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Becke [J. Chem. Phys. 84, 4524 (1986);Phys. Rev. A 38, 3098 (1988)] has shown that the Hartree-Fock
exchange energy for atoms (and molecules) can be excellently represented by a formula
K=2' 'C, fg p ~'(r)[l+PG(x )]dr, where C„ is the Dirac constant, P is a constant, G(x) is a func-

tion of the gradient-measuring variable x = Ii7p I/p ~, and the summation is over spin densities p .

Becke recommends G(x ) =x' /[1+0.0253x sinh '(x )]. It is demonstrated that the kinetic energy
can be represented with comparable accuracy by the formula T=2 ~3CFf g p'~'lr)[1+aG(x )]dr,
where CF is the Thomas-Fermi constant, n is a constant, and G (x) is just the same function that appears
in the formula for E. Recommended values, obtained by fitting data on rare-gas atoms, are
a=4.4188 X 10 ', p=4. 5135 X 10 '. The best a-to-p ratio, 0.979, is close to unity, and calculations with
a=p=4. 3952X 10 ' are shown to give remarkably accurate values for both T and X. It is briefly dis-
cussed how the above-noted equations for E and T can both result from scaling arguments and a simple
assumption about the first-order density matrix.

I. INTRODUCTION IC[p]=2'/ C„f g p
/ (r)[l+PG(x )]dr, (5)

Gradient expansions for the kinetic energy and ex-
change energy of a nonhomogeneous but nearly homo-
geneous electronic system are well known. With
CF =

—,', (3' ) =2.8712 and C, =
—,'(3/~)'/ =0.7386 the

Thomas-Fermi and Dirac coefficients, such expansions
can be written

which is necessarily approximate because exact represen-
tation of all of the higher-order terms in this way is not to
be expected. Becke tried several forms for G(x ). Argu-
ing from recently discovered long-range properties of the
exchange kernel [5], he finally came to, from among oth-
ers, the form

and

T[p]=2 CF f gp / (r)(l+ax2 + )dr
XG(x)=

I+@sinh '(x)
(6)

&[p]=2' C f g p (r)(1+px + . )dr,

where a and p are constant and the quantity

(2)
where y is a constant. Numerical results are very good;
Becke recommends y=0. 0253 and P=4.5135X 10 [4].

In the present paper we carry out a complementary
study of T[p], assuming that there exists a good approxi-
mation for it of the form

(3) T[p]=2 C~ f g p (r)[1+aG(x )]dr . (7)

measures the deviation from homogeneity at each r; p(r)
is the electron density at r. Summations are over spin o. ,
with x defined using the electron density p for elec-
trons of spin o . Specifically, 2 / CFa =

—,', [1] and
2 C„P=0.001 667 [2], so that

a/P=2. 1435 (4)

for the nearly homogeneous electron gas. When one tries
to apply Eqs. (1) and (2) to atoms and molecules as com-
ponents of energy functionals, one meets many
difficulties. Both series diverge, and the accuracy when
the series are truncated at zero or second order is poor by
any contemporary standard.

However, a recent innovation by Becke [3,4] shows
much promise. He suggested replacing all of the second-
and higher-order terms in the above formula for K by a
single function of x, call it G (x). Then

We test this hypothesis in Sec. II, again using Eq. (6) for
G(x).

That the G(x) in Eqs. (5) and (7) might be more or less
the same could be conjectured on inspection of Eqs. (1)
and (2): The sums of the terms x + in the two equa-
tions could be close to the same. A formal argument sup-
porting this assumption is given in Sec. III. We note the
fact that usually it is the combination T—E in which we
are interested.

II. RESULTS

In Table I are given the Hartree-Fock (HF) kinetic en-
ergies and exchange energies for the rare-gas atoms He,
Ne, Ar, Kr, and Xe. These are taken from literature [6].
The fits that follow are least-squares fits of percentage de-
viations from these values. The various quantities in Eqs.
(5) and (7) are determined by numerical integration.
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TABLE I. Exchange and kinetic energies for rare-gas atoms. Numbers in parentheses are percentage errors.

