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We have investigated the effects of various model polarization potentials in low-energy (below 15 eV)
electron-SiH, collisions in which electron-exchange correlation is treated exactly via an iterative pro-
cedure. Two models of the parameter-free polarization potential are employed; one, the V{,g, potential,
introduced by Jain and Thompson [J. Phys. B 15, L631 (1982)], is based on the polarized-orbital theory;
the other, the correlation-polarization potential ng,, first proposed by O’Connel and Lane [Phys. Rev. A
27, 1893 (1983)], is given as a density functional. In this low-energy region, the differential as well as in-
tegral cross sections are greatly influenced by such short-range-correlation and long-range-polarization
interactions. We found that a local parameter-free model to mimic charge-distortion effects is quite suc-
cessful if it is determined under the polarized-orbital-type approach rather than based on density-

functional theory.

It is only recently that electron-exchange correlation in
low-energy electron scattering with nonlinear polyatomic
molecules can be treated exactly [1-10]. A complete cal-
culation treating both the exchange and polarization
effects exactly is still an open problem. It is well known
that low-energy (E =15 eV) electron-molecule collision
dynamics depends strongly on approximations involved
in the treatment of exchange and polarization correla-
tions [3,11]. From a first-principles point of view, these
effects are nonlocal and energy dependent. If the total
wave function of the electron-molecule complex is ex-
panded as
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then both the short-range- and long-range-correlation
effects are intrinsically included exactly in a natural way.
In Eq. (1), ®; is the ith electronic state of the N-electron
target in a fixed-nuclei approximation, F; is the corre-
sponding continuum function, and A is the usual an-
tisymmetrization operator which gives rise to nonlocal
exchange correlation. The expansion over the target
states ®; also includes some pseudostates to represent
target polarizability and the second term in Eq. (1) de-
scribes the (IV +1)-electron correlation functions. It is a
formidable task to use expansion (1) as such even for the
simplest target H,. The easiest way is to work in a
single-state [i =1 in Eq. (1)] approximation and neglect
the second term altogether. This is the so-called static-
exchange (SE) approximation. Assuming that we are
concerned here with electronically elastic scattering only,
the effects due to electronically (virtual) excited states and
the correlation term in (1) can be approximated via a lo-
cal term known as the polarization potential. Even in
this simplified SE-plus-polarization (to be denoted as
SEP) model, the calculations on the nonlinear polyatomic
systems are very difficult and require a set of computer
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programs different from those used for linear molecules.
Consequently, very little theoretical work has been done
on electron scattering from polyatomic molecules. Most
of the earlier work on electron-polyatomic-molecule col-
lisions employed model potentials for both the exchange
and polarization interactions (see Ref. [3]).

It is now a well-established fact that in the low-energy
regime, the use of model potentials for both the exchange
and polarization forces is rather misleading due to the
fact that, in order to make theory and experiment closer
these interactions do compensate for each other. A com-
putationally simplified approach is one where exchange is
treated exactly while the polarization is included via an
approximate local model potential [3—-7]. This scheme
has been very recently employed to investigate near-
threshold vibrational excitation in the case of e-H, col-
lisions [12]. It therefore becomes quite important to em-
ploy a better model for polarization effects. In this
respect a parameter-free potential determined from an ac-
tual distorted target in the presence of an incoming pro-
jectile should be a desired choice. In the past, two such
prescriptions for nonadjustable model polarization poten-
tials have been suggested for electron—polyatomic-
molecule collisions in general: these are the V), (Jain and
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Thompson [13]) and ngl (Gianturco, Jain aild Pantano
[14]; CP denotes correlation polarization) (for description
see below).

In the following the SEP(JT) model means the use of
V3% (T for Jain and Thompson [13]) along with our
iterative static exact-exchange (SEE) approach, while the
SEP (CP) employs the ngl parameter-free forms. In a re-
cent paper [5] on the e-CH, system, we demonstrated
that (i) the differential cross sections (DCS) and the
Ramsauer-Townsend (RT) effect are very sensitive to the
approximations involved in the calculation of the polar-
ization potential and (ii) the SEP(JT) model was better
than the SEP(CP) one. The Vgl potential was obtained
by Jain and Thompson [13] from the second-order energy
of the molecule evaluated from the first-order wave func-
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tion @, of the target; ®; was determined following the
method of Pople and Schofield [15], using an expansion in
terms of the ground-state wave function @, with the ex-
pansion coefficients obtained variationally. In order to
corrrect for the nonadiabatic effects in the target region,
Jain and Thompson [13] borrowed the nonpenetrating
criterion of Temkin [16]. On the other hand, the Vpo] po-
tential is based on the hybridization of the short-range
correlation energy of the target and the long-range-
polarization form (—a,/2r*), where a is the polarizabil-
ity of the target in atomic units. The Vpol potential was
first proposed by O’Connel and Lane [17] for atomic tar-
gets and later modified for molecular targets by Padial
and Norcross [18]. It is much easier to evaluate the Vpol
potential than the corresponding Vpo] term.

