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Phase and amplitude correlations induced by the switch-on chirp of a detuned laser
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The correlations of the fluctuations of the electric Geld are studied for a simple model of the buildup
from spontaneous-emission noise of the output of a single mode of a laser cavity. Results for when the
laser cavity is detuned with respect to the center frequency of the gain medium are compared with the
case in which the cavity is resonantly tuned. Resonantly tuned lasers display transient phase and ampli-
tude correlations with a peak at the time that the evolving amplitude departs from the neighborhood of
the origin in the complex plane of the amplitude where phase diffusion dominates. Deterministic fre-
quency chirps during the switch-on of a detuned laser delay and significantly strengthen the transient
correlation of phase and intensity fluctuations when the detuning is su%ciently large compared with the
strength of the noise. In this case the peak in the correlations is related to the anomalous intensity fluc-
tuations characteristic of transient switching.

PACS number(s): 42.55.—f, 05.40.+j, 05.70.Ln

I. INTRODUCTION

Lasers and laser amplifiers have been studied for their
intensity statistics for many reasons, as examples of
Bose-Einstein sources [1],for the transition from thermal
to coherent statistics as a laser is brought above threshold
[2—4], for the transformation of the statistical Quctua-
tions of input signals [5,6], for the quantum limits to their
operation [7—9], and for the eff'ects of gain saturation
[10—12]. While measures of the intensity fiuctuations or
photon statistics have been relatively easy to check exper-
imentally, there have been fewer theoretical treatments or
experimental tests of amplitude correlation functions.

In this analysis we explore the evolution of phase and
amplitude correlation functions for fluctuations in a
single-mode laser during the transient after it is switched
on. The intensity statistics of such transient switches
were among the earliest of quantum-statistics problems
studied after the advent of the laser [2] and they have
been studied extensively more recently as indicators of
the initial state of the field inside the laser cavity [13—19]
or of the strength of injected fields [20—22].

%"e extend previous work by considering the field
correlation functions and by analyzing the additional
features that appear in the case of lasers detuned from
resonance. For these initial studies we consider the sim-
plest possible model which captures the basic
phenomenon of a frequency chirp during the transient.
The model involves only a single equation for the com-
plex field (appropriate to what have been called class-A
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lasers in a classification of lasers by their dynamical prop-
erties [23]) and we take only the lowest-order approxima-
tion of the gain saturation, which is often called third-
order Lamb theory. (Some limits of this approximation
as an accurate representation of more exact models have
been discussed recently by Christian and Mandel [24].)
In this model the detuning causes no modification of the
evolution of the intensity statistics, but there can be a
significant change in the correlation of the phase and am-
p1itude evolution during the transient. We attribute this
to a deterministic phase evolution that dominates the
phase of a detuned laser during the initial transient. The
deterministic phase evolution arises from the shift in the
optical frequency of the laser as the intensity turns on,
and it effectively suppresses the importance of phase
diffusion once the initial transient has grown to an inten-
sity larger than that of the spontaneous-emission noise.

To understand the origin of the physics incorporated in
our simple model of a detuned single-mode laser, consid-
er a generic two-level medium described by the Maxwell-
Bloch equations [25]
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E, P, and s are complex quantities and all other variables
and parameters are real. E and P are slowly varying am-
plitudes of the electromagnetic field and the atomic po-
larization, respectively, written in the rotating frame of
reference of the atomic resonance frequency, and D is the
population difference. The detuning of the laser cavity
from the atomic resonance is given by —6~c.

The intrinsic noise in a macroscopic system of atoms
and photons can be well described by semiclassical equa-
tions with the fluctuations due to spontaneous emission
appearing as a 5-correlated Langevin noise term in the
polarization (s(r)s*(r')) =I 5(t t'). —A recent careful
review and elegant demonstration of this is given by Car-
michael [26].

