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Statistical and phase properties of displaced Kerr states
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We study the statistical and phase properties of the output states of a Mach-Zehnder interferometer
with a nonlinear Kerr medium in one of its arms. The combination of nonlinearity and displacement
produced by the interferometer generates output states (displaced Kerr states) that, unlike those derived
from a Kerr medium alone (Kerr states), do not necessarily retain the photon statistics of the initially
coherent field. As the parameter characterizing the nonlinear medium is varied, the statistics of the out-

put field vary from sub-Poissonian to super-Poissonian. The photon-number distributions of these states
are rationalized by examining their quasiprobability distributions, which vary from banana-shaped for
sub-Poissonian statistics to complicated interference structures for highly super-Poissonian statistics.
The number-phase properties of the Kerr and displaced Kerr states are studied for the case of small pho-
ton numbers (relevant to cavity quantum electrodynamics) using a methodology based on the Pegg-
Barnett formalism. In particular, we determine the range of parameters for which the states are
minimum-uncertainty states and whether they are squeezed with respect to photon number and phase,
drawing a distinction between a sub-Poissonian nature and number squeezing. Finally, we find that sub-

Poissonian statistics can coexist with quadrature squeezing for a range of param. eters.

PACS number(s): 42.50.Dv, 42.65.—k

I. INTRODUCTION

Nonlinear-optical interactions have been employed
widely to generate nonclassical light such as squeezed or
sub-Poissonian light [1—5]. One of the simplest non-
linearities is the purely dispersive optical Kerr effect, in
which a nonlinear refractive index modifies the phase-
sensitive quantum noise of an input field [6]. The Kerr
effect generates quadrature squeezing but does not modify
the input field photon statistics, which remain Poissonian
for a coherent input [7]. A number of authors have dis-
cussed how the Kerr effect, while preserving the photon
statistics, can generate from an initially coherent input an
output which is a macroscopic superposition of distin-
guishable states [8—12] of great interest in current de-
bates on quantum measurement theory [13]. The genera-
tion of such superpositions is graphically portrayed by a
study of the bifurcations of phase-space quasiprobabilities
such as the Husimi Q function or the Wigner function
[14]. The curious preservation of the photon statistics by
the Kerr effect and the retention of purely Poissonian
photon-number fluctuations is connected with the action
of the Kerr field self-coupling on the relative phases of
states of differing quantum numbers; this phase
modification is of course precisely that needed for quad-
rature squeezing. To see modifications in the photon-
number fluctuations after a Kerr interaction it is neces-
sary to displace the Kerr state (the state generated from
an initially coherent state by a Kerr interaction) in phase
space. The incorporation of a Kerr interaction in one
arm of a nonlinear Mach-Zehnder interferometer (Fig. 1)
will establish this necessary combination of nonlinearity
and displacement [15—20]. We study in this paper the
quantum Auctuations of such a displaced Kerr state. In
particular we investigate the *'squeezing" of number and

phase fluctuations and to do so pay particular attention
to a careful definition of squeezing in this context. In
most previous work on nonlinear Mach-Zehnder inter-
ferometers, it is assumed that very large photon numbers
are involved. Under these circumstances the number and
phase uncertainties have an unambiguous semiclassical
interpretation. But for small photon numbers the quan-
tum nature of phase becomes very important and care
needs to be taken to parametrize phase fluctuations and
number-phase uncertainty relations appropriately
[21—23]. It could be argued that it is purely academic to
study the Kerr effect for a field with a small photon num-
ber, as one would anticipate large photon numbers being
necessary to produce significant nonlinear phase shifts.
This is true for most optica/ interactions, but is quite false
for studies of nonlinearities in cavity quantum electro-
dynamics where nonlinearities due to optical Stark shifts
have already been observed in micromasers [24—29] and
have been proposed as ingredients for quantum non-
demolition measurements based on the Kerr effect which
is sufficiently large to produce observable phase shifts
[30] for photon numbers n —l. Under these cir-
cumstances purely semiclassical ideas of phase Auctua-
tions are irrelevant. In the past, phase fluctuations in the
nonlinear Mach-Zehnder interferometer have been de-
scribed by the Susskind-Glogower phase operators
[16,31,32]. The recently developed Hermitian phase
operator of Pegg and Barnett [21—23] is, however, much
more revealing about the nature of phase fluctuations and
has already been applied in the study of Kerr states
[12,33]. However, these previous studies have em-
phasized the traditional large-photon-number limit and
have employed a continuous phase distribution function
appropriate for such a limit; here of course the Susskind-
Cxlogower [31] and Pegg-Barnett [21—23] approaches are
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in full agreement. But for n —1, . these approaches differ
and great care must be taken to calculate phase variances
for small photon numbers. The continuous phase distri-
bution approximation is not justified. We adopt an ap-
propriate methodology based on the Pegg-Barnett for-
malism, but emphasizing the proper phase distribution
for states of small photon number.