He
Ne
Ar
Kr
Xe

KHF

1.026
12.11
30.18
93.89

179.1

Kp

0.884
11.03
27.86
88.62

170.6

bK„),
1.025 ( —0. 10)

12.14 (0.25)
30.15 ( —0. 10)
93.87 ( —0.02)

179.0 ( —0.06)

THF

2.861 68
128.547
526.814

2752.05
7232.14

Tp

2.560 54
117.761
489.947

2591.23
6857.70

calc

2.85861 ( —0.11)
128.393 ( —0.12)
527.715 (0.17)

2753.96 (0.07)
7238.15 (0.08)

'True values, from HF wave functions of Ref. 6.
bFrom Eqs. (5) of present text, P=4. 5135 X 10 3; rms percentage is 0.14%%u.

'From Eq. (7) of present text, a =4.4188 X 10; rms percentage is 0.13%%u.

TABLE II. T—K calculations for rare-gas atoms. Numbers in parentheses are percentage errors.

(T—K)„i,

He
Ne
Ar
Kr
Xe

(T—K)H„'

1.836
116.44
496.63

2658.2
7053.0

(T—K)p

1.677
106.73
462.09

2502.6
6687.1

One parameter'

1.835 ( —0.03)
116.23 ( —0. 15)
497.41 (0.16)

2659.4 (0.04)
7057.3 (0.06)

Two parameter

1.833 ( —0. 18)
116.25 ( —0. 16)
497.55 (0. 19)

2660.1 (0.07)
7059.1 (0.09)

'Actual values, calculated from Ref. 6.
T—K using Hartree-Fock wave functions and the local density approximation.

'From Eqs. (5) and (7) with a =P=4.3952 X 10; rms percentage is 0.13%.
Tand %from Eqs. (5) and (7) with a=4.4188 X10 3, P=4.5135 X10 '; rms percentage is 0.15%.

TABLE III. Exchange and kinetic energies for first-row atoms. Numbers in parentheses are percentage errors.

THF KHF Tcalc

One parameter'

K„), Tcalc

Two parameter

K„„
He
Li
Be
B
C
N
0
F
Ne

2.8617
7.4327

14.573
24.529
37.688
54.401
74.809
99.409

128 ~ 55

1.026
1.781
2.667
3.744
5.045
6.596
8.174

10.00
12.11

2.8570 ( —0. 16)
7.4567 (0.32}

14.584 (0.07)
24.384 (

—0.59)
37.443 ( —0.65)
54.416 (0.03)
74.578 ( —0.76)
98.642 ( —0.77)

128.34 ( —0. 17)

1.022 {—0.34)
1.769 (

—0.70)
2.649 (

—0.71)
3.757 (0.35)
5.016 ( —0.57)
6.572 ( —0.39)
8.147 ( —1.06)
9.989 ( —0. 11}

12.11 {0.01)

2.8584 ( —0. 11)
7.4616 (0.39)

14.592 (0.13)
24.397 (

—0.54}
37.559 (

—0.34)
54.422 (0.03)
74.276 (

—0.71)
98.936 ( —0.48)

128.39 ( —0. 12)

1.025 ( —0. 10)
1.776 ( —0.29)
2.659 ( —0.31)
3.730 (

—0.38)
5.033 ( —0.26)
6.589 ( —0. 11)
8.172 ( —0.03)

10.02 (0.20)
12.14 (0.25)

'From Eqs. (7) and (5) with a =P=4.3952 X 10 '. For T, rms percentage is 0.47%, rms percentage is 0.45% for K.
bFrom Eqs. (7) and (5) with a=4.4188 X 10,P=4.5135X 10 3. For T, rms percentage is 0.39% and rms percentage is 0.24% for It. .
'True values, from HF wave functions of Ref. 6.

TABLE IV. T—K calculations for first-row atoms. Numbers in parentheses are percentage errors.

(T—K)„),

He
Li
Be
B
C
N
0
F
Ne

HF'

1.836
5.652

11.906
20.785
32.634
47.805
66.635
89.409

116.44

LDA'

1.677
5.141

10.817
18.800
29.555
43.584
60.555
81.408

106.73

One parameter'

1.835 ( —0.03)
5.689 (0.65)

11.935 (0.25)
20.668 ( —0.56)
32.427 ( —0.63)
47.844 (0.08)
66.431 ( —0.81)
88.653 ( —0.84)

116.23 ( —0. 18)

Two parameter"

1.833 (
—0. 16)

5.686 (0.60)
11.933 (0.22)
20.667 ( —0.57)
32.526 ( —0.33)
47.831 (0.05)
66.104 ( —0.80)
88.937 (

—0.53)
116.25 ( —0. 16)

'Actual HF values of T—K, from HF wave functions of Ref. 6.
T—K using HF wave functions and the local-density approximation (LDA).