A comparison of the present nonadjustable and
energy-independent Vpol and Vpol potentials is given in
F1g 1. We see that the Vpol model is stronger than the
Vpo, potential in the 0.5-4-a.u. radial region. In addi-
tion, near the origin, the Vpol has the correct form. It
was observed by Jain and Thompson [19] that when the
Vpo1 approximation is employed along with free-
electron-gas exchange along with orthogonalization pro-
cedure [20] (OFEGE) model, the position of the RT
minimum occurs at much lower energy (0.08 eV com-
pared to the experimental value around 0.25 eV); this in-
dicates that the ¥}l is a weak potential when employed
along with the OFEGE model [19]. Gianturco, Pantano,
and Scialla [21] employed the Vpol along with model
exchange (in their so-called modified semiclassical-
exchange) potential. Yuan [22] has included exchange
effects exactly in a spherical approximation, which is not
appropriate in this low-energy region. It will therefore be
very interesting to compare these polarization models in
an exact static exchange calculation. The purpose of the
present work is to draw some useful conclusions regard-
ing such a comparison.

The theory and cross-section formulas have already
been described in a recent paper [7]. In brief, we solve
the following integro-differential scattering equation in
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FIG. 1. Nonadjustable polarization potentials for the e-SiH,
system in the JT and CP approximations as a function of radial
distance r in atomic units. Note that each potential is multi-
plied by a factor of V47, For notations see the text.

the body-fixed (BF) frame of reference under the single-
center scheme,

(—4V2+Vy+ Vo —1k?)F (1)
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where k? is the electron energy in atomic units, Vg is the
static potential, and ¢, represents a bound orbital. Equa-
tion (2) was solved separately for each symmetry (A4,,
A,, E, Ty, and T,) and energy. In the single-center ex-
pansion of the potential and continuum function, we in-
cluded terms up to / =6, which defines the size of the K
matrix of a given symmetry. In this low-energy region
(below 1 eV), the convergence with respect to various
single-center expansions is almost perfect.

There have been several experimental studies on the e-
SiH, system [23-32] including work on the total
differential, and momentum-transfer cross sections. For
a full list of references on the e-SiH, collisions, experi-
mental or theoretical, refer to our recent paper [7]. First
we discuss our total (rotationally summed but vibration-
ally and electronically elastic) and momentum-transfer
cross sections in the present energy region.

Figure 2 displays our o, values in both the SEP(JT)
(solid line) and SEP(CP) (lower dashed curve) models
along with the experimental data of Wan, Moore, and
Tossell [23] (crosses). Also shown in this figure are our
SEE results (multiplied by a factor of 3) without polariza-
tion (upper dashed curve). No other close-coupling cal-
culations where exchange is treated exactly are available
below 1 eV. It is also worth mentioning that polarization
effects are more crucial below 1 eV than above this ener-
gy. We see from Fig. 2 that the SEE cross sections
without polarization effects are too large. It is clear from
Fig. 2 that the SEPUJT) curve, predicting a RT structure
around 0.25 eV, is more favorable. Although the mea-
sured values of Wan, Moore, and Tossell do not seem to
show any RT minimum, its existence is clearly visible in
their o, curve around the same energy, 0.25 eV (see Fig.
5 of Ref. [23]). The existence of the RT minimum is also
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FIG. 2. Total cross sections for the e-SiH, elastic collisions
below 1 eV. Theory: solid line, present SEP(JT) model; dashed
line, present SEP(CP) model. The upper dashed curve
represents the static exact exchange (SEE) (without polariza-
tion). Experiment: crosses, Wan, Moore, and Tossell [23].
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FIG. 3. Momentum-transfer cross sections for the e-SiH, sys-
tem in the present SEP(JT) (solid curve) and SEP(CP) (dashed
curve) models. The swarm data are taken from Refs. [29]
(crosses) and [30] (squares).

confirmed in swarm-type studies by several investigators
[28-32]. We now discuss our o, cross sections below 1
ev.

