 2&L, )]S i—A&$3a 2—i A2 a a +—S ——e (1+c)g e2 2 3p
P

4

P P

S = —[y, i—(Q' —261 )]S +iA, (a ) S3+2iA2S a a+ —+—(1+c)e ~ g& "Ftg3„
P

g 2l 61 t 2gp+—(1—c)e g e "o F +ise
2 3p p

p

'+AFT 4 + '+P, tF~e pop e op

S3= y2(S—, S3)—+»A)[S'a' (a' —)'S] i(1—+c) go F —QF„o„+i(1—c) gotFt —go F

a= —[I +i(hz —bz )]a+2iA, a S —iA2S3a+F,

a = —[I' i (b—i—bl )]a —2iA, S a+iA2a S3+F
(2.7a)

(2.7b)

where for conciseness we have used

s =sin2a

c =cos20.'.
The relaxation rate y& (yz) is defined in Eq. (3.5) [Eq.

(3.6)] of Ref. [1], A, (A2) is defined in Eq. (5.6a), [Eq.
(5.6b)], and AL =coDsL —col. , where coDsL is the frequency
at which the dressed-state laser oscillates. Our aim will
be to And the lowest-order corrections to the semiclassi-
cal solutions of Eqs. (2.7). (See Sec. V of Ref. [1].) In this
way we can describe the leading quantum e6'ects in the
case when the number of atoms in the cavity, X, is large.
We shall therefore treat the noise terms on the right-hand
of Eqs. (2.7) as small perturbations and look for the
lowest-order contribution that they give in the stationary
limit. Note that this linearization assumption is
equivalent to the assumption of Gaussian quasiprobabili-
ty distributions that describe fluctuations of the system
around its stationary state. Such an assumption is com-
monly used in quantum optics and gives asymtotically ex-
act results far from threshold and in the limit of large X.

It is useful to de6ne the macroscopic noise terms

and similarly the noise terms F;, i =1, . . . , 6. The quan-
turn correlation functions of the noise terms (2.8) and
their conjugates can be evaluated using the relations (2.5).
In order to study the role of quantum fluctuations in the
std, tionary limit, one has to linearize the solutions of Eqs.
(2.7) around the stationary semiclassical solutions. %'ith
this objective in mind, we shall look for solutions of Eqs.
(2.7) having the form

S=5+5S,
S3 =S3+6S3,
8 =a +58,

(2.9)

a =re

etc. The caret in Eqs. (2.9) indicates the operator charac-
ter of the solutions. S, S*,S3, a, and a * denote classical
c-number stationary values. The terms that describe
quantum corrections, 6S, 5S3, M, etc. , are linear func-
tions of the noise terms defined in Eq. (2.8). It is con-
venient to introduce the radial coordinates

+2EEL t 2lg
e "u3„F„,

p
2lkL t +2k fF2 =e e o 3pFp

p

e

+2l kL t 2lipF3=e e "oF„,
P

—2th& t +2&y
F4 =e e "o&F„,

P

F5= g o„F„, .

F6= go„"F„,
P

(2.8)

where cp, g are real, while r and p denote moduli of a and
S, respectively. Analogously, for the quantum parts of
expressions (2.9),

5a =(5r ir5$)e—
5S = (5P —ip5$)e

(2.10)

where 5r, 5$&, 5P, and 5$ are now Hermitian operators.
For reasons that will become clear below, it is useful to

introduce the following combinations of quantum phases:

5f 5$ 5~
5q& 5$ (2.11)2 4 2 4

We may now introduce a vector notation and denote the
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vector of quantum corrections as

x=(5r, 5P, 5S3,58,5$) . (2.12)

It is useful to arrange the noise terms into the form of a
14-dimensional vector. Since we work with real and Her-
mitian variables as in Eqs. (2.10) and (2.11), we shall also
introduce real and imaginary parts of the noise terms
F,F~:

Fe'~+F e
Or 2

Fe'~ —Fte
Oi

2L

(2.13)

F3r = F e'~+F~e

2

F e '&+F~e

2

(2.14)