The noise-free steady-state solutions for a detuned laser
have several anomalous results. For instance, for the
deterministic (noise-free) equations, while the frequency
of the lasing solution for fixed cavity detuning is constant
and independent of the degree of excitation of the laser,
the frequency of the nonlasing state is not defined. While
it is convenient in the case of a resonantly tuned laser to
say that the trivial and nontrivial solutions both share a
common frequency (that of resonant tuning), there is no
clear argument to make for the detuned case. Imagine
turning the laser on by incrementally increasing the gain
[27]; does the laser power first emerge at the detuned fre-
quency of the steady-state lasing solution only after the
threshold for laser action has been crossed? From
steady-state analysis of the noise-free system, the answer
is that there is no frequency (because there is no field) un-
til the nonzero-intensity state begins, and the nonzero-
intensity state always has a detuned frequency. But if one
abruptly switches on a laser from an initial ofF state, is
there something approximating an instantaneous frequen-
cy of the laser output which changes during the tran-
sient?

Clearly the only resolution of this problem lies in the
inclusion of either nonzero initial conditions for the laser
or a steady Langevin noise source. Such additions are
also necessary if the real intrinsic noise of the laser is to
be modeled and if the system is ever to leave the trivial
deterministic solution when the laser is above threshold.
One approach is that of studying the spectral properties
of stochastic solutions for a sequence of steady-state
operating conditions. Recent analyses by Chyba and
Abraham [28] (and experiments by Kikuchi [29] on semi-
conductor lasers) have shown that the spectrum of a laser
has a well defined peak(s) even for excitation levels below
the threshold for laser action. As the excitation is in-
creased, the peak in the electric-field spectrum moves
from the value(s) for the "off" state toward the value for
the steady-state detuned laser solution.

This leads to the inference that the instantaneous fre-
quency of a laser would make a similar shift during a
transient when the laser is abruptly switched on. Deter-
ministic frequency evolution can be followed in noise free
equations and such a frequency-dependent evolution is
called a "chirp" when there is a linear (or at least mono-
tonic) sweep in the frequency during the pulse. The tran-
sient switch in the frequency may also have consequences
for the intensity, or it may be that the frequency simply

follows the intensity. In either case it is reasonable to ex-
pect that there will be transient correlations in the phase
and intensity Auctuations. However, in the presence of
noise there is the further complication: namely, that an
instantaneous frequency cannot be well defined [30].
Determining what quantities are measurable that might
reAect some of the physical evolution of the frequency is
a primary motivation of this work.

In particular, we wish to inquire whether results of re-
cent work on switching transients for resonantly tuned
lasers [14—16] would change if the laser is detuned from
resonance. This should also be of interest for similar
switch-on transients in semiconductor lasers [17] where
the linewidth enhancement factor (Henry's a factor) pro-
vides an intrinsic detuning and thereby a well-known
coupling between amplitude and phase evolution and
fluctuations. Moreover, the transient evolution of the
phase of a laser in individual switch-on events may be
measurable for an independent test of our results. Recent
heterodyne measurements of Weiss et al. for far-infrared
lasers [31] demonstrate that something approximating
the "instantaneous frequency" (thus the phase evolution)
of a laser can be measured during a single transient and
single "phase-slip" measurements by optical frequency
standards groups [32] indicate that the general technolo-
gy required for these measurements is available for a wide
range of lasers.

II. MQDKI

Our model can be constructed from the Maxwell-Bloch
equations for a single-mode field interacting with a two-
level medium by adiabatic elimination of the amplitudes
of the material variables, while keeping careful note of
the phase of the material polarization. The resulting
di6'erential equation for the complex electric-field ampli-
tude with a third-order approximation of the gain satura-
tion is [33]

=a&(1+i6)E(t ) —P(1+ie)~E(t )
~
E(t )+g(t ), (2a)

where

Here we can consider the electric-field amplitude to be
in dimensionless units with the saturation intensity fixed
by P '. The time scale can be conveniently renormalized
to the unsaturated gain o, The degree of laser excitation
is governed by o.

&
and the threshold is given by cx&=0.

The equations are written for the slowly varying ampli-
tude of the field in a rotating reference frame which gives
a constant amplitude for the steady-state solution with
nonzero intensity. The detuning of the laser cavity from
the atomic resonance is given by a,e, as indicated by the
fact that the trivial (zero-intensity) solution has a fre-
quency of a&e, while the nontrivial solution has a fre-
quency of zero.