'Calculated Eqs. (5) and (7) with a=P=4. 3952 X 10; rms percentage is 0.54%.
From Eqs. (5) and (7) with a =4.4188 X 10 ', P=4.5135X 10 ', rms percentage is 0.45%.
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a/P=0. 979 . (8)

Results for kinetic energies determined from Eq. (7) a«
given in Table I. We find a=4.4188X10 in Eq. (7),
1.4501 times the value obtained by Hodges [1]. The rms
percentage deviation is 0.13%. Also given in Table I are
the exchange energies determined from Eq. (5) with
/3=4. 5135X10, which is 3.173 times the value ob-
tained by Sham [2]. The rms percentage deviation is
0.14%.

These empirical values of a and p predict the ratio

1

p(r)
[1+F(r,O) ],1

pr

defining F(r, 0) thereby. Then

T=Tp+ ', f— F(r, O)dr
pr

and

$2
I (r, s)=1— [1+F(r,O)]+

pp(r )

(12)

Remarkably, this number is seen to be close to 1.
Now we turn to the quantity T—K, which is the com-

bination of T and K that enters the total energy. Table II
gives T Kva—lues determined in two ways. First (last
column), a and p values are taken from the independent
fits of T and K described above: +=4.4188X10 and
p=4. 5135X 10 . In the second calculation of T K, we-
arbitrarily use the ratio unity, taking a=P. We obtain
a =/3=4. 3952 X 10 and the T Kvalu—es shown in the
next-to-last column. Little seems to have been lost in em-
ploying this simplification, which reduces the fitting to
one parameter. Agreement with true values is very good
indeed.

For calculation of T alone we recommend
a =4.4188 X 10; for calculation of K alone we recom-
mend p=4. 5135 X 10, while for calculation of T K—
we recommend a =P=4.3952 X 10

III. DISCUSSION

As a test of this formulation, in Table III we present
values of T and K computed for erst-row atoms using the
two sets of a and P values recommended above.
Hartree-Fock values are given for comparison. Again,
we give the values of T—K in Table IV. The results are
highly promising. Note the number of parameters
involved —only one for the second calculation.

To try to understand better how it can be that to such
good accuracy we can use the same G(x ) in Eqs. (5) and
(7), we may start from formulas for T and K obtained
from exact formulas in terms of the first-order density
matrix [7]. Namely, exactly (total density is used for con-
venience),

(9)

$2
K =sr f f s ds drp (r) 1+ +

p(r)

$2=I p(r, s) —— F(r, O)+
pp(r)

$2= I p(r, s ) — F(r, s ),
p 1

where I p is the Thomas-Fermi I' and F(r, s ) is defined as
indicated by grafting onto F(r, O) higher-order terms in s.
Consequently,

K =K0+~ F r, $ $ d$ dr .
pr

(14)

Now change the variable s to the variable t =s /pp(r),
giving F(r, s)=G(r, t). Equations (12) and (14) become

T =Tp+ A fp
~ (r)G(r, O)dr,

K=Kp+B'f p (r)dr f G(r, t)t dt,

(15)

(16)

where 3 and 8' are constants. These formulas are exact.
If we now assume that, to a good approximation,

f "G(r, t)tdt=constXG(r, O),
0

Eq. (16) becomes

K =Kp+B fp (r)G(r, O)dr,

(17)

(18)

where B is a constant. Equations (18) and (15) are of the
form of Eqs. (5) and (7), with G(r, O) playing the role of
G(x ).

This argument is, of course, more or less formal. The
evidence for "conjointness" we have presented is in large
part empirical. What seems to be the case, for whatever
reason, is that as soon as one separates T and K in-
tegrands into properly scaling parts p and p, respec-
tively, and the scale-invariant "rest," the "rest" may be
assumed to be very similar for T and K.

March and Santamaria also have recently begun to
study conjointness [8].

Results of comparable accuracy have been obtained for
molecules and will be presented elsewhere.

=af f s ds drp (r)I (r,s), (10) ACKNOWI. EDGMKNTS

where p(r) is defined by Eq. (9)—its reciprocal is two-
thirds of the exact kinetic-energy density per electron.

With Pp(r) =5[3m P(r)] ~, the Thomas-Fermi for-
mula, we may write
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