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Theory of dressed-state lasers. I. Effective Hamiltonians and stability properties
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We present a detailed theory of dressed-state lasers, i.e., the lasers that operate due to the gain on an

inverted transition between dressed states of a coupled atom-field system. We derive effective Hamiltoni-

ans that describe such lasers for the case of one- and two-photon resonances. We argue that, due to the

presence of nearly resonant intermediate states, the use of gain media consisting of strongly driven two-

level atoms provides an unorthodox yet promising means for achieving cw optical two-photon laser os-

cillation. We disscuss the stability properties of radiation generated by such media.

PACS number(s): 42.50.Hz, 42.55.—f, 42.50.Kb

I. INTRODUCTION

In recent years there has been much interest in the op-
tical instabilities that lead to the generation of various
sorts of radiation. The present paper and two others [1,2]
that follow relate to two topics within this general area.
They are the generation of squeezed light [3—5] and the
realization and properties of the two-photon laser [6]. In
this series of papers, we aim to show that gain on invert-
ed transitions between dressed-state sublevels may be uti-
lized to produce lasers [7] (dressed-state lasers) that
operate via one-, two-, or more-photon stimulated emis-
sion and may generate a squeezed output field.

The idea of a dressed-state laser stems from Mollow
[8], who predicted that strongly driven homogeneous
ensembles of two-level atoms can exhibit optical
amplification as well as absorption. Mollow's prediction
has been experimentally demonstrated in several works
[9,10]. Considerations familiar from the analysis of stan-
dard laser systems clearly suggest that the effects of
driven-atom gain can be substantially enhanced through
the use of a high-finesse optical cavity. In fact, in a cavi-
ty containing a sufficiently large number of atoms, gain
can be expected to exceed losses, and steady-state lasing
with two-level atoms as the amplifying medium is expect-
ed to occur.

A two-level atom driven by a strong laser field of the
frequency col undergoes dressing [11]. If the driving fre-
quency col is detuned from the atomic transition frequen-

cy co, by 4&=co, —col, while the Rabi frequency of the
resonant driving field is Q, the atom-field states form a
ladder of doublets separated by coL and split by the gen-
eralized Rabi frequency 0' = (0 + b, )

'~ . In Fig. 1 we
show a portion of the ladder of dressed states. For
nonzero detuning 5&, the stationary inversion of the
dressed-state doublets is usually different from zero [12].
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FIG. 1. Standard dressed states describing a two-level atom
driven at the frequency coL. The lines representing the dressed
levels have thicknesses in rough properties to their population.
Transition i (ii) is an inverted one- (two-) photon transition.

In particular, in the case of 6& &0, the population of the
~
+ )-type states is larger than that of the

~

—)-type states
(see Fig. 1). If, in this situation, one locates the ensemble
of dressed atoms in a high-finesse cavity that is resonant
with transitions between ~+ )- and

~

—)-type states of ad-
jacent dressed-state doublets, i.e., with co, =col +0', las-

ing wi11 occur for su%ciently large atomic density. The
effect of optical gain on such transitions has been studied
theoretically by Holm and co-workers [13] and experi-
mentally with confocal optical cavities by Zhu, Lezama,
and Mossberg [14]. Dressed-state lasing has now been
observed both in atomic-vapor-cell [15(b)] and atomic-
beam-type [15(a)] experiments.

By appropriate tuning of the cavity, one can generalize
the idea of dressed-state lasing to the case of two- or even

7717 1991 The American Physical Society



J. ZAKRZEWSKI, M. LEWENSTEIN, AND T. W. MOSSBERG

multiphoton resonances. One should stress that the gain
in dressed-state lasers should be contrasted with gain ob-
served in wave-mixing processes in that ii is not subject
to any phase-matching condition involving the pump
field. Rather, it can be seen as a result of population in-
version on multiphoton dressed-state transitions or as a
form of multiphoton Raman scattering.

Two-photon lasers are based on stimulated emission of
photon pairs and were proposed early on in the laser era
[16,17]. Such lasers have been investigated in numerous
theoretical works [18—25], and several interesting predic-
tions have been made. For instance, two-photon lasers
are expected to have special noise properties [18,21,25],
display bistable behavior [22], and require an injected sig-
nal to switch them on [17]. Recently, there has been a
growing interesting in the study of such lasers [6].

Quite amazingly, however, progress in the experimen-
tal realization of two-photon lasers has been quite slow.
To realize a two-photon laser, one must have available
special media in which tmo-photon gain is large and com-
peting processes can be suppressed. Ensembles of Ryd-
berg atoms have been shown to be nearly ideal candidates
for two-photon amplification in the microwave region.
Their nearly equidistant energy levels provide a situation
in which near intermediate-state resonance assures large
two-photon gain, and competing processes can be
suppressed through the use of microwave cavities. Two-
photon masers have been experimentally realized in the
beautiful experiments of Haroche and co-workers [26,6].
On the other hand, in the optical regime, owing to a lack
of suitable two-photon gain media, experimentalists have
only been successful in the observation of transient two-
photon gain [27,28].

In a recent paper [7], we argued that an optical two-
photon laser can be realized within the dressed-state
scheme. Our idea stemmed from calculations of suscepti-
bilities describing the response of two-level atoms to two
strong fields [29]. The idea of the two-photon dressed-
state laser is presented in Fig. 1, in which the schematic
energy-level diagram of a driven two-level atom is shown.
If, by the proper choice of 6„the

I
n, + )-type states are

more populated than the In, —)-type states, two-photon
lasing will occur, provided the atoms are located in a cav-
ity that is tuned to two-photon transitions of the form
I
n + 1,+ ) to

I
n —1, —) (see transition ii in Fig. 1),

which implies that m, =coL +Q'/2. Such a two-photon
resonance is strongly enhanced because of the existence
of a pair of quasiresonant dressed states (the states

I n, + )
and

I n, —) in Fig. 1).
It is the main aim of this series of papers to formulate a

detailed theory of dressed-state lasers and to discuss
quantum-statistical properties of the radiation generated
by them. This paper is the first in the series and is organ-
ized as follows. In Sec. II we introduce the notation and
describe a system of two-level atoms, strongly driven by
an external laser field and interacting with a single mode
of an optical cavity. In Sec. III we discuss the one-
photon dressed-state laser; we formulate the semiclassical
theory and derive threshold conditions. We compare our
results with experiments of Lezama et al. [15(a)]. In Sec.
IV we present the results for the one-photon dressed-state

laser, including effects analogous to those of the Bloch-
Siegert shift [30]. Such efFects are, in fact, of the same or-
der as those that lead to two-photon lasing and therefore
have to be included if one wants to discuss a competition
between the process of two-photon resonant lasing and
the process of off-resonant one-photon lasing. The
Bloch-Siegert shifts are included into our theory through
the construction of an eff'ective Hamiltonian [31,32].