F5+F5
5r

F,+F,
6r

with analogous expressions for the imaginary parts. All
of the operators in Eqs. (2.13) and (2.14) are Hermitian,
and their correlations are related simply to those of F
and F~. For instance, if we arrange the correlations in a
matrix form, we obtain

(F „(t)F „(t')) (F „(t)F,;(t'))
(F;(t)F,„(t')) (F;(t)F,;(t') )

1 L=
—,'(F.(t)F.(t')),.

1
. (2.15)

Similarly, for the noise terms given by Eq. (2.8), we
define

F e'&+F'e
F1r 2

F2e ' +F2e'

= [r +5r ir(58+5—$„d)]e (3.2)

where the phase Pd is now included in the exponent. It is
straightforward, using the definition of 5$~, to calculate
the correlations of exponential functions of the phase 5$d.
In the following we shaH use, in particular,

/ i5yd(t +v) i5$d(t) y y h7

of all, by direct inspection of the semiclassical solutions
given in Sec. V of Ref. [I], we observe that the phase
P =q&/2+ P/4 is indeterminate. This fact has the obvious
physical meaning that spontaneously generated laser ra-
diation does not have a fixed phase and implies that one
of the eigenvalues of the linear stability matrix A, is zero.
In fact, for our choice of variables [see Eq. (2.10)) it is the
eigenvalue corresponding to the fifth coordinate, 5$ (see
also Appendix A). We can thus write

5$(t)= I e ' 0 (0$)'Gkg (t')dt' . (3.1)
a

In the above expression, a summation convention is used;
i.e., all repeated indices j,k, v are assumed summed. 0/
and 0 k denote, respectively, the coordinates of the left
and right eigenvectors of the matrix JR corresponding to
the eigenvalue A~. It is useful to represent the phase 5$(t)
as a sum of diffusive and nondiffusive parts, 5$(t)
=5$d(t)+5/„d(t), where 5$d(t) = f '(0 k )*Gkg (t')dt'
is the contribution to the right-hand side of Eq. (3.1) that
comes from j=5 only, and 5$„d(t) is the contribution
from j=1,2,3,4. Because of the fact that A, ~=O (see Ap-
pendix A), it is easy to show that the correlation function
of 5$d is a linear function of time and leads to secular
divergences in the power spectrum or squeezing spec-
trum. Therefore, we must treat phase diffusion nonper-
turbatively.

That is easily accomplished when we take advantage of
the fact that we are interested only in the lowest-order
corrections to the semiclassical results. Up to linear
terms in fiuctuations, we may assume that 5gd commutes
with all of the other fiuctuation operators 5r, 58, 5$„d,
5p, and 5S3. In the long-time limit, we can thus write

a (t) =(r +5r )e

Let us now define a vector

F=(F F F, F, . . . , F „,F;) . (2.16)

where the phase-diffusion constant is

Vph p(0 k ) (0 k') GkvGkv'~vv' (3.4)

and H ~ denotes the noise correlation matrix and is
defined so as to satisfyUsing the vector notation of Eqs. (2.12) and (2.16), the

linearized Langevin-Bloch equations take the form

x(t) =Jktx(t)+ QF(t), (2.17)

III. PHASE DIFFUSION

We now briefly discuss the properties of the matrix A, ,
leaving a more detailed discussion to Appendix A. First

where JR is a 5 X 5 matrix that governs the linear stability
of the semiclassical stationary solutions, while 9 is a
5X14 matrix. Explicit forms of these matrices are given
in the Appendixes.

(F.(t)F..(t') ) =H...5(t —t'),
and which is explicitly given in Appendix B. Similarly,

i5$d(t+~) i5$d(t), —r h( + ) (3.5)

The expressions (3.3) and (3.5) can be easily derived using
the fact that 5$d is an integral or, in other words, a sum

of 5-correlated and commuting contributions coming
from F (t) at different times. The vacuum state of the
reservoir [Eq. (2.3)] is really a tensor product of vacuum
states corresponding to each of F (t) at different times.
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Quantum averages in Eqs. (3.3) and (3.5) reduce therefore
to the products over all times t of quantum averages of
the terms that are exponentials of linear forms of F (t).