We have taken only the third-order approximation of
the saturation and in the adiabatic elimination of the po-
larization we have transferred the noise from the polar-
ization to the amplitude equation. While the quantum
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mechanics of spontaneous emission dictates that the po-
larization noise has a white spectrum, if one observes the
resulting noise in the field amplitude it has a finite band-
width given by the relaxation rate of the polarization.
The adiabatic elimination process which converts a
coherent model for Geld and atomic variables to an equa-
tion only for the field variables transfers the polarization
noise to a field noise and filters it. Hence for this equa-
tion one must construct a colored-noise process g(t),
which has a characteristic bandwidth equal to the polar-
ization relaxation rate. However, since the validity of
such an adiabatic elimination relies on the polarization
decay rate being much larger than the Geld decay rate, we
find that g(t) diFers very little from white noise in terms
of its effect on the field.

If we consider switching the parameter ni from ao & 0
to a, we will need to take for initial conditions values
which are solutions of the steady-state process given by

=2(xI+a=0

with the result that the intensity is given by

(I & =~/2lal .

For a negative yet close to zero we must already include
the nonlinear correction which gives the result that

2a(I ) 2—P(I' &+~=0 . (10)

Then, more exactly, since for such nearly Gaussian am-
plitude processes

(I2) -2(I)2
we have that

as occurring at a =0 [35].
For example, for R «1 and o; «0, we have for

steady-state solutions that

=(ao+i ae)E+ g(t ),
dt (I ) =[a—(a +4Pe)'~ ]/4P, (1 la)

dR =aR —pR +e/2R+e' g~(t), (4a)

d~- =ae peI+I '"—6 g (t)-,
dt

where the noise processes g have zero means and correla-
tion functions given by

(g.(t)g. (t ))=~(t-t ),
( g&(t )g&(t ') ) =&( t t '), —

(gy(t)pit(t')) =0 .

(sa)

(5c)

In the noise-free case (e=O), we recover, for reference,
the two steady-state solutions

I=a/P, (6a)

and

=ae —PeI=0
dt

(6b)

I=O,
d =ae .
dt

(7a)

(7b)

The first solution exists and is the only stable one for
o, & 0, while the second is stable and is the only solution
for a &0. In the presence of noise, the bifurcation of the
nontrivial branch of solutions is no longer sharply defined

where the frequency shift results from choosing the same
rotating reference frame for the complex field before
switch-on as after the switch-on.

For the evolution after the switch-on process, we can
separate Eq. (2) for the complex field amplitude into
equations for the intensity and phase by defining

E=Re'~, I=R

with R and P real functions of time. Then the process
given by Eq. (2) becomes (using Ito calculus [34])

in which case

d 8 eI (1 lb)

Eg (t ) =H(t )e "+' "/[ [1+(P/a) H(t ) l'

2at
1 ]()I i+B)I ]2

(12)

Both of these revised Eqs. (11) are smoothly varying func-
tions of the parameter cz and provide reasonable approxi-
mations of the average values as a is increased (though
still negative) until the average intensity in Eq. (lla)
comes within an order of magnitude of (e/p)'~ (the
value at a=0).

We return then to the question of whether transient
evolution of the frequency and of the intensity and phase
statistics follows a simple relation similar to the steady-
state relation between the average amplitude and the
derivative of the average phase, for example, with the
average "instantaneous frequency" [as defined by Eq.
(1 lb)] during a transient simply tracking the average in-
tensity as given by Eq. (7a). Clearly an alternative is that
the instantaneous frequency tracks the instantaneous in-
tensity, while the averages significantly differ from the in-
dividual transients. The correlations that result from
whatever relationships are meaningful are thus enhanced
in this region of transient evolution and it is particularly
likely that the fluctuations in the switching times of the
intensity transients will have a significant impact on the
statistical properties of the phase and on its correlation
with the intensity.

We start with an initial condition given by a steady-
state solution of Eq. (3) where the excitation parameter is
o.0&0. Then for t &0 we take the system to evolve ac-
cording to Eq. (2a) with parameter a (a )0).