A similar approach is used in Sec. V, where we derive
the effective Hamiltonian for the dressed-state two-
photon laser. The stability and threshold of the two-
photon laser, together with the effects of competition
with the off-resonant one-photon dressed-state lasing, are
discussed within the framework of the semiclassical
theory in Sec. VI.

The present paper is followed by two others, the first of
which [1] contains a brief description of our treatment of
quantum fluctuations based on quantum Langevin equa-
tions. Quantum-statistical properties of one- and two-
photon dressed-state lasers are presented there and dis-
cussed in detail. We show that under suitable conditions
significant squeezing of dressed-state-laser radiation may
be achieved. The second paper to follow [2] discusses the
problem of pump depletion and quantum Auctuations of
the pumping laser radiation that arise due to the de-
pletion effects.

II. ATOM-FIEI. D INTERACTIONS
IN THE DRESSED-STATE PICTURE

CAVITY

»OM
PUMP
LASER

FIG. 2. Physical system under consideration consisting of N
two-level atoms coupled to an open cavity and transversely
driven by a pump laser of frequency coL. The cavity, shown
only schematically, may be of various types, e.g. , traveling wave
or standing wave, and provide for a relatively strong or weak
atom-cavity coupling.

We consider a system of X two-level atoms located in a
cavity (see Fig. 2) pumped by an external driving field of
frequency coL. The strength of the pump is characterized
by the Rabi frequency Q. The pumping field has a
traveling-wave character and is oriented orthogonal to
the cavity modes. The orthogonality of the pump and
cavity propagation directions serves to discriminate
against nonlinear gain processes of a wave-mixing type,
which require a phase-matching condition. The cavity
may be of various types, but as we will see below and in
the subsequent papers of this series, the most interesting
cavities are those in which the atom-cavity coupling con-
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stant is large compared to parameters such as the atomic
spontaneous emission rate.

Let o.3„, o.„,and o.„denote the standard Pauli matrices
that describe two-level atoms, each of which is enumerat-
ed by an index p. The atoms interact with the pumping
field and with a single, nearly resonant mode of the cavi-
ty. Let us denote the cavity-photon creation and annihi-
lation operators by a and a, respectively. Additionally,
the atoms may undergo spontaneous emission into the
modes of the electromagnetic field that are not associated
with the cavity resonance. The density matrix of the sys-
tem obeys then the Liouville —von Neumann (master)
equation of the form [33].

p= i [&—,p)+X„p+L„p . (2.1)

The Hamiltonian in Eq. (2.1) is given by the expression

N&=—,
' g [Aio 3„+Q(o„+o.„)+g„crta+g„*ato„]

+52a a, (2.2)

XFp=21 apa —
—,'a ap —

—,'pa a (2.3)

and

where the rotating wave has been employed to eliminate
the explicit time dependence of the pump field at the fre-
quency coI. It follows that the free parts of the Hamil-
tonian, corresponding to the first and last terms in Eq.
(2.2), are proportional to the appropriately defined detun-
ings Ai=co, —~I and 62=co, —coL, where co, and co,
denote the atomic and cavity resonance frequencies, re-
spectively. The term proportional to the Rabi frequency
0 describes the driving of the atoms, while the coefficient
g„denotes the coupling of atom p to the cavity mode. In
principle, the interaction of individual atoms with the
pump contains phase factors determined by the local
phase of the traveling-wave pump field. But by appropri-
ately choosing the phases of the individual atomic di-
poles, we have absorbed these phase factors into the
definition of atomic raising and lowering operators o.„
and o.„. The phases of individual atomic dipoles are
therefore fixed relative to the pump field in expression
(2.2), and thereby a spatially varying phase P„ is intro-
duced into the g„'s. The magnitude of the atom-cavity
coupling constant, on the other hand, is assumed to be a
constant, i.e. , ~g„~ =g. The latter assumption can be easi-

ly justified in the case of traveling-wave single-mode cavi-
ties. Alternatively, in the case of standing-wave mode-
degenerate cavities of the sort used in Refs. [14] and [15],
the cavity resonance corresponds to a combination of
different degenerated modes of the frequency co„all of
which exhibit atom-cavity coupling variations on the
scale of the optical wavelength. For such cavities, ~g„~
may be assumed to be constant in an average sense.

The last two terms in Eq. (2.1) describe cavity damping
and spontaneous emission, i.e.,

& „p=2y g oa„—,'c—r„"cr~ —,'p—cryo„.
p

(2.4)

where I is the cavity half width at half maximum and 2y
denotes the free-space atomic spontaneous emission rate
(equal to the Einstein coefficient A).

The system described by Eq. (2.1) is quite similar to the
one describing optical bistability [34]. The only
difference is that in Eq. (2.1) the pump field does not oc-
cupy a cavity mode. Quite recently, de Oliveira and
Knight [35] observed a unitary equivalence between
transverse and cavity-mode pumping provided that one
assumes a correlation between the phases of the pump
and cavity fields. Such correlation does not exist in our
model, and for that reason the atom-cavity couplings
contain spatially varying phase factors g„=g exp(iP„)
Assuming that the atoms in our sample are spread
throughout a volume whose characteristic size is large
compared to the wavelength, these phase factors will be
spread essentially uniformly between —1 and 1. This is
the main difference between our results and those of Ref.
[35].

Equations (2.1)—(2.4) are written in the basis of the
atomic Hilbert space, consisting of bare excited states

~
1 &„and bare ground states ~0 &„. In order to obtain a

dressed-state picture, we have to change the basis, intro-
ducing the dressed states

~+ &„=(cosa)~1&„+(sina)~0&„ (2.5a)

and

~

—&„=—(sinu)~1&„+(cosa) 0&„. (2.5b)

In the above expressions the "rotation" angle a, which
belongs to the interval [0,m/2], is defined through the re-
lations Q=Q' sin2a and A, =Q'cos2cx, where A' denotes
an effective Rabi frequency, equal to the dressed-state en-
ergy splitting 0'=(0 +b, , )' . The form of the Hamil-
tonian [Eq. (2.2)] in the dressed-state basis may be ob-
tained using the unitary transformation

(2.6)

where the unitary operator

Vl= + exp(iacr2„) (2.7)

diagonalizes the sum of the first two terms in Eq. (2.2)—
the term that corresponds to the free atomic Hamiltonian
and the term that describes atom-pump interactions.