For the parameters we considered in Ref. [1], the
phase-diffusion constant is typically of the order of
10 y,h„, where y,h„ is a number on the order of all the
other eigenvalues of the matrix Jkt. The phase diffusion
process thus happens on a much slower and well-
separated time scale from all other processes in the
laser —provided we are not too close to threshold. This
fact provides yet another support for Eq. (3.2). In writing
(3.2) we have neglected the terms of the relative order
([5$d, 5$„d])/(5p,„d) and ([5$d,58])/(58 ). A nu-

merical analysis shows such terms are typically of the or-
der of (y~„/y, h„)', i.e., very small.

In the next section, we shall see what inhuence this fact
has on the squeezing spectra.

IV. SQUEEZING SPECTRUM

Our aim in this section will be to derive expressions for
the squeezing spectra of dressed-state lasers. In the stan-
dard approach, the squeezing spectrum of a specific
quadrature component of the laser field is defined by the
formula [13].

p(ai, tp )= lim 21 f dre ' '(%[M(t+r)e '+5a (t+~)e '][5(t)e '+5a (t)e
t~ oo QO

(4.1)

where the ordering of the operators denoted by V' corresponds to normal ordering of the creation and annihilation parts
and apex time ordering [6]. In the formula above, y is the quadrature angle, which characterizes the specific quadra-
ture component of the laser field.

Let us begin our discussion, however, by looking at the power spectrum of the laser, which contributes partially to
expression (4.1). The power spectrum of the laser is a Fourier transform of the laser-mode stationary correlation func-
tion

C(~)= lim (a (t+r)a(t)) .

The evaluation of C(r) proceeds as follows. First, we represent a (t +&) and a (t) according to Eq. (3.2). Then we shift
the e"Ponents containing 5pd to the right. Finally, we perform a decorrelation approximation and calculate quantum
averages separately for the difFusive and nondi6'usive parts of the correlation function. This can be done for the same
reasons as discussed in the previous section. It is easy to show that in this case, according to Eq. (3.3),

C(w) = lim ( [r +5r(t +r)+ir[5y(t +&)+5/„d(t +a)] j [r +5r(t) ir [58(t)+5/„d(—t)]] ) e (4.2)

Obviously, phase diffusion leads to a broadening of all the specific structures in the spectrum by an amount yph.
When y h is much smaller than all the other widths in the problem (which is indeed the case), the effects of y h may be
safely neglected by letting yah =0 in Eq. (4.2).

When one calculates the squeezing spectrum S(a~, p ), one must also evaluate linear combinations of the Fourier
transforms of the correlation functions such as

D(t, r)=(a(t+r)a(t)) .

According to Eq. (3.5), such correlations behave differently:

D (t, r) = lim ( [r +5r(t +r) —ir [58(t +) r5+$„(td+r)]] [r +5r(t) ir [58(t)+5/„d(t)]] ) e—

As we see from Eq. (4.3), the correlation D(t, v ) tends
to zero as t ~~; thus the squeezing spectrum becomes
proportional to the power spectrum of the laser radiation
and takes only positive values.

There are, however, in principle at least three methods
to avoid the coherence destroying effect of phase
diffusion.

(a) Transient squeezing spectrum. First of all, since y~h
is much smaller than all the other characteristic widths in
the problem (y,„„),we may limit ourselves to finite-time
detection. In principle, we should then use the theory of
Ref. [15],but let us additionally assume that

Vph eschar ~

boobs

(4.4)

where ~,b, is the observation time. In such a case, we
may calculate the transient squeezing spectrum assuming
the stationary limit with respect to the time scales 1/y, h„
and neglect mph completely. Such a quantity may be mea-
sured in the standard homodyne or heterodyne scheme
[18]. In other words, we will then express the spectrum
through the correlations
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x Gk Gk.,H, 5(t' t")d—t'dt" . (4.5)

In the above formula the summation over all (at least
twice) repeated indices is performed. The summation
over j' and j",however, runs from 1 to 4 only.