For the theory of the transient switch-on in the pres-
ence of noise, the quasideterministic theory (QDT)
[13,36] for the field E gives
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which is the approximation of deterministic amplification
of random initial conditions

Then the phase fluctuations along the trajectory are given
by

H(t)= f dt'e "+' "g(t')+E(0)
0

(H(t)H*(t) & =e(1—e ')/2a+e/2laol,

where

& IE(0)l'& =e/2laol .

(13a)

(13b)

(13c)

&(&(()'&g = f d [IQ ( )] (19)

B.Ensemble average

and are independent of the detuning. Note that Q(t) in
Eq. (17) is still a stochastic quantity during the transient.

For t ))1/2a, H(t) is replaced by a time-independent
complex Gaussian variable H, whose variance is

& IH '&=e/2a+e/2la,
l

. (14)

The QDT approximation in Eq. (12) neglects fiuctuations
in the final state. Therefore it neglects final phase
diffusion. We proceed with this approximation for the in-
tensity (assuming no final intensity fiuctuations) while
keeping the exact Eq. (4b) for the phase in order to see
the phase diffusion. Then for the intensity

I(t ) =-IQDT(t ) —l&QDT(t ) l

= lH(t)l e '/[1+(p/a)lH(t)l

X(e ' —1)]

which is independent of detuning, while for the phase

p(t)=p(0)+act pe —f dt'IQ»(t')
0

+ t/e f dt'[I QD(rt')]
' g~(t') .

0
(16)

Equations (1S) and (16) form the basic equations of our
approximation. We see that the intensity evolution under
these assumptions is independent of the phase evolution,
while the phase evolution depends on deterministic evolu-
tion, on the stochastic quantity depending on the evolu-
tion of the intensity, and on a phase diffusion process.

X [IQDr(s &
H)]' (20)

where &IQDT(s) & is the average obtained from Eq. (16)
after averaging over the Gaussian distribution of H,
P(H ), with its standard deviation specified in Eq. (14).

C. Correlation functions

A different way of looking at transient phase Auctua-
tions is to consider correlation functions which depend
on the coupling of the amplitude and phase. Correlation
functions for transients are functions of two times rather
than one and averages are only over the ensemble since
time averages cannot be meaningfully taken during the
transient. For example, the electric-field correlation
function is given by

& E(t )E (t') &g
= [IQDT(t )IQDT(t') ]

X & e l [()( t )
—P(t') ]

& (21)

If we perform an ensemble average we obtain diver-
gences which indicate that the phase itself is meaningless
in the ensemble average:

&(&(()'&,

ef ds & IQDT(s ) &

0

=ef ds f f dH dH*P(H )P(H" )

III. PHASE FLUCTUATIONS
AND PHASE-AMPLITUDE CORRELATIONS

From Eq. (16) we obtain

&
et[a(t) —P(t')) % —t84(t, t') —(e/2)z(t, t')—e (22)

There are two averages that might be taken in Eq. (16):
one with respect to the phase noise g&, & & &, and the oth-

er with respect to the ensemble of the I&DT realizations.

with

%(t, t')=a(t t') pf ds—IQDT(s)—
E'

(23)

A. Averages over the phase noise

We can compute an "average instantaneous frequency"
Q(t ) defined as follows:

n(t) = "=—ae —peIQ, (t) .
dt

Thus the first three terms of Eq. (16) give a frequency
(dpldt ) which changes from ae (if the initial intensity is
negligible) to zero as the intensity rises to its final value,
since IQ»( ~ ) =a/p. Subtracting this deterministic fre-
quency evolution for a given intensity trajectory, we
define

y(t, t')~(p/a)(t —t'),
while

(25)

y(t, t')= f ds[IQDT(s)]

where %(t, t') is a function of IQDT, which gives the fre-
quency shift, and y(t, t') is a function of IQ», which for
long time gives the phase diffusion in the final state.
y(t, t') gives a linewidth which displays both narrowing
with amplification and further changes when the
amplification saturates.