After elementary calculations we obtain the explicit
form of the Hamiltonian transformed to the dressed
basis:
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o 3„+52a a++ at[(1+cos2a)cr„—(1—cos2a)o +sin(2a)o 3„]

+g [(1+cos2a)crt —(1—cos2a)o. +sin(2a)o. 3„]a .gp
(2.8)

The same transformation applied to the spontaneous emission term (2.4) yields

X&p= ~ g {[sin(2a)o. 3 +(1+cos2a)o„—(1—cos2a)o„]p[sin(2a)cr3 +(1+cos2a)o„—(1 —cos2a)o„]

—[1+03„cos2a—(o.„+0„")sin2a]p —p[1+o.3„cos2a—(o„+o.„)sin2a] ] . (2.9)

Obviously, the cavity damping term [Eq. (2.3)] remains
unchanged under the action of the transformation of Eq.
(2.7). We should note, however, that in Eqs. (2.8) and
(2.9) the symbols o 3„, o „,and o „refer now to the atomic
operators in the dressed-state basis and correspond to the
dressed-state inversion raising and lowering operators, re-
spectively.

The master equation in the dressed-state basis can be
written using the explicit formulas in Eqs. (2.8), (2.9), and
(2.3). This form of the master equation will serve for the
derivation of approximate, effective equations that govern
the evolution of dressed-state lasers. That issue will be
discussed in the next section. Here we would only like to
point out a couple of properties of the dressed-state
description. First of all, the Hamiltonian (2.8), when
written in the dressed-state basis, is similar to that of the
Jaynes-Cummings model without the rotating-wave ap-
proximation [36]. It contains, however, several terms
that do not conserve the total number of atomic- and
cavity-mode excitations. Some of these terms change the
number of excitations by +1, some of them by +2. Thus,
in contrast to the case of the Jaynes-Cummings model,
this Hamiltonian does not conserve parity.

Inspection of the spontaneous emission term (2.9) indi-
cates that apart from damping it now describes in-
coherent and coherent processes. This fact has an obvi-
ous physical interpretation. Namely, spontaneous emis-
sion may cause transitions from the upper to the lower
dressed states and from the lower to the upper dressed
state, as well as transitions between the same dressed
states (see Fig. 1). The possibility of multiphoton lasing
in the presence of an appropriately tuned cavity arises
from the two general properties of the dressed-state
description just mentioned.

We finish this section with a short discussion of the pa-
rameters characterizing systems of driven atoms coupled
to cavities and the ranges of these parameters experimen-
tally accessible. The relevant parameters all have the di-
mension of frequency and can be expressed in units of the
spontaneous emission width y. In the case of many com-
monly used atomic species (e.g., Ba and Na), y is of the
order of 10 MHz. Pump lasers used in experiments are
usually tunable, providing for arbitrary detunings 6&. In
particular, the range 6

&

~ +100y is easily accessible.
Available pump lasers are su%ciently powerful to gen-
erate Rabi frequencies up to 100@. Cavity resonance fre-

quencies can be easily controlled using, for instance,
piezoelectric transducers so that the cavity-pump detun-
ing 62 also spans the range up to +100@as well.

The crucial question is how large the atom-cavity cou-
pling can be made. In experiments with confocal cavities,
modern techniques allow for achieving values of g on the
order of y, while at the same time the cavity resonance
width is of the same order.

The number of atoms, X, in the active volume in such
cavities can reach as high as 10 or even 10 . As we shall
see below, the parameter that is crucial for the laser ac-
tion is

(2.10)

Lasing is possible usually for t ))1, a condition that can
indeed be fulfilled in confocal cavities.

On the other hand, in the case of standard single-mode
cavities, the typical values of g are of the order of 10 y
or even smaller. Such a dramatic decrease of the cou-
pling constant, however, can be compensated by an in-
crease of the cavity finesse, which in turn leads to a de-
crease of the cavity width I . As a result, the relevant pa-
rameter t may still achieve values that exceed the laser
threshold.

III. QNE-PHOTON BRESSED-STATE LASERS

The explicit expression for the Hamiltonian [Eq. (2.8)]
and damping term [Eq. (2.9)] may now be used to derive
different approximate expressions that describe one or
multiphoton dressed-state lasers. We shall start our dis-
cussion with the simplest case of one-photon resonance.

One-photon dressed-state lasing may be experimentally
selected by tuning the cavity into resonance with inverted
one-photon transitions between the dressed-state levels.
Lasing will occur at the cavity frequencies ~, =cuL+0'
(corresponding to b,2=+0'). Here the plus sign corre-
sponds to 6& &0, as shown in Fig. 1. If we assume that
the driving field is strong, i.e., that both 0' and ~b.2~ are
much larger than g, we may invoke the standard
rotating-wave approximation [37] and drop the an-
tiresonant terms [38] from Eq. (2.8). Similar arguments
may be used in order to neglect the antiresonant terms in
expression (2.9), provided that Q' is also much larger
than y. Self-consistency of our analysis demands that the
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cavity width j. be much smaller than 0', guaranteeing
that the cavity resonance is sufficiently well defined to
make the resonance condition specified above Ineaning-
ful. As we shall see below, the rotating-wave approxima-
tion, when applied to Eqs. (2.8) and (2.9), enables us to
define collective order parameters that e6'ectively de-
scribe the behavior of the atoms. For instance, the mac-
roscopic dressed-state polarization is defined as

4'=go„exp( —iP ) .
P

(3.1)

The definitions of macroscopic order parameters contain
atom-dependent phase factors and imply specific correla-
tions between the phases of individual atomic dipoles.
The appearance of ordering in the system, i.e., the emer-
gence of nonzero values of the quantities of the form
(3.1), means automatically that phase correlations be-
tween di6'erent atoms must emerge. Such phase correla-
tions imply, on the other hand, that the antiresonant
terms in the Hamiltonian [Eq. (2.8)] and in the spontane-
ous emission term [Eq. (2.9)] will contain atom-specific
phase factors, which tend to zero when summed over p.
This fact justifies the neglect of the antiresonant terms in
a manner that does not depend on the largeness of Q' or
62 as compared to other relevant frequencies.