Introducing the difT'usion matrix

D) =(0 k )*(0k )*Gk„Gk ~H„„ (4.6)

we easily see that, for t ~ ao,

(,5xg(t +r)5x&(t) ) =— (4.7)

(b) Injected signal and phase locking. The second

and in evaluation of CJ (t, r), we will neglect the contribu-
tions from the fifth eigenvector of the matrix JR com-
pletely. It is easy to check that such correlations have a
well-defined stationary limit and vanish for v.—+ Qo. Using
the notation of Appendixes A and B, we obtain

(5x;(t+r)5xj(t) )
t+& t A. , t, t+~—t')+A, .„(t—t")

J J
0 0

XOJ OJJ (0i )*(0ik )*

method of dealing with the phase di6'usion is to lock the
phase. That can be done, for instance, by injecting a sig-
nal into the laser cavity. Since the switching on of the
two-photon laser requires the injection of a seed field any-
way, phase locking is natural in this case. For sufficiently
weak injection signals, we expect that the squeezing spec-
trum of the laser will remain the transient squeezing
spectrum, calculated according to the prescription dis-
cussed in point (a).

(c) Self-homodyne scheme. Detection of squeezing is
often accomplished with the help of a homodyne scheme
[18] in which the signal to be measured is mixed with the
strong signal of the local oscillator. We may, however,
homodyne the laser radiation with itself, so that the
difFusion phase will simply cancel from the correlation
functions. The measurement of the intensity-intensity
correlation function in the limit of a strong laser signal
reduces then to the measurement of the variance of some
quadrature of the laser field. However, in this type of
measurement scheme, it is hard to optimize the spectrum
with respect to quadrature angle y [see Eq. (4.1)].

We shall focus our attention in this paper on two quan-
tities that may be measured within scheme (a), (b), or (c).
We shall discuss the squeezing spectrum S(co), which is
defined as the spectrum optimized with respect to the
quadrature angle p~ (see Ref. [14]), i.e.,

S(co)= minS(ai, y~)=41 I cos(cot)[(a (t+r)a(t))+(a (t)a(t+r))] —8I" f cos(cot)(a(t+r)a(t))
0'q 0 0

(4.8)

Using the notation introduced above and in Appendixes A and B and neglecting the effect of phase di6'usion, we may
write down

1S(co)=41 [DJJ [O~iO~i +r 0~„0~h+i r(O~p„O~i
'—OjiO~p„)]J

(g'. +~') (A,, +A,J.

+D,', [0',0', + '0r0~~J+ir (0', OJ~„—OJ~„O', )]

D~~'[0 Ji 0~i rO~pi, O~ph ir (O~p—„O',—+O~IOJ h ) ]
(A,,'+co') (&, +&) )

(4.9)

S, = minS(co) . (4.10)

We shall study the dependence of this quantity on param-
eters characterizing dressed-state lasers and, in particu-
lar, its dependence on the cavity-pump detuning 52.

V. SQUEEZING SPECTRA
OF DRESSED-STATE LASERS

In this section we present the results of our numerical
analysis of the squeezing spectra for dressed-state lasers
Two kinds of graphs are presented. For each set of pa-
rameters, we first find the optimized squeezing factor,

where the "phase" component of the eigenvectors is
0jh =04+0&, and the sums run over J and j' from 1 to
4

Also, we shall present the results for an optimized
squeezing factor S, defined as [14]

defined as in Eq. (4.10), as a function of the cavity-pump
detuning Az. The optimized squeezing factor is drawn
with the direction of the vertical axis reversed so that the
maximal squeezing (minimal S, ) is at the top. Calcula-
tions are limited to those values of A2 belonging to the re-
gion of laser stability and the region of self-consistency of
our theory (see Sec. VI of the preceding paper). Stability
boundaries are indicated in the figures by (a) capital S,
while self-consistency boundaries by a capital C. We also
present examples of the squeezing spectrum S(co) calcu-
lated for specific values of A2. In these cases the vertical
axis is not reversed, so that maximal squeezing occurs for
minimal S (co).