As t and t'~ ~,

bP=P(t) t))(0) f Q(t')dt' . — —
0 0 (t, t')~0 . (26)
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We introduce a notation for the arguments of the tran-
sient correlation function (E(t, )E*(tz ) ) as follows:

T=(t, +t, )/2, t =t, t—, .

Before discussing the ensemble averages, several observa-
tions are in order.

From Eqs. (23) and (15) and when a T )) 1 while
et «1, we get

10

and

0 (T&t ) —at[1 (P/a)I QDy(T)] (27)

y( T, t ) = t l [IQD~ ( T ) ],
up to orders (tlT) . Equations (27) and (28) for each
realization of the intensity give an effective stochastic in-
stantaneous frequency ac[1—(p/a)IQDr(T)] [see Eq.
(18)] and an effective decay time (or inverse bandwidth)
r=(2/ e)IQ Dr(T). The effective frequency and decay

time depend on T through I&0~. There is then a natural
scaling of the experimental results with the intensity in
the case in which intensity and phase are measured simul-
taneously.

In the same limit aT )) 1 and at « 1, from Eq. (16) we
obtain

I. . . , I

8 10

FIG. 1. (a) Mean intensity (I(t) ) and (b) the variance of the
intensity ([AI(t}] ) vs time, where these represent ensemble
averages. The parameters a= ~ao~ =1, P=0. 1, and e=0 01,
shown in the inset, have been used for all calculations in this pa-
per. The intensity is taken to be dimensionless with a saturation
value of 101/3 ') and time is conveniently scaled to a '=1.

[IQD~(t, )IQDg(t~ ) ]' =IQD~( T)+O((t /T ) ), (29)

in agreement with the numerical results discussed and
displayed in the figures below. In this limit and for a
given intensity realization

(E(t))E*(t~))g =I Dr(T)e

large enough to avoid excessively long transients yet
small enough to make the QDT approximation valid.
The intensity is taken to be dimensionless with a satura-
tion value of 10 (p ') and time is conveniently scaled to
a

The peak in the variance is often referred to as evi-

et /2IqDT( T)
Xe (30)

The function

—(R(t, )R(t, ))(e ' ' )], (31)

provides a measure of the degree to which the amplitude
and phase fluctuations are correlated. In the steady state
this function goes to zero in our approximation. In prin-
ciple, the exact solutions of our model and those of even
more exact laser models such as that of the Maxwell-
Bloch equations or those of semiconductor lasers retain a
degree of amplitude and phase correlations in the final
state.

IV. NUMERICAL ANALYSIS

d)

t (a)

For reference purposes we show in Fig. 1 the average
intensity (I( t ) ) and the variance of the intensity
((6I)) )—:((I(t)—(I(t))) ) as functions of time.
These are found by numerically calculating (by a Simpson
rule integration routine) the ensemble average of the ex-
pression for the intensity in Eq. (15) and its variance. We
assume that H is a time-independent Gaussian variable
(valid for times larger than 1/a) whose variance is given
by Eq. (14). All calculations for these and other figures in
the paper were done with parameter values a= ~ac~ =1,
P=0. 1. In this case e=0.01 was chosen for convenience,

Re E

FIG. 2. Evolution of the complex electric field for several
values of detuning: (a) 0=0.0, (b) 0=10, (c) 0=3.5X10
(d) 0=0.1, (e) 0=0.5, (f) 0=1. The dotted circle indicates
where ~E~ =(10)'
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dence for anomalous intensity fluctuations. " It arises
from the indeterminacy of the switching time which
occurs because the signal originates from randomly fluc-
tuating noise. In the overall evolution for a given noise

evel e —10, we see that the transient is divided into
three regions. For small times (less than Ts-2.0) we
have linear gain. T, can be identified with the mean first
passage time, the time at which the intensity reaches a
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correlation functions. The amplitude-amplitude correla-
tion function (R(t, )R(t2)) is also calculated from the
ensemble average of the QDT approximation [Eq. (15)]
for I=R . The phase correlation function

E[tt)l(t1 ) $(/2)j y g l%(tl&t2) (E/ )g(tlyt2)' ' j is again
calculated by ensemble averaging using Eqs. (23) and (24)
and the QDT approximation. Here ( ) means

+ IQDT
Figure 3 shows various aspects of the correlation func-

tion C during the transient evolution of the intensity de-
scribed in Fig. 1, but for diferent values of the detuning.
Figures 3(a)—3(c) show the real and imaginary parts of C
versus time for difFerent values of the delay time t. As the
detuning is increased, there is a delay in the peak of the
real part of C and an enhancement of the magnitude of
the imaginary part of C. Phase di6'usion dominates in the
first region and it is reAected in the peak of Re C.