Neglecting the antiresonant terms in Eqs. (2.8) leads to
the following e6'ective Hamiltonian that describes the
one-photon dressed-state laser for 6, & 0:

cr3„+62a a

+—(1+cos2a) g(cr e "a+a e "cr ) .
ip g

—
imp

4 p P (3.2)

Similarly, the spontaneous emission term in the rotating-
wave approximation takes the form

g [ [sin (2a )cr 3~o 3„+( 1+cos2a ) o ~o„2

+(1—cos2a) cr~cr„]—[1+cos(2a)o 3„]p
—p[1+cos(2a)o 3„]J . (3.3)

A, =—(1+cos2a) .g
1 4

(3.4)

The atomic polarization damping constant, which is
sometimes called y transverse in the standard theory, is
defined here as

The above equations describe a standard one-photon-
laser model [39], with the only difFerence that the param-
eters entering the definitions of the effective Hamiltonian
and damping term are determined by a specific kind of
pumping in the system and may be dynamically con-
trolled. For instance, the parameter 0' is here an analog
of the atomic transition frequency in standard laser
theory and depends explicitly on the parameters that de-
scribe the dynamics of pumping, i.e., Q and 6&. The
atom-cavity coupling constant is given through the ex-
pression

y, =y(2+sin 2a)/2 . (3.5)

The atomic inversion damping (corresponding to y paral-
lel in the standard theory) takes the form

y2=y(1+cos 2a) . (3.6)

Not only are the parameters defined above dynamically
controlled, they are also correlated one with another (for
instance, an increase of yi implies a decrease of yz, etc.).
The complicated relations (3.4)—(3.6) that define the
dependence of the eItective parameters on those used in
Eqs. (2.8) and (2.9) constitute the only difference between
our theory and that of the standard laser. For every
choice of parameters, a one-photon dressed-state laser
may be investigated using the standard methods.

The semiclassical laser equations associated with our
model thus take a well-known form

S= —(y, + iA')S + ikiS3a,

S3= —yz(S3 —S3)+2ik, ,(a*S—S*a ),
a = (I +id, z)—a —ii, iS,

(3.7)

is the macroscopic dressed-state inversion. a and a*
denote the complex amplitudes of the cavity field, which
is equal to the quantum-averaged values of the cavity-
photon annihilation and creation operators, respectively.
The stationary value of the dressed-state inversion S3 is
given by

S3=
—2N cos2o,

1+cos 2o,'
(3.8)

Note that for any b, ,AO some dressed-state transitions
are inverted, i.e., S3%0. In particular, for negative b, „a
is larger than m/4 and the upper dressed state is more
populated than the lower one; consequently, the inversion
S3 is positive, corresponding to the situation shown in
Fig. 1.

The stationary solutions of Eqs. (3.7) can be found with
the assumption that in the long time limit the polariza-
tion and cavity-field amplitude behave as

—id~ ta(t)=e a (3.9)

and

S(t)=e 'S . (3.10)

The resulting equation for the stationary value of the
cavity-field amplitude then takes the form

A, iS3a
[r+t(a, a, )][ y,

—+i( A' S,)]—(3.1 1)

As usual, Eq. (3.10) admits two kinds of solutions. The
first one is trivial and corresponds to a =a*=0. This
solution is stable below the laser threshold. A nontrivial
solution of Eq. (3.11) can be determined from

where S denotes the macroscopic dressed-state polariza-
tion defined in Eq. (3.1), S' its complex conjugate, and

S3=+o,„
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1= 1

[I +i(b2 —bl )][y,+i(Q' —61 )]

yak, lS

y2+ 4~iV i ~
& ~'~l 8+«' —~1.)']

(3.12)

From Eq. (3.12) we obtain immediately the analog of the
"frequency-pulling formula" for the one-photon dressed-
state-laser frequency col~. We will write coL~=coI +EL,
where

y, 52+ I 0'
(3.13)

The averaged photon number becomes then

y2S3 yz[y&+(0' —b,i. ) ]
4I 4X,~',

(3.14)

This solution is stable above the laser threshold, i.e.,
when

Xg cos(2a)(1+cos2a)
4yI (2+sin 2a)(1+cos 2a)

(h~ —0')
X 1+

(y, +I )
(3.15)

It is worth noting that relation (3.15), correctly predicts
the one-photon dressed-state lasing observed in the exper-
iment of Ref. [15(a)]. In this experiment the detuning b, ,
was chosen to be of the order of the half of the Rabi fre-
quency, i.e., cos2a= —

—,'. The cavity resonance was at
62-—Q'=20y and the cavity width was I =2y. Using
these values, the threshold condition can be approximate-
ly written as

N z
g )200

y
2

With g=0.04y, as in Ref. [15(a)], one expects one-
photon lasing to occur for 1V = 10, in agreement with ob-
servations.

One can now apply the method of quantum Langevin
equations [39] or the quasiprobability approach [39,40] to
study quantum fluctuations of dressed-state-laser radia-
tion. However, since our model is fully equivalent to the
standard one, dressed-state-laser radiation will have the
same statistical properties as the radiation from conven-
tional one-photon lasers. A detailed description of these
properties can be found in the literature [39], and we
shall not discuss it here.

The simple estimation of the threshold condition given
above indicates that our theory can indeed describe the
dressed-state laser quite accurately. We hope that the
generalization of this theory to the case of multiphoton
resonances will give us unequally accurate estimates of
threshold conditions [7]. However, before we turn to the
discussion of the two-photon laser, we should stress that
the process of one-photon lasing is, in principle, possible
even if the cavity is strongly detuned from the one-
photon resonance. Such an off-resonance process will
therefore always compete with other processes, such as

two-photon resonant lasing. Of course, the threshold for
off-resonant lasing lies much higher and requires higher
atomic densities. This effect is already partially taken
into account in the formula of Eq. (3.15), which contains
a resonant Lorentzian factor that decreases the magni-
tude of the left-hand side of Eq. (3.15) dramatically when
52 is not equal to O'. Our predictions for the stability of
two-photon lasing in Ref. [7] were in fact based on this
observation. One should stress, however, that the
effective Hamiltonian [Eq.(3.2)] was derived on a basis of
the rotating-wave approximation and it does not provide
a good description of our system in the off-resonant case.
For a more accurate discussion of the competition be-
tween the resonant two-photon lasing and off-resonant
one-photon lasing, one has to include the lowest-order
off-resonant correction to the Hamiltonian (3.2). As we
shall see in the next section, such corrections have the
form of Bloch-Siegert shifts. Although the inclusion of
these corrections does not inhuence the main conclusions
of Ref. [7], they do alter stability conditions for lasing in
some situations, as well as the quantum-statistical proper-
ties of the generated radiation [1].

IV. EFFECTIVE HAMILTONIAN
AND BLOCH-SIKGKRT SHIFTS

8 =a'a+y a„'a„. (4.1)

On the other hand, an effective Hamiltonian that de-
scribes the processes of one-photon lasing should con-
serve this quantity. Such an effective Hamiltonian will be
derived using second-order perturbation theory with
respect to the interactions that do not conserve the exci-
tation number [Eq. (4.1)]. We shall not attempt to calcu-
late an effective form of the damping terms [Eq. (2.9)],

As we shall see in Sec. V, two-photon processes are
characterized by an effective coupling constant of the or-
der of g /O'. When one wants to discuss a competition
between the resonant two-photon processes and off-
resonant one-photon processes, one has to describe the
latter ones with the accuracy up to the order of g /0' as
well. In order to do it, one has to substitute for the Harn-
iltonian [Eq. (3.2)] an effective one that includes desired
corrections. Such corrections, as we shall see, have the
form of Bloch-Siegert shifts.