Let us begin our discussion with the one-photon
dressed-state laser. We distinguish two parameter re-
gimes with markedly di6'erent squeezing behaviors. The
two regimes are distinguished on the basis of the size of
the atom-cavity coupling constant g relative to other
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quantities such as y. In many standard laser cavities,
g/y is quite small. On the other hand, relatively large
g/y values arise in situations where very small or highly
mode degenerate cavities are employed Figure 1 shows
the optimized squeezing factor as a function of 42 for a
one-photon laser configuration possessing a small g/y
value. Squeezing is only observed close to the stability
limits, indicated by the capital S s in the figure, and is
rather small. This is consistent with the results of the
preceding paper, which show that for such a laser Bloch-
Siegert shifts are of practically no importance. In be-
tween the two peaks shown in Fig. 1, the laser is stable,
but for these values of the laser-pump detuning, squeez-
ing spectra are positive. The insert shows two squeezing
spectra calculated for values of h2 within the two squeez-
ing regions. Note that the squeezing spectrum corre-
sponding to the larger value of Az is negative only very
close to co=0. Such narrow features in the spectrum may
be hard to observe in a finite-time measurement (see dis-
cussion in Sec. IV).

Figures 2 —7 correspond to high-g /y cavities. As
shown in the preceding paper, Bloch-Siegert shifts are
very important in such cavities and may therefore lead to
laser action that is significantly different from that pre-
dicted using the standard one-photon-laser mode [9]. It
turns out, as we shall see below, that Bloch-Siegert effects
strongly inAuence the quantum-statistical properties of
the emitted laser radiation and, in fact, lead to large
squeezing effects that are absent in the standard case.
Figure 2 presents the optimized squeezing factor for
several values of O'. The largest squeezing corresponds
to the smallest value of Q', relating this effect once more
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to the relevance of the Bloch-Siegert shift, which is of the
order of g /O'. For the same reason, squeezing disap-
pears for sufficiently large O'. The optimized squeezing
factor typically has two maxima that occur for values of
62 close to the laser stability boundaries.

Figure 3 shows exemplary squeezing spectra for

Cavity - Pump laser Detuning a2/y

FIG. 2. Optimized squeezing factor S,„ for the single-photon
dressed-state laser as a function of 62. Other parameters are
5&= —100, I =2.0, g=0.5, and N=5X10. The values of Q'

are indicated in the figure. Note that 5& is given in units of y,
i.e., one-half of the spontaneous atomic emission rate.
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FIG. 1. Optimized squeezing factor S,p for the single-photon
dressed-state laser as a function of 6&. Other parameters are
A'=16, 6&= —12, I =0.1, g=0.01, and N =10 . In the insert
we show squeezing spectra S(co) for two values of b,&=13.45
(dashed line) and b,2= 18.7 (solid line). Note that A2 and co —coL
are given in units of y, i.e., one-half of the spontaneous atomic
emission rate.

FIG. 3. Examples of squeezing spectrum S(co) for the single-
photon dressed-state laser for the parameters of Fig. 2:
0'=110, 6&= —100, I =2.0, g=0.5, and N =5X10 . The
values of 52 are 91 (solid line), 97 (long-dashed line), and 108
(short-dashed line). Note that co —

coL is given in units of y, i.e.,
one-half of the spontaneous atomic emission rate.
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FIG. 4. Optimized squeezing factor S,~ for the single-photon
dressed-state laser as a function of 62. Other parameters are

6,= —100, I =2.0, g=0.5, and N=10'. The values of 0' are
indicated in the figure. Note that b2 is given in units of y, i.e.,
one-half of the spontaneous atomic emission rate.

FIG. 6. Optimized squeezing factor S,~ for the single-photon
dressed-state laser as a function of 62. Note the 6& is given in
units of y, i.e., one-half of the spontaneous atomic emission
rate. Other parameters are 6&= —12, I =2.0, g=0.2, and
N = 10'. The values of 0' are indicated in the figure.

different values of 62. The frequency of maximal squeez-
ing increases with increasing cavity-pump detuning A2.
Figures 4 and 5 are drawn for a larger number of atoms

Note that the optimal squeezing factor increases in
this case with N. Figures 6 and 7 correspond to a
different choice of parameters and, in particular, to the

case of a relatively small atom-pump detuning 6&. Note
that the optimized squeezing curves differ in this case
from the previously discussed case of large 6&. First of
all, no maxirnurn at the right stability boundary is ob-
served. The curves are limited this time by the consisten-
cy condition [Eq. (6.11) of Ref. [1]j. The region in which
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FIG. 5. Examples of squeezing spectrum S(co) for the single-
photon dressed-state laser for the parameters of Fig. 4:
0'=110, 6,= —100, I =2.0, g=0.5, and N =5X10 . The
values of 62 are 60 (solid line) and 110 (dashed line). Note that
co —coL is given in units of y, i.e., one-half of the spontaneous
atomic emission rate.