In addition we propose appropriate measures of phase
and number fIuctuations to characterize whether output
states are number-phase minimum-uncertainty states
(MUS's), and whether such states are sub-Poissonian, and
finally whether they are squeezed with respect to number
and phase. We distinguish between number squeezing
and a sub-Poissonian nature and link this behavior to
quadrature squeezing.

The interferometer relevant to the production of dis-
placed Kerr states [15—20] is shown in Fig. 1. In one
arm of the device a nonlinear Kerr medium generates the
appropriate intensity-dependent phase shifts through a
coupling quadratic in the photon number:

@=Piro& &+fig(a ) (a) (1)

where the nonlinear coupling coefficient y is related to
the value of the Kerr medium third-order susceptibility.
The input state to the Kerr medium is a coherent state
la) derived from the beam-splitter transformations [34]
modified by the transmissivity of the input beam splitter
and the associated vacuum state of the second input port.
The output state from the Kerr medium [16] is

(4)

where 8(g) is the Glauber displacement operator [14]

8(g)—:exp(g& —g'a) . (5)

II. KERR AND DISPLACED KERR STATES

A. Kerr states

The Kerr states defined in Eq. (2) can be written in a
number-state basis as

) —e
—(1/2)~a~ ~ + ((1/2)yn(n —()l ))1/2n=o n.

In this way we see that the nonlinear Mach-Zehnder in-
terferometer combines a nonlinear Kerr transformation
with a displacement in phase space.

In Sec. II, we construct the Kerr if+ )an.d displaced
Kerr states lfD~ ) and calculate the Mandel Q parameter
as a function of y for the displaced Kerr states. The
photon-number probability distributions for various
values of y are also discussed. The quasiprobability func-
tions are calculated in Sec. III for the same values of y as
in Sec. II, and the connection between photon-number
probability distributions and quasiprobability functions is
shown. The phase properties of the states are presented
in Sec. IV. The quadrature squeezing properties are dis-
cussed in Sec. V, and conclusions are drawn in Sec. VI.

where Ux (y ) is the evolution operator

(2)
= g q„ln &,

n=1

where the coherent state la ) is expressed as

(6)

Ux. (y ) =exp —yR'(fi' —1) (3)

with y =2' /U, whe—re L is the length of the Kerr medi-
um and v the appropriate phase velocity inside the medi-
um. The second beam splitter combines the Kerr state
with the coherent state of the second arm of the inter-
ferometer, and this combination acts to displace the Kerr
state to give a final output state

/0&

Kerr Medium

la)=e I I y ln): gr„l n).
n=o n'- n=0

The photon-number distribution

P„=l&nl@~)l'= q„'
for the Kerr state is identical to that of the coherent state
because the probability amplitudes q„and r„differ only
by a phase factor. The Kerr state will exhibit Poissonian
photon statistics and its Mandel Q parameter [5], defined
by

Q =(&&&'&—&fi'&)/&fi'&,

will be identically zero.

B. Displaced Kerr states

FIG. 1. Schematic diagram of a nonlinear Mach-Zehnder in-
terferometer: coherent and vacuum field inputs la;„) and l0)
are superposed, and in one arm transformed by propagation
through a Kerr medium while in the other arm a phase shift 0 is
imposed.

The displacement of the Kerr states by the unitary
transformation

D(g) =exp(ga —g*& )

gives the displaced Kerr states

(10)

which may have varying degrees of sub-Poissonian
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(Q (0) or super-Poissonian (Q) 0) statistics depending
on the values of the parameters a, g, and y. Combining
Eqs. (6) and (11), we find that the probability amplitudes
c„are given by

where g=lglexp(i/&) . Finally on insertion of Eq. (19)
into (12) we find

—{1/2){~a~2+
~ g I2)

c„= g q &nlrb(g)lm &,
m=0

where the states

Ig', m &—:D(g)lm &

(12) e
"4~ l(1/2)ym (m —1)

I I

m

minI m, n I )1/2
X ~ ( 1)m

—k

k!(m —k)!(n —k)!

are the displaced number states
I 35,36]. Then writing

(&t) Io&
(14)~ )1/2

and invoking the unitarity of D(g) and its well-known
translation properties

8(g)a D (g)=& —g*, (15)

&(g)l0& = lg&, (16)

we obtain

&nl~(g)lm &= g ( —g') ",(17)
k=0 m ~'/2

and because

with a= Ialexp(ig ).
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(20)

nl
&n —kl

& n I(a')"= ~ n —k!
0, k&n,

we obtain

& n ID(g') lm &

' 1/2

k~n
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FIG. 2. Mandel's Q parameter vs y for a displaced Kerr state
with lal =4, lg =2, and P =(()&=0. The photon statistics are
sub-Poissonian for y(0.13 and super-Poissonian for y) 0.13.
The minimum value of Q is —0.8 for y =0.08.