Note that the antiresonant processes in our dressed-
state laser correspond to different transitions between the
dressed states [38]. As such, making the standard
rotating-wave approximation relative to the optical fre-
quency and assuming that the resonant terms correspond
to transitions at the frequency col+0', then the an-
tiresonant terms correspond to transitions at the frequen-
cy coL —O'. Thus the Bloch-Siegert corrections are not
with respect to the optical frequency coL, compared to
which they are completely negligible, but rather with
respect to O'. They are of the order of g /II' and cannot
be neglected. We shall now derive such a Hamiltonian
using the method of Stenholm [31]. As we have already
mentioned, the Hamiltonian of Eq. (2.8) does not con-
serve the total number of excitations,
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and we shall keep only the resonant contribution of the
damping part of the Liouville —von Neumann operator.

We shall assume that the wave function corresponding
to an eigenvector of the Hamiltonian [see Eq. (2.8)] has
the form

M M
ly&= y. yMIM m—&+ y q+IM m—+»

m=0 m=0I—1 M
+ y q ~M m ——»+ y q+~M —m+2&

m=0
M —2

+ g il ~M rn ——2).
m=0

(4.2)

The coefficients P, y+—, and q* are vectors in the atomic
Hilbert space. The lower index m indicates that these
vectors correspond to m excited atoms. The vectors
~M —m ), ~M —m+1), and ~M m+2—) are the ele-
ments of the Hilbert space that describe cavity photons.
They correspond to the indicated de6nite number of cavi-
ty photons.

The erst term in the above expression thus corresponds
to a definite total number of excitations, 8'=M. The
remaining four terms describe lowest-order corrections
that correspond to 8'=M+ —1 and 8=M+2, respec-
tively.

If we denote the atomic operators that enter Eq. (2.8)
as

= [&2(M —m)+ Q'm ]p +G v'(M —m )y

+G +(M —m+1)p, +G, v'(M —m)+-

+G�«M—m +1)q.'+G, &(M —m +1)&++,
+ G2+ &(M —m)ri (4.4)

The above equation is exact in the sense that it contains
all couplings of the vectors with 8'=M to those with
8' =M 4 1 and M+2. We stress here that we are
e6'ectively constructing the lowest-order expansion with
respect to g/b, 2 or g/0', which is formally the same as
an expansion in terms of the operators [see Eq. (4.3)] that
do not conserve 8, i.e., G„G„Gz, and G2. Therefore,
in the equations for cp and q, we need only to keep
terms describing back coupling of those vectors to the

's:

Ey+ = [0'm +hi(M —m + 1)]y+

+GiV'(M —m + l)$ (4.5a)

Eri++, = [0'(m +1)+62(M —m +1)]ri++,
+G', &(M —m + i)y

Eg, = [0'(m —1)+62(M —m —1)]g

(4.5c)

Ey =[0'm+62(M —m —l)]y +G, &(M —m)g

(4.5b)

G=g "(1+cos2a)oSp
4 p

Cp,G =g "(1+cos2a)crt,

Sp
G, =y " sin(2a)o, „,

(4.3a)

(4.3b)

(4.3c)

+G2&(M —m)g (4.5d)

In Eqs. (4.4) and (4.5), the energy is shifted by a con-
stant E =E'+NB'/2, where E' is an eigenvalue of the
Hamiltonian [Eq. (2.8)]. The vectors y and il inay be
eliminated from Eq. (4.4) by solving Eq. (4.5). In the
lowest order, the solutions of Eqs. (4.5) are obtained by
substituting for E by its approximate zeroth-order value
E =62(M —m )+0'm. Such a substitution leads to the
relations

8'p
G, =g " sin(2a)cr3„, (4.3d) &(M —m +1)

ym
—G) m (4.6a)

FpG~= —g " (1—cos2a)o„, (4.3e)
t &(M —m)=G, (4.6b)

fp
G~ = —g (1—cos2a)a „, (4.3f)

we may write down the Schrodinger equations for
coefficients g, p, and il in the compact form

tv (M —m+1)
Qm +1 2 g +III Pm

&(M —m)
'9 —i

=
2

2

(4.6c)

(4.6d)

Inserting the above formulas into Eq. (4.4), we obtain

G, G
Eg = [b 2(M —m)+0'm]f +G&(M —m)g + i+ G &(M —m + 1)1(' i+(M —m)

2

G)G) G262 G2G2
(M —m+1—) q +(M m), 0 (M m+1) g +/ ~5,+0 ™ 6,+0 ™r
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&,s = b, za a +g cr 3„+G a +a G-
3p

From Eq. (4.7) we may read off the effective Hamiltonian that conserves 8':

a a g
G2G2

+a,+n [ ' '] s,+n (4.8)

Finally, we may make use of the fact that the phases P„ofg„'s that enter Eq. (4.3) are random. Summing over p may
be therefore substituted by averaging over P„, and we obtain

G,G i
= g sin (2a )o 3„o.3„= g sin 2a2 + 2 2

p~p
(4.9a)

GzGt2= g " "(1—cos2a) o.„o„.=g (1—cos2a) (1—o3~) .
p, p p

(4.9b)

Up to the inessential constant in Eqs. (4.9a) and (4.9b), we obtain the final expression

+ 0' g (1—cos2a) t 1&,s.=h2a a++ o3„+, o.3„a a+— +6~a+a G . (4.10)

S= —(y, +i 0')S+i A,S3a ,2i A—2S(a "a+—,
' ),

S3 = —yz(S3 —S3 )+2ik, (a *S.—S*a),
a = —

( I + id, 2)a —i A, ,S—ii2S3a,

where

(4.11a)

(4.11b)

(4.11c)

Introducing the macroscopic polarizations S,S* and in-
version S3, we may easily derive the semiclassical laser
equations from Eq. (4.10):

V. EFFECTIVE HAMILTONIAN
FOR THE TWO-PHOTON LASER

The effective Hamiltonian for the two-photon laser can
be derived using the same method of Stenholm [31] as in
Sec. IV, with the assumption that the cavity is tuned
close to the two-photon resonance, 262-—O'. Unlike the
Hamiltonian of Eq. (4.10), the effective Hamiltonian will
conserve the generalized total excitation number

A,2=, (1—cos2a )
g,s.=a a+2+ o„o.„.

p

(5.1)

As before, one stationary solution of the above equations
corresponds to a =S=0 and S3=S3 and describes the
situation below threshold. The above-threshold solution
is obtained by substituting

We shall therefore assume that the eigenfunctions of
the Hamiltonian [Eq. (2.8)] have the form

[M/2] [I/2]
M —2m &+ g q+ IM —2m +»

a(t)=e a, m=0 m=0

S(t)=e S .