Figure 3 illustrates our o, results in both the SEP(JT)
and SEP(CP) models along with swarm data [29,30]. The
experimental o,, cross sections (Fig. 3) exhibit the RT
minimum around 0.25 eV, while our SEP(JT) (solid line)
predicts this minimum around 0.2 eV. The SEP(CP) o,
results (dashed curve in Fig. 3) do not show any RT
effect. In the o, curves of Fig. 2, the corresponding posi-
tions of the RT minimum in SEP(JT) and SEP(CP) mod-
els occur, respectively, at 0.16 and 0.25 eV. In general,
the minimum in o ,, occurs at lower energy than the cor-
responding minimum in the o, cross sections. Even the
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FIG. 4. Same as in Fig. 2 except in the 1-15-eV range. The
experimental points are from Refs. [23] (crosses) and [27]
(squares).

magnitude of o,, results in the SEP(JT) model agrees
very well with the swarm results (Fig. 3). On the other
hand, the SEP(CP) o, are not in agreement even qualita-
tively with the measured values.

In Fig. 4, we have shown our o, values at 1-15 eV for
both models, along with measured data. Again we see
that the SEP(JT) model is superior to the SEP(CP) one.
In particular, the position of the shape-resonance in the
SEP(JT) case is in better agreement with the experiment
as compared to the SEP(CP) model. The discrepancy be-
tween experimental data and present SEPJT) calcula-
tions suggests that a realistic polarization potential may
be even stronger than the present JT approximation. A
full polarized-orbital-type calculation is required in order
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FIG. 5. Elastic differential cross sections for the e-CH, scattering at 0.2, 0.5, 1, and 3 eV. Theory: solid curve, present SEP(JT)
model; dashed line, present SEP(CP) model. At 3 eV, the measured values of Tanaka et al. [32] are shown by crosses.
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to test this hypothesis.

The DCS’s present a more stringent test of any theoret-
ical model when compared with experiment. The two
models SEPJT) and SEP(CP) differ significantly when
compared at the DCS level. Figure 5 displays the angu-
lar functions at 0.2, 0.5, 1, and 3 eV in both models along
with experimental data (only at 3 eV). There is no experi-
mental data at or below 1 eV. The DCS’s at 0.2 and 0.5
eV in Fig. 5 present distinct features. At 0.2 eV, the dip
in the case of the SEP(JT) model occurs at 100°, as com-
pared to 75° in the SEP(CP) case. This difference of 25°
in the positions of minima in the DCS at 0.2 eV reflects
the sensitivity of low-energy scattering with respect to
polarization effects. It will be interesting to see experi-
mental data at this energy. At 0.5 eV (Fig. 5), the
difference in the positions of the minima in both the mod-
els is about 10°. Note that in case of e-CH, scattering [5]
a similar distinction is observed at 0.5 eV between the
SEP(JT) and SEP(CP) models. The experimental DCS at
0.5 eV for e-CH, scattering agrees with the SEP(JT) mod-
el. We therefore expect that our SEP(JT) curve (in Fig. 5
at 0.2 and 0.5 eV) is more realistic and reliable than the
corresponding data in the SEP(CP) model. At 1 eV (Fig.
5), there is still some difference between the two models,
however, the qualitative features are quite similar. We
emphasize here that the significant discrepancy between
the two polarization potentials is to be found below 1 eV.

Let us examine our higher-energy DCS where experi-
mental data are available for comparison. At 3 eV (Fig.
5), both the theoretical models predict similar dip struc-

ture, while significant difference is seen in the forward
and backward directions. We can see from the 3-eV DCS
that the SEP(JT) potential is stronger than that of the
SEP(CP) model. Both the models have considerable
discrepancy with the experimental DCS [32]. One reason
for this discrepancy may be the inadequacy of present po-
larization models. On the other hand, the accuracy of
measured data is not clear since no other experimental
studies are available at this time.

Finally, our SEP(JT) model appears to be better than
the SEP(CP) model, in particular in the RT-minimum re-
gion. This conclusion is consistent with our similar in-
vestigation of the e-CH, system [5]. However, this con-
clusion awaits the support of differential measurements
for the e-SiH, case. There is plenty of room to improve
upon the Vgl potential by actually carrying out a full
polarized-orbital calculation for the e-SiH, system. Our
present JT potential is obtained by employing a less accu-
rate method of Pople and Shofield [15], in which all the
orbitals are distorted equally. Nevertheless, by employ-
ing a better JT-type polarization potential the basic con-
clusions of this paper will remain valid. It would be quite
interesting if more experiments are performed on the
DCS quantities, particularly below 3 eV.
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