Fluctuations of the instantaneous frequency in the en-
semble due to anomalous intensity fluctuations dominate
in the second region, giving rise to a peak of ImC because
of the large coupling of intensity and phase fiuctuations
when there is su%cient detuning. For reference, Fig. 3(d)
shows the function C for zero detuning which is real.
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FIG. 7. (a) Time at which ~C~ has its maximum (T,„) plot-
ted vs detuning e for @=0.01. (b) Time at which ~C~ has its
maximum plotted vs noise '.ntensity e for 8=0.035.
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With larger values of the detuning there are oscillations
in the real and imaginary parts of C during the switch-on.
A sample is shown in Fig. 3(e).
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tions which separately govern ReC and ImC. We see a
smooth transition in time from the dominance of phase
diffusion (where the phase of C is zero) to the dominance
of anomalous intensity fluctuations (where the phase of C
is —~/2).

It is instructive to study the correlation function in the
same limit that we have considered in obtaining Eq. (29)
(i.e., aT )) 1 and at ((1 [expanding C(T, t ) up to terms
of the form (t/T) ln(t/T)]). We have devoted the Ap-
pendix to this calculation and we shall quote here only
the results. The real and the imaginary parts of the
correlation function defined in Eq. (31) are given by

ReC( T t. ) ( I( T )e
—et/2I( T) ) (32a)

—(I(T))(e

FICx. 9. ReC and ImC as obtained by the small t approxima-
tion [Eqs. (A18) and (A8b)] (diamonds) compared with results
from numerical evaluation of the averages in Eq. (A1) (solid
line). Parameters are the same as those of Fig. 4(a).

ministic phase rotation during the transient, it is useful to
look at the modulus of C. This is plotted in Fig. 4(a) for
different detunings using t=0.25 since the time T at
which the peaks occur is relatively independent of t. For
reference, the results of Fig. 3 for t=0.25 are summa-
rized in Fig. 4(b). We see that when the detuning is zero,
there is a single peak at about T=2. 1 which is approxi-
mately the mean first passage time (the time when the in-
tensity becomes appreciably larger than the
spontaneous-emission noise). This indicates that for zero
detuning the strongest amplitude and phase correlations
occur just as the trajectory leaves the phase diffusion re-
gion.

For larger detunings a second peak emerges at T=3.8,
which is at the time of the peak of the anomalous intensi-
ty Quctuations. This peak reflects the rapid phase rota-
tion induced by the deterministic switch-on of the phase.
The strong correlation of the phase evolution with the in-
tensity evolution gives fluctuations in the phase in
correspondence with intensity Quctuations arising from
different switching times.

The phase of C for the parameters considered in Fig. 4
is shown in Fig. 5. As the detuning is increased, the
phase shifts from zero (the value at zero detuning) to a
value which saturates at —m/2 for large detunings since
in the intermediate region the imaginary part is much
larger than the real part.

The three time regions identified earlier are evidently
relevant to the evolution of C. Phase diffusion dominates
in the first region and it is reAected in the peak of ReC.
Fluctuations of the instantaneous frequency in the ensem-
ble due to anomalous intensity fluctuations dominate in
the second region, giving rise to a peak of ImC because of
the large coupling of intensity and phase fIuctuations
when there is sufficient detuning. The phase of C (Fig. 5)
measures the relative importance of the types of fIuctua-

(32b)

where (I ) and (I ) are given in the QDT approxima-
tion by special functions [see Eqs. (A16) and (A17)].

This approximation reveals why the real part of C has
its peak at the mean first passage time and the imaginary
part of C has its peak at the time of the peak in the anom-
alous intensity Auctuations. It also explains why the
imaginary part dominates for large e.