The "frequency-pulling formula" now includes the effect
of the dynamical Bloch-Siegert shift:

y, (h +A, S )+1 (Q'+A, +2k, IaI )

y, +r (4.12)

The problem of finding the stationary solutions of Eqs.
(4.11) can be reduced to solving the quadratic equation
for the stationary photon number IaI (see Appendix A).
Such an equation has two solutions. If both of them are
positive, i.e., physically acceptable, the larger solution
may be stable, while the smaller one is always unstable.
A linear stability analysis of the stationary solutions can
be performed using the standard methods. We have per-
formed such a stability analysis and the stability regions
of the one-photon laser will be discussed in Sec. VI,
where a comparison with the stability regions of the two-
photon laser will be presented.

[M/2] —1

+ g p IM —2m —1)

[I/2]
+ g i)+IM —2m+3)

m=0

[M/2] —2

+ g il IM —2m —3), (5.2)

where [x] denotes the integer part of x. The coefficients
in Eq. (5.2) are again vectors in the atomic Hilbert space
corresponding to m excited atoms. The first term in Eq.
(5.2) corresponds to the definite generalized number of
excitations, X,~=M. The remaining terms are correc-
tions that correspond to g,&=M+1 and M+3, respec-
tively.

The Schrodinger equations for the coefficients P
and g take the form
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Ef = [b z(M —m )+0'm ]P +G&(M —2m )q&++,

+G &(M —2m + 1)(p,+G, V(M —2m)y

+G, &(M —2m + 1)(p+ + G2&(M —2m)g

+6~&(M —2m —1)g++,

and

Eq&+ = [0'm +52(M —2m + 1)]y

+G, v'(M —2m +1)Q

(5.3)

+Gtv'(M —2m +2)P (5.4a)

Ey = [0'm +6 2(M 2m——1)]y +G, &(M —2m)g

+G&(M —2m +1)g

, = [0'(m —1)+b ~(M —2m —1)]ri

+62&(M —2m)g

Eri++, =[0'(m +1)+b~(M —2m +1)]g++)
+G2 V'(M —2m + 1)f

(5.4b)

(5.4c)

(5.4d)

Inserting E =0'm+6, z(M —m) into Eqs. (5.4) and elim-
inating y

—and g + from Eq. (5.3), we may read o8' the
effective Hamiltonian, in the same manner as was done in
Eqs. (4.7) and (4.8). After simplifying the terms that con-
tain averages with respect to P [just as in the case of Eq.
(4.9)], we obtain

0'
S3+bzata —A, [S a +(a ) S]

S= —(y, +i 0')S i A,—S3a 2i A—2S( lal + —,
' ),

S3= —y2(S3 —S3)—2iA, [(a*)S —S*a ], (5.8)

d = —(I +ib2)a+2iA, Sa* iA2S3a—.

Equations (5.8) admit the stationary solution a =S =0,
S3 S3 which is always locally stable. Thus, in order to
turn a two-photon laser on, it is generally necessary to in-
ject an external signal [41]. Apart from the trivial solu-
tion, we may look for a stationary solution of the form

the macroscopic polarization required for the buildup of
the two-photon laser is created, it will automatically des-
troy the coherence needed for one-photon lasing and vice
versa. Consequently, when two-photon lasing is turned
on by the requisite injection signal, a strong bias is set up
against competing process.

Note also that &,s- does not have the same form as the
standard two-photon-laser Hamiltonian in that it con-
tains a dynamical Stark-shift term [39], which causes the
laser frequency to be intensity dependent. The impor-
tance of the Stark-shift term in the process of two-photon
lasing has been extensively discussed by Boone and Swain
[32]. In our case, as we shall show below, the Stark-shift
term may profoundly affect the stability properties of the
two-photon dressed-state laser. Semiclassical two-
photon-laser equations can be easily d'erived from the
Hamiltonian [Eq. (5.5)], after dropping the antiresonant
terms in X~:

where

+A,S,(a a+ —,'), (5.5)
—ihLta(t)=e a,

S(t)=e S .

(5.9a)

(5.9b)

and

A = — sin2a(l+cos2a)4Q'

g ( 1+cos2a ) (1—cos2a )

8 0' 4hz+ Q'

(5.6a)

Analytical expressions for these solutions are derived in
Appendix B. The existence and stability region of such
solutions that describe the process of two-photon lasing
will be discussed in Sec. VI.

2sin (2a)(Q' —262)
0'(4b, ~

—0') (5.6b)

VI. STABILITY QF DRESSED-STATE LASERS

S=g cr„exp( —2ig„), (5.7)

and its conjugate S . Note that the phases of the indivi-
dual dipoles required for one-photon lasing [Eq. (3.1)]
and two-photon lasing are different. Therefore, we ex-
pect that the two-photon processes will have a strong an-
ticorrelation with the one-photon processes. As soon as

Note that Eq. (5.6b) is valid only for 0'=26, 2, and for
Q'=2hz, it reduces to the corresponding expression for
the parameter 5 in Ref. [7]. In Eq. (5.5) we have intro-
duced the new macroscopic polarization operator that
constitutes a proper order parameter for the two-photon
lasing process,

The possibility of two-photon lasing depends on two
facts: the existence of nontrivial solutions to Eqs. (5.8)
and their local (linear) stability. As discussed in Appen-
dix B, if there exists one nonzero solution of the form
(5.9), there exists also a second one. The smaller of the
two solutions is always unstable [39].

In the vicinity of the laser threshold, our stability
analysis shows (see below) that the upper-branch solution
is stable in a large part of its existence domain. There-
fore, simple estimates may be given for the two-photon-
lasing threshold [7], which are based entirely on the ex-
istence of the nonzero solution to Eq. (5.8).

Now we substitute the proposed solutions of Eq. (5.9)
into Eq. (5.8) and obtain the expression
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2A', S, lal'a

[I +i (h2 —bL +A2S3)][y, +i(Q, ' —2bL +2A2lal +A2)]
(6.1)

The two-photon-laser frequency, which may be deduced
from the above expression, is found to depend on the
laser intensity due to the dynamical Stark-shift effect:

'2

N &8X10',
r

(6.9)

y, (&,+A,S,)+r(n'+ A, +2A, lal')

y, +2I (6.2)

In particular, far above the threshold and for a large pho-
ton number, the presence of Stark shifts may consider-
ably narrow the region over which the upper-branch
solution is stable relative to its existence region.