FIG. 7. Examples of squeezing spectrum S(co) for the single-
photon dressed-state laser for the parameters of Fig. 5:
6& = —12, I =2.0, g=0.2, and N = 10'. The values of 0' and 62
are 20 and 14 (solid line), 16 and 12 (long-dashed line), and 16
and 14 (short-dashed line). Note that co —coL is given in units of
y, i.e., one-half of the spontaneous atomic emission rate.
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the consistency condition is important is indicated in Fig.
6 by the capital C s. The spectra in Fig. 7 exhibit com-
plex behavior (shifts of the maximal squeezing frequency,
qualitative shape changes) as a function of 0' and hz.

We may summarize the results for the one-photon
dressed-state laser as follows. It is well known that the
standard theory of the single-mode laser does not lead to
any kind of significant quantum effects and that the quan-
tum state of the laser light may be very well approximat-
ed by a coherent state [6]. Our theory differs from the
standard one by the presence of the Bloch-Siegert type of
terms. Contrary to the standard Bloch-Siegert shifts,
which are, of course, negligible in the optical domain [4],
analogous terms appear in our theory because of the pres-
ence of "antiresonant" transitions in the dressed-state
description of the system (see Sec. IV, Ref. [1]). The an-
tiresonant transitions in question belong to three groups:
(a) transitions between upper-upper or lower-lower
dressed states that are accompanied by cavity photon
emission or absorption, (b) transitions from the more
populated dressed state to the less populated dressed state
accompanied by photon absorption, and (c) transitions
from the less populated dressed state to the more popu-
lated dressed state accompanied by photon emission.

All of these processes compete in a coherent way with
standard one-photon transitions in the dressed-state laser,
leading to frequency shifts. The Bloch-Siegert dressed-
state shifts are typically of the order of g /Q' and, ap-
parently, cannot be neglected in our theory.

Although Bloch-Siegert shifts scarcely affect the stabil-
ity properties of dressed-state lasers, they play an enor-
mous role in determining statistical properties of laser ra-
diation. It is amazing to see that the antiresonant terms
in the dressed-state Hamiltonian (Sec. II, Ref. [1]),which
lead to Bloch-Siegert effect, at the same time may lead to
large squeezing of the one-photon dressed-state laser.
Large squeezing efFects are predicted to occur in high-g
cavities, in which case Bloch-Siegert effects are typically
more pronounced than for low-g cavities.

Qur results suggest that the standard low-frequency
maser, constructed with a high-g cavity, may serve as a
source of bright squeezed radiation. Owing to the small-
ness of maser resonant frequencies, Bloch-Siegert effects
may be relatively large and may be related to squeezing in
a manner analogous to that discussed here for the case of
the one-photon dressed-state laser.

One should stress also that the inclusion of the Bloch-
Siegert shift leads to a theory that is very rich and leads
to a whole variety of results that are not easy to interpret.
The magnitude of the squeezing effects is quite robust
with respect to parameter changes, but the shapes of
squeezing spectra and optimized squeezing diagrams vary
significantly.

Let us now consider the case of the two-photon
dressed-state laser. As before, we discuss first the low-g
cavity (see Fig. 8). The squeezing appears only in the vi-
cinity of the stability boundaries, indicated by the capital
S's, and is rather small. Note the extremely sharp peak at
the right Az limit. Although the squeezing here is large,
it may be hard to observe. Since the squeezing has a very
narrow A2 bandwidth, it would require a highly mono-
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chromatic and well-stabilized pump laser to avoid a
smearing out of this feature.