A useful way to summarize these results is to plot the
characteristics of the peak value of the norm of C for
different levels of noise. Figures 6 and 7 give the value of
the norm of C at its maximum ( C,„) and the time at
which the maximum occurs (T,„), respectively. In Figs.
6(a) and 7(a) these are plotted for a particular value of the
noise strength E=10, while in Figs. 6(b) and 7(b) the
detuning is fixed (6=3.75X10 ). In both of these
cases we see that there are relatively minor changes of
both quantities as the noise strength is varied for small
noise strengths, but above a critical value (e„) there is an
abrupt shift in the time at which the maximum occurs
and a corresponding increase in the rate of growth of
C,„with noise strength. For Figs. 6(b) and 7(b) these
are plotted versus e for fixed 6 to find e„.

To interpret Fig. 6(b), note that the lower branch of the
values of T,„corresponds to the first passage times and
the upper branch corresponds to the time of the peak of
the anomalous intensity fluctuations. Both of these times
vary as 1/inc, with the passage time always preceeding
the time of the peak in the anomalous intensity Auctua-
tions. For weak noise, the peak is at the same time as the
peak in the anomalous intensity fluctuations. This indi-
cates that the noise is weak enough for the deterministic
phase and frequency evolution during the transient
switch-on to be unmasked. For larger noise, the noise-
induced phase diffusion masks the deterministic effects
and the evolution is the same as for zero detuning.
Hence the important characteristic determining whether
the system differs significantly from the zero-detuning
case is whether the mean-square phase diffusion rate
e/2I(T) is small in comparison with the square of the
"deterministic" frequency ae —PBI( T).

It is useful to plot the critical value of the detuning at
which this transition occurs as a function of the noise.
Nearly linear scaling is shown in Fig. 8. For a fixed de-
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tuning, the critical value of e separates two situations.
for e) e„, the peak in the norm of C for t=0.25 is
governed by noise (phase diffusion), while for e & e„ the
peak is governed by the anomalous intensity fluctuations.

V. SUMMARY

We have developed here an extension of the QDT for-
malism to study phase fIuctuations in the presence of de-
tuning in the transient statistics of the laser after switch-
on. The theory predicts a rather sharp crossover
phenomenon in the modulus-phase cross correlation
function. As experiments have recently used heterodyne
techniques to measure the instantaneous phase of a laser
signal [31], it should be possible to measure these efFects
and to study their relevance for transient laser processes.
This may give rise to an important form of self-phase
modulation in the generation of Q-switched pulses in de-
tuned lasers.

When the deterministic efFects are important there
would be measurable chirping and detectable determinis-
tic phase motion during the transient. Rapid variations
of the intensity from large values to zero and back to
large values that were presumed to involve shifts of the
phase by m (sign changes of the field) would have addi-
tional phase shifts associated with the deterministic evo-
lution during the transient.

These additional variations in the phase and frequency
evolution during transient evolution of the laser also will
give additional contributions to the linewidth during
transients. The deterministic frequency has the same sta-
tistical properties as the intensity in our model. Since the
range of frequency evolution (chirp) is tied to the intensi-
ty transient, we will have an enhancement of the intrinsic
linewidth due to fluctuations of the chirp.

in which ( ) means

( &= dxe (A3)

and we have normalized the integration variable (intensi-
ty noise) as follows:

I(T)=2u(T)x/[I+2u(T)x],
where

u(T)=exp(2aTo ),
()(T)=P(u —o )/a,
a'=

& III ~' &
=e/2a+ e/2a, .

(A4)

(A5)

(A6)

(A7)

ImC(T, t)= —iB/3t[(I(T) ) —(I(T)) ] . (A8b)

These formulas show us how the real part of C is related
to the ordinary (detuning independent) phase diffusion.
The imaginary part depends linearly on the detuning.
And it is, to first order in t, also proportional to the inten-
sity Auctuations.