Close to the lasing threshold, however, we may assume
for simplicity that the cavity is tuned to compensate for
the dynamical Stark shift. This requires that the follow-
ing condition hold:

so that one has roughly 1.5 orders of magnitude in pa-
rameter range over which the present analysis is valid
and two-photon-laser action is expected to occur. Note
also that under the experimental conditions of Ref.
[15(a)] the two-photon-lasing threshold is only about 5
times higher than the one-photon-lasing threshold.

One should stress that two-photon lasing will compete
with the strongly detuned one-photon lasing. For the
same choice of parameters as above, Eq. (3.15) indicates
that detuned one-photon lasing is possible for

2

h2 —EL +A2S3 =0 . (6.3)
%+10" .

. y. (6.10)

In such a case, the quantity Y; introduced in Appendix B,
and the laser intensity may be determine from Eq. (84):

2A', y,S, lal'

f'(y, y, +4A~)lal')

Equation (6.4) admits solutions, provided S3 )0 and

g S3 sin2a(1+cos2a) y2
2 1/2

~1
8QT

(6.4)

(6.5)

Note that a factor of 2 was missing in the corresponding
estimates (14) and (15) in Ref. [7]. This fact, obviously,
does not influence the conclusions of Ref. [7]. Slightly
above threshold the laser intensity is simply given by

4r (6.6)

Our estimates must be consistent with the assumption
that the two lasing processes (one and two photon) shown
in Fig. 1 can be spectrally distinguished. That means
that the Stark shift must remain small, i.e, AL ——b2. In
other words, we have to impose an additional condition
that

2aL —n'
Q'

2A, lal'
Q'

2

[(1+cos2a) +—'(1 —cos2a) ]
2 J 2

262Q'1 3

«1 . (6.7)
It is easy to check that for Q' =50 and other parameters
chosen as in the one-photon dressed-state experiment dis-
cussed above [15(a)],condition (6.5) implies

2

X~2X10', (6.8)
. y.

whereas condition (6.7) implies

We therefore conclude, as previously pointed out in Ref.
[7], that an optical two-photon laser may be realized us-

ing a gain medium comprised of strongly driven two-level
atoms. This seemingly unlikely system has a relatively
large two-photon gain and lacks channels that strongly
compete with the desired two-photon lasing process. In
fact, generalization of the analysis presented here indi-
cates that three- or more-photon amplification and lasing
may be possible in driven two-level atom systems.

Let us stress again, however, that the condition embo-
died in Eq. (6.5) is based only on the existence of the
nonzero solution and that it does not necessarily imply
lasing. The latter requires the solution to be linearly
stable. Fortunately, exact stability analysis shows that
not too far from the threshold the stability region fills
practically all of the existence domain of the nontrivial
solution [Eq. (5.9)]. For this reason the simple condition
of Eq. (6.5) gives an accurate estimate of the lasing
threshold. In the remainder of this section, we present
several results concerning stability that support the above
statements. Since we want to explore the competition of
one- and two-photon processes, we present phase dia-
grams for both kinds of instabilities simultaneously. In
Figs. 3—6 we have displayed the stability diagrams for
two- and one-photon-laser action in the 0'-b2 plane. In
each figure we present two curves representing the stabili-
ty boundaries of the one-photon laser. Dashed curves
correspond to the stability region for lasing based on the
simple model of Sec. III, which does not include the
Bloch-Siegert shifts. Solid curves represent the stability
of the one-photon dressed-state laser, including the
Bloch-Siegert shifts described in Sec. IV. The laser is
stable inside the area surrounded by the curves. In
presenting the stability curve, we have taken into account
that the derivation of the Hamiltonian [Eq. (2.8) or (4.10)]
requires the resonant condition O'=62, although both
models may formally be studied in the whole region of h2
and O'. We have therefore presented only the parts of
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FIG. 3. Stability and existence domain of one- and
two-photon dressed-state lasers in the effective-Rabi
frequency-cavity-laser-detuning (O'-Az) plane. The parameters
are 6,= —12, I =0.1, g=0.01, and N=2X10. The dashed
line surrounds the stability region of the one-photon laser in the
absence of Bloch-Siegert shifts. The solid line on the right sur-
rounds the stability domain of the one-photon laser with Bloch-
Siegert terms included. The solid line on the left surrounds the
existence region of the two-photon dressed-state laser. The
blackened area in this region is the stability domain of that
laser. Note that for both axes the quantities are plotted in units
of y, i.e., one-half the free-space atomic spontaneous emission
rate.

FIG. 5. Same as Fig. 3, but for the parameters 6I= —12,
I =0.1, g =0.05, and N=10 .

the stability region, which additionally fulfill the condi-
tion

That additional restriction (consistency condition) can
indeed be imposed, since, as we shall see below, all of our
results con6rm the more or less simple conditions for las-
ing discussed above and in Ref. [7]. The analysis present-
ed here indicates that, for reasonable choices of the pa-
rameters characterizing our system, no severe competi-
tion of the one- and two-photon-lasing processes takes

60— 60-

c
40-

C

40-

20—

0- I I I I I I I 'I I ) I I ~ II I II I ) I I I I I I I I I ) I I I II ll I I ) I I f II I I I I

0 20 40 60 80 100
0 I I I I I I I I I ) I I I I I I I I I ) I I I I I I I I I ) I I I I I 'I I I I )111111111

0 20 40 60 80 100

FIG. 4. Same as Fig. 3, but for N = 10 .
FIG. 6. Same as Fig. 3, but for the parameters 6&= —12,

I =0.5, g=0. 1, and N=10 .
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place. Stability regions of the two processes are typically
disjoint.

The other set of solid curves represent existence re-
gions of the nonzero solution of the two-photon-laser
equations. Solid dots inside the region surrounded by
those curves represent stability regions. Again, in order
to retain self-consistency, we have limited the stability re-
gions to the vicinity of the two-photon resonance,
2hz—-O'. In fact, we used the additional condition

80

60—

Q' ~ 2. 5Aq, (6.12)

which indeed limits the domain of stability to physically
acceptable regions.