The insert shows the squeezing spectra for laser-pump
detunings corresponding to the left and right peaks in the
figure. The squeezing in the spectrum corresponding to
the lower value of 52 is narrow band in co. Therefore, it
may not be hard to observe it in the limited-time mea-
surement as discussed above.

Figures 9—16 correspond to the two-photon laser in a
high-g cavity. Figures 9—11 correspond to Q' = 120. Fig-
ure 9 shows the optimized squeezing factor S, for the
values of the cavity width I shown. As in the low-g case,
squeezing is maximal close to the stability limits (indicat-
ed by capital S's). It is also quite large close to the con-
sistency limits (indicated by capital C's). Since squeezing
increases when the parameters approach their threshold
values, larger I leads typically to larger squeezing. This
can be understood in the following way: Close to thresh-
old the competition between resonant (Sec. III, Ref. [1])
and antiresonant terms (Sec. IV, Ref. [1]) in the dressed-
state Hamiltonian becomes more pronounced. Figure 10
displays the squeezing spectrum for several values of A2
taken from along the solid curve of Fig. 9. Note that the
frequency of maximal squeezing jumps abruptly to co=0
at the largest value of 62. This fact explains the nonana-
lytic behavior of the solid curve in Fig. 9. Figure 11
shows the squeezing spectra in the vicinity of the stabi1ity
limit. Critical slowing down and critical fluctuation ex-
hibit themselves in the squeezing spectrum in the form of
large positive peaks at frequencies corresponding to the
imaginary part of the stability-matrix eigenvalue whose
real part tends to zero at the stability limit. Note, howev-

FIG. 8. Optimized squeezing factor S,„ for the two-photon
dressed-state laser as a function of A2. Other parameters are
Q'=16, 5& = —12, I =0.1, g=0.01, and N =10 . In the insert
we show exemplary squeezing spectra S(co) for two values of
62=11.36779 {dashed line) and 62=8.156 (solid line). Note
that h2 and ~—col are given in units of y, i.e., one-half of the
spontaneous atomic emission rate.
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FIG. 13. Examples of squeezing spectrum S(~) for the two-
photon dressed-state laser for the parameters of Fig. 12:
6&= —100, 0'=140, I =2, g=0.5, and X=SX10 . The values
of 52 are 61 (solid line), 65 (long-dashed line), and 69 (short-
dashed line). Note that co —coL is given i units of y, i.e.,one-half
of the spontaneous atomic emission rate.

the lasing frequency. The shape of the squeezing spec-
trurn is quite rich and depends strongly on X, as shown in
Fig. 14.

Figure 15 and 16 correspond to yet larger values of Q'.
In Fig. 15 parameter limits set by consistency and stabili-
ty conditions are indicated by the capital C's and S's, re-
spectively. The behavior of the optimized squeezing fac-
tor S, is quite regular in this regime. As before, larger
squeezing corresponds to larger cavity width. Squeezing

FIG. 15. Optimized squeezing factor S,~ for the two-photon
dressed-state laser as a function of 5&. Other parameters are
6&= —100, Q'=200, g=0.5, and %=10'. The values of I are
indicated in the figure. Note that hz is given in units of y, i.e.,
one-half of the spontaneous atomic emission rate.

spectra (Fig. 16) show that the squeezing occurs for a
broadband of frequencies, but not in the irnrnediate
neighborhood of the frequency related to the most
relevant eigenvalue of the stability matrix.

Summarizing, we should stress that, as in the case of
the one-photon dressed-state laser, significant squeezing

g -gmay occur for two-photon dressed-state lasers in hi h-
cavities. On the other hand, squeezing remains on a level
of at most a few percent for lasers in low-g cavities. Gen-
erally, the squeezing is bigger for values of parameters
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FIG. 14. Examples of squeezing spectrum S(co) for the two-
photon dressed-state laser for the parameters of Fig. 12:
6&= —100, Q, '=140, I =2, g=0.5, and 5~=65. The values of
N/10' are 1 (solid line), 0.5 (long-dashed line), and 0.2 (short-
dashed line). Note that co —~L is given in units of y, i.e., one-
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FIG. 16. Examples of squeezing spectrum S(co) for the two-
photon dressed-state laser for the parameters of Fi . 15:1g.
6,= —100, A'=200, I =3, g=0.5, and N=5X10 . The values
of 4z are 90 (solid line) and 94 (dashed line). Note that co —

mL is
given in units of y, i.e., one-half of the spontaneous atomic
emission rate.