FIG. 3. Photon-number distribution for displaced Kerr
states with (a) y=0.08, 0.09; (b) y=0.2, and (c) y=1.0 corre-
sponding to (a) sub-Poissonian and (b) and (c) super-Poissonian
statistics. Other parameters are the same as in Fig. 2.
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In order to determine the photon statistics of the dis-
placed Kerr states, we calculated the photon-number dis-
tribution and the Mandel Q parameter of Eq. (9) using

photon-number distributions can be given by considering
the overlap of the QPD for a number state and the dis-
placed Kerr states, as can be seen by expanding the
coherent state of Eq. (19) in terms of number states:

(21)

In Fig. 2 we plot Q as a function of y for a~ =4, I/i =2,
and P =/&=0. We see that the displaced Kerr states for
this particular value of a

~

are sub-Poissonian for
y ~0.13 and super-Poissonian for y &0.13 with the Inax-
imum degree of the sub-Poissonian statistics at y=0.08
where Q = —0.81. We now plot in Fig. 3 the photon-
number distributions for various values of y that give
sub-Poissonian and super-Poissonian statistics. Their be-
havior will be interpreted in Sec. III. In Fig. 3(a), we
show I'„vs n for the state of a maximum sub-Poissonian
nature (minimum value of Q) y=0.08 and for a slightly
less sub-Poissonian state y=0.09. We see that the nar-
row peak for y =0.08 is accompanied by a small satellite
peak to lower n. For y=0.09, the main peak is broader
and the small peak appears as a shoulder. The case of
super-Poisson statistics is shown in Figs. 3(b) and 3(c). In
Fig. 3(b), y=0.2 (Q=4.8) and there are a number of
smaller peaks of decreasing intensity to the right of the
main peak. This distribution is very similar to that of a
"vertically" squeezed state with a large squeeze parame-
ter with super-Poissonian statistics [2,37,38]. In Fig. 3(c),
y = 1.0 and Q=6.4. Here the distribution has no discern-
ible regularity. It should be noted that in the limit of
small y, Q —+0 corresponding to a coherent state
of mean photon number &n &=~a+(~ since D(g)~a&= a+ g & exp [

—
( —,

' )( /*a —pa* ) ].

0

(a) y= 0.08

(b) 7=

III. QUASIPROBABILITY DISTRIBUTIONS

In this section, we present the quasiprobability distri-
butions (QPD's) [14] —5—5

for the displaced Kerr states, using the same parameters
as were used to calculate the photon-number distribu-
tions in Fig. 3. Although the banana shape of the QPD's
for values of y which correspond to sub-Poissonian statis-
tics is well known, the connection between the shape of
the QPD's and that of the number distributions has not
been made clear. The QPD for the sub-Poissonian state
with y=0.08 is shown in Fig. 4(a) and those of the
super-Poissonian states with y =0.2 and 1.0 are shown in
Figs. 4(b) and 4(c). By comparing Fig. 4 with Fig. 3 we
see that for a sub-Poissonian state, the QPD lies in the
erst quadrant and the extra oscillation in the number dis-
tribution is to the left of the main curve. For the
moderately super-Poissonian state, the QPD lies in the
second and third quadrant and the extra oscillations lie to
the right of the main peak. For the highly super-
Poissonian state, the QPD is ringlike and breaks up into
islands, whereas the photon distribution shows no regular
pattern.

A qualitative explanation for the shapes of the

6p

0—

—6——4

FIG. 4. Quasiprobability distributions for displaced Kerr
states for the same parameters as in Figs. 3(a)—3(c). The axes la-
bels are X:—Rem' and F== Ima'.
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(23)

This point is illustrated schematically in Fig. 5. The
number-state phase-space contours can be represented
crudely by concentric annuli, each of area fico (in ap-
propriate units). The overlap [38—40] of a particular an-
nulus, representing the state in &, with the displaced Kerr
state governs the probability of finding n photons in