We have also checked that our results are consistent
with the condition relating to the maximum size of the ac
Stark shift [see Eq. (6.7)]. In fact, throughout all of the
two-photon laser stability domains shown in Figs. 3—6
Stark shifts do not exceed 15%. Figures 3 and 4 present
the results that correspond to typical low-g cavities.
Here I =0.2y and g is of the order of 10 y. The results
show that Bloch-Siegert efFects are rather small and that
they lead only to a small modification of the stability re-
gion for the one-photon laser. It can already be clearly
seen from Fig. 3 that large efFective Rabi frequencies 0, '

correspond to weaker Bloch-Siegert e6'ects. This fact has
a simple explanation; i.e., Bloch-Siegert shifts are caused
by the correction terms in the effective Hamiltonian [Eq.
(4.10)], which are of the order of g /O'. For the two-
photon laser, it is interesting to note that the stability re-
gion extends over nearly the entire existence domain.
This region is concentrated around the line 0'=2hz, but
it is bounded from above; i.e., no two-photon lasing is
possible for 0' or Az too large. This efFect is due to the
fact that the efFective coupling constant A& decreases with
increasing Q' or 62. It also exhibits the destructive
inAuence of Stark shifts on the laser stability. Figure 4 is
calculated for a smaller value of X, i.e., closer to the
threshold. Figure 4 reveals that the one- and two-
phoion-laser stability domains are separated in a more
pronounced fashion when the lasers are operated close to
threshold than when the lasers are operated far above it.
This result appears to be true rather generally. Figures 5
and 6 present results for the intermediate situation of a
moderately large g and a moderately small I . The results
here show how the small increase of the cavity coupling g
tends to stabilize two-photon action for smaller values of

20-

0=] I r I « III r Ir III I IIII i I III» I I I lrr» rr» I II rrr lr rr r
0 20 40 60 80 100

FIG. 7. Same as Fig. 3, but for the parameters 6&= 12,
I =0.2, g=0.2, and N=SX10'.

cept that a large negative detuning 6,= —100 is used.
The results in this figure confirm once more the accuracy
of the simple estimates discussed in the beginning of this
section. It is worth noting that the stability regions of
the one- and two-photon laser becomes more distinct as
6, increases. This eftect can be observed even for the
case of very small Q.

In conclusion, we stress once more that all of the
presented figures show clearly two important eFects.

(i) In most cases the regions of stability of two- and
one-photon lasers are well separated; i.e., there will be no

80

60—

c

40-

In Pigs. 7 and 8 the parameter values employed corre-
spond to conditions achievable in confocal-type cavities
[15(a)]. Such cavities are notable in that even when they
attain centimeter-scale dimensions they may exhibit high
relative g values. For g=0.2 the regions of stability of
the two-photon laser are rather small for experimentally
accessible values of iV=10 . One should also note that
the stability domain of two-photon lasing does not cover
the whole existence domain. Nevertheless, the estimate
of Eq. (6.5) still gives quite an accurate description of this
case, provided we limit ourselves to the vicinity of the
resonance A'=262 and to relatively small values of 0'.

In Figs. 9 and 10 the same situation is considered, ex-

]0] I I I I I I IIIll II I Ill I I jr r I I I I I I I) I I I I I I I I I 1 ll I I I I I I

60 80 1000 20 40

FIG. 8. Same as Fig. 3, but for the parameters 5&= —12,
I =2, g =0.2, and N=10 .
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FIG. 9. Same as Fig. 3, but for the parameters b &= —100,
I =2, g=O. S, and N=SX10.

FIG. 10. Same as Fig. 3, but for the parameters 6& = —100,
1 =2, g =0.S, and N= 10'.

severe competition between the two processes.
(ii) The simple estimates of Ref. [7] give quite an accu-

rate description of the threshold conditions for one- and
two-photon dressed-state lasers.

After completion of this series of papers, we have
learned of the works of Agarwal [42,43] devoted to the
same problem. He considers, however, one-photon lasing
only in the simplest rotating-wave approximation.

Finally, we should mention that two-photon gain and
preliminary evidence of two-photon lasing have recently
been observed by us [44] in the driven two-level atom sys-
tem.

the U.S. Army Research Office under Contract No.
DAAL03-91-G-0313.

APPENDIX A

Here we present our method of finding analytic solu-
tions for the stationary state of a one-photon laser. From
the laser equations (4.11), we obtain

y~+4A2y, lal2/[yf+(0' —bl +2A2lal +A2) ]

(Al)
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iA, &S3aS=
y)+i(Q' —bl +2A2la +A2)

(A2)

Inserting Eq. (A2) into the equation for the cavity-mode
amplitude, we get

A, ,S3a

[I +i(b~ —b +Iik~s )][3y,+i(Q' —bl +2A2lal +A2)]
(A3)

Assuming that aAO, we obtain immediately from Eq.
(A3) a "frequency-pulling formula. " Defining Y=0'
—EL +2k,2(lal + —,') and using Eq. (4.12), we obtain, from
Eq. (A3),

S1=
I'[y2( I' +y))+4k )y)lal ]

Combining Eqs. (A4) and (A5) we obtain
2

1= $X/S3

P( +2+ y2)
(A4) s =s — lal

4I
y2

(A6)

and using Eq. (A2), Inserting Eq. (A6) into the definition of b,L [Eq. (4.12)],
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we obtain an explicit representation of AL as a linear
function of a

I
. Y becomes then a linear function of

I al
also. From Eq. (A6) we obtain an explicit quadratic
equation for

I
a I,

P= +,(y, +21 )[A —b,,—k,(S,—1)],4~17 1 4~27 1

y2(ye+I )'
(A8b)

and

where

y ) [&'—A2 —A2(S3 —1)) y, A, ,S3

(y, +I ) I

APPENDIX B

(A8c)

4A.2y1 (ye+21 )
(y +P)2y2

(A8a)
Here we derive analytic expressions for stationary solu-

tions [see Eq. (5.9)] describing two-photon-laser action.
From Eq. (5.8c) we obtain

[1.+i(a, —a, +r,S, )][y,+i(&' —», +2A, lal'+A )1
(81)

Assuming a&0, the "frequency-pulling formula" follows
immediately from Eq. (81). Denoting Y=0' —26L
+2A2(lal + —,'), we obtain, from Eq. (81),

Fquation (85) allows us to express b,L and thereby Y as a
linear function of Ial . We obtain then a quadratic equa-
tion for Ial from Eq. (82),

2A', y,S, I
a I'

1=
r(y', + Y')

From Eq. (5.8b) we get

y3S3

y, +4A', y, lal~/(y', + Y') '

and combining Eqs. (82) and (83),

2Afy)y2Sq lal'1=
I [y~(yf+Y )+4A, y, lal ]

From Eqs. (84) and (83) we obtain

2I
S3 =S3— al

y2

(82)

(83)

(84)

(85)

alai' +Plal'+y =0,
where

2A2yi(y2+2I )
+4A1

y2(y, +2I ) y,

2A2y )(y~+ 2I )(0'+A~ —2k~ —2A2S3 )=2
) 2(yi+2r)'

y, ( fl'+ A2 —2b, 2
—2A2S3 )

(y, +2I )

(86)

2A1y1
S3,

(87c)
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