THEORY OF DRESSED-STATE LASERS. II. PHASE. . . 7743

that correspond to the vicinity of the laser threshold
(smaller X, larger I ).

The squeezing for both one- and two-photon dressed-
state lasers has a transient character or must be observed
in a phase-locked or a self-homodyne scheme, as dis-
cussed in Sec. IV. Nevertheless, within these limitations,
we conclude this paper by stating that dressed-state lasers
could be used for generating bright squeezed light.

Since completion of this work, we have learned of re-
lated work by Agarwal [19,20]. He treats only single-
photon lasing, works in the lowest-order rotating-wave
approximation, and neglects Bloch-Siegert shifts. Using
a quasiprobability approach, he finds that one-photon
dressed-state lasers possess statistical properties analo-
gous to those of standard lasers. Our results, which are

more accurate since they include the Bloch-Siegert shift,
indicate that dressed-state lasers may have quite interest-
ing quantum statistical properties. In this respect,
theories that neglect Bloch-Siegert shifts cannot be con-
sidered complete.
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APPENDIX A

The linearized Langevin equations, as we already stated, have the form

x=iktx+ Q,F, (A 1)

where the matrix Af, is the same matrix that governs the linear stability of the semiclassical solutions. The matrix Jkf, , a
5 X 5 matrix, is found to be

—2A&S3r sin40

8A@r sin40

—2Ajr sin40

V1

4A&r sin40

—A&r sin40

y2

8A&rp cos40
—4A&S3r cos40

16A@r cos40 0

A2S3 S3rrAz+ — —cos48 A, cos(40)2 2 1 4
r

Atr A)S3r
A2 — cos40 4A2p + sin40 0

2 2p p

(A2)

A)S3
r A~+ cos40

2p

S3r
A, cos(48) + 1

4p 3

A)r
A2+ cos40 4A~—

2 2p

A)S3r
sin40 0

p

The linear stability of the stationary solutions requires that all of the eigenvalues of the matrix AL have negative real
parts.

In general, the matrix A, is not symmetric. It has therefore left and right eigenvectors OJ and 0 J:

M;kO) =AJOJ,

(A3)

w~o j=x*.o jj

where AJ denote eigenvalues of the matrix Af The eige. nvectors OJ and 0 J can be chosen to be bi-orthonormal, i.e.,

(OJ )*0'=5" .k jj (A4)

Note that phase-diffusion effect exhibits itself in the form of the matrix AI that has the fifth column equal to zero. This
implies that the fifth right eigenvector is

0/, =(0,0,0,0, 1) .

Similarly, left eigenvectors have

0~=0,

for j=1,2,3,4.
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The matrix 9 of Eq. (2.17) has the form

APPENDIX B

0 0 0 0 0 0 0 0 0 0 0

0 0 c —1

2
0 s 0 —s 0 0 0 0

0

0
1

2r
1

2r

0
1 +c

8s

1+s
8s

0
c —1

8s
0 —s 0 —s 0 0 0 0 0

0 s 0 s 0 0 0 0 0

0 0 0 0 0 0 2(1—c) 0 2(1+c) (81)

Additionally, we denote by H ~ a 14 X 14 noise correlation matrix defined through

(F (t)F (t'))=0 5(t t'), —

where

(82)

—2ySu

2yXu

2ySu

y(N —Ss )u

y(N+S3)u

2ySu

y(N —S3)u

—2ySu

y(N+S3)u

(83)

with all blank entries being zeros, and u is a 2 X 2 matrix:

(84)

and S =(5+S")/2. In the matrix (83), all rapidly oscillating correlations have been neglected; that is, we make the
rotating-wave approximation with respect to the dissipative part of the evolution in the same sense as in Ref. [1]. Also,
the same terms drop out from (83) as a result of averaging over individual atomic phases y„.
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