Now we have to perform the integrals appearing in
Eqs. (A8) and then expand the result in series of t. Using
Eq. (A4} the first term in Eq. (Aga) may be rewritten as

Since the function e " ' is not analytic in the neigh-
borhood of I=0, we cannot interchange the averages and
the series expansion in t/T. Thus let us leave the ex-
ponentials of this kind as they are and perform the series
expansion on the analytic part of C inside the integrals:

ReC(T, t)=(I(T)e "l ' ')

(A8a)
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APPENDIX

(I(T)exp[ et /2I(T—)] )

=exp[ —eu ( T )t /2u ( T ) ]

OO etX dx exp —x—
0 4u(T)x

2u(T)x
1+2U(T)x

In this appendix we show how to calculate analytically
an approximation for the correlation function de6ned in
Eq. (31). The equation can be rewritten in terms of T and
t. Introducing the intensity I=R,
C(T, t)=(E(T+t)E (T))

(A9)

This integral can be separated into two pieces in order to
evaluate correctly the contributions around x =0 and
x ~ oo:

(Iil (T+t)I'l (T))(e'[0( +') 0(T) ) (Al)

We want to obtain an expression for Eq. (A 1) when
a T ))1, while at « 1 (i.e., keeping only the first order in
t ). Using Eqs. (21)—(24} we perform first of all the aver-
ages over the phase noise, which yields an expression
containing only the intensity process I&DT given by Eq.
(15) (in the following we will drop the index QDT). Then
using Eqs. (27) —(29) together with Eq. (14}we get

C( T I )
—(I(T)etc[a —pi( T)}t—etl21(T) )

OO 2ux
dx exp( —x et /4ux )—

0 1+2Ux

+I dxe-
1/20

2u(T)x
1+2U( T)x

et
4ux

1/20 et=2u dx x exp —x — g (
—2ux)

0 4ux

(A10)

(I(T) ) ( ie[a pI(T))t —etl2I(T) )— (A2)
It is possible to expand the integrand in the second term
in t. After some rearrangements we end up with
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f oo 2Qx
dx exp( —x e—t /4ux )

0 1+2vx

=2u f dx x exp —x — g ( —2ux ) —I dx g ( —2ux )"
0 4QX k 1

1/20

et
X

4u

+f" dxe-"
1/20

2u(T)x
1+2u( T)x

et1—
4ux

(A 1 1)

We can also rewrite Eq. (Al 1) in a more convenient form:

00 2Qx
dx exp( —x et /—4ux )

0 1+2Ux
=2u . dx x exp —x — g ( —2ux) —(k+1)!+ k!

OO et et
0 4Qx 4u

+j"dx e-
0

2u(T)x
1+2u(T)x

et
4ux

(A12)

J dx exp —x+ g x"+'
0 2ux

' k/2+1
et

&k+2 2
44u

=2
4u

(A13)

The results for the integrals appearing in Eq. (A12) may
be found [37]:

functions [37,38]:

(I(T) ) = — 1 —exp(1/2u ) &
1

U 2U 2U

2

(I(T) ) =2 exp(l/4u) W 2,&2(1/2u ),
2U

(A16)

j"dx e
0

2u(T)x
1+2u(T)x

et1—
4ux

et
2I(r) )

u u et exp(1/2u ) 1

U v 2 2U 2v
(A14)

Eu( T)t Et

2u(T) 4u(T)

1/2
et

4u(T)

1/2 '

et
2I(T) )

u exp( 1/2u ) 1

U 2U 2V

et
2

(A15)

Other terms in Eqs. (A8a) and (A8b) are given by special

where K„ is a modified Bessel function of order n and E1
is the exponential integral. The series appearing in Eq.
(A12) seems to be rather formal, but expanding the Bessel
function we get a cancellation of divergent terms. Up to
terms of order t ln(t ):

(A18)

ReC =— (I ) ln
et 4u
4u et

—2u —0. 154 —2u . (A19)

For ImC we have used Eq. (A8b) together with Eqs.
(A16) and (A17). These results are compared with direct
computer evaluation of Eq. (Al) in Fig. 9.

where 8' 21/2 is the Whittaker function and K, is the
modified Bessel function.

Finally using the expansion for the Bessel functions it
is possible to give an approximate formula for ReC up to
order t ln(t):
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