~QDz &. For many annuli, there is a single overlapping re-
gion and a single contribution to the relevant number-
state probability. But there are annuli with more than

one overlap area and for these the relative phases of each
overlap becomes important, for these interfere construc-
tively or destructively to produce oscillations or modula-
tions in the photon-number probabilities. At this point
the geometric shape of the phase-space QPD is impor-
tant, for it governs the nature and extent of these interfer-
ence oscillations. In Fig. 5(a) the curvature of the QPD
in phase space follows to some extent that of the
number-state annuli, indicating a potentially sub-
Poissonian state; in addition there are two interfering
phase-space overlaps on the smallest n annulus indicating
interference oscillations in the small-n region before the
main peak of the number-state distribution, while on the
large-n side of the main peak there is only one overlap
area and therefore no interference oscillations in this re-
gion. In Fig. 5(b) we show schematically the situation
when the curvature of the QPD in phase space is in the
opposite sense to that of the number-state annuli. In this
case the situation is reversed and the photon-number os-
cillations are present on the large-n side of the main peak
of the distribution just as in the case of highly
quadrature-squeezed coherent light [2,37,38]. We see
therefore a simple qualitative explanation of the oscilla-
tions visible in Fig. 3.

IU. PHASE-PHOTON-NUMBER
UNCERTAINTY RELATION

(b)

As pointed out in the Introduction, it is important to
use the Pegg-Barnett [21—23] version of the phase-
photon-number uncertainty principle when dealing with
displaced Kerr states of modest average photon numbers.
It will be recalled that in the Pegg-Barnett formalism, the
Hermitian phase operator and phase states are defined us-
ing a limited basis set consisting of (s + 1) number states.
After all the calculations are performed, the limit s~ ao

is taken. We shall adopt this view here although we real-
ize [39] that the consistent approach for s ) 1 is to define
all states and operators for finite s and only at the end of
the calculations to take the limit.

The Hermitian phase operator is defined as

where the phase states ~e & form a complete orthonor-
mal basis set with

0 =00+, m =0, 1, . . . , s .2&Vi
s+1' (25)

FIG. 5. Illustration of phase-space contours of displaced
Kerr states (shaded) overlapping number-state annuli (concen-
tric rings). In (a) the displaced Kerr state is sub-Poissonian,
whereas in (b) it is super-Poissonian. Oscillations in the
photon-number distributions stemming from interference in
phase space occur on the leading or trailing edge of the distribu-
tion, respectively.

=(s+1) '~ g exp( ine )~e—
m=0

(26)

The choice of the reference phase Oo is discussed by Bar-
nett and Pegg [21—23] for large values of the average
photon number. We should stress that this is not the lim-
it of central interest to us and we will show later that it is
not always possible to choose a reasonable value of Oo for
small average photon numbers. The number state ~n &

can be expanded in terms of the 0 states as
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In order to calculate both sides of the uncertainty rela-
tion

& qD~ ly elitD~ ) =(8p+2778p+4~ /3)

&(~y )'&&(&ii)' (27)
+2 g (n n—')

for coherent, Kerr, and displaced Kerr states, we first
write these states as linear combinations of n-photon
states and then use Eqs. (24) —(26) to calculate the
relevant matrix elements.

In order to calculate the left-hand side of Eq. (27) for
displaced Kerr states, say, we require

& Wax I kgl&+ &

= g c„'.c„(n'ly'gin)+ g lc„'&n le'gin &,
nn'

nWn'

1X i (8p+~)+
n n'—

i (, n' —n )00Xe (37)

nn'
(38)

In order to calculate the right-hand side of Eq. (27) we
write

&=1,2.
Barnett and Pegg have shown that in the limit s ~ ~

&nlygln &=8p+~,
I

(n'lygln )=,e ', nWn'
n —n' (30)

and use the result
I g(n'l[&, Pg]ln ) = i(l ——5„„)e ', shoo

to obtain
I

&WDxl[& Pg]lfDx&= —i & c.*c.e
I

n, n,
nWn'

(39)

and one can show that

( nip' lng) = 0 2l7T

n —n' n —n'

using [41]

g d =0,

& n lygln ) =8p'+2m8p+
3

(31)

e
(n n')—i (n' —n )00

nWn' (32)

which is a c number.
Obviously, the above method can be used for any state

of the field that can be written as a linear superposition of
n-photon states. %'e shall present calculations for
coherent states, Kerr states, and displaced Kerr states for
moderate average photon numbers.

Another method of calculating the phase-photon-
number uncertainty relation has been used for large aver-
age photon numbers when the field exhibits Poissonian
statistics. The method involves writing [compare Eq.
(28)]

&a P~gla&= g l&al8 &l'8'
m=0

m=0

md m S+1
d —1

(33)

ancI

, [(s —1)(d —1)—2]
s+1

m=0 (d —1)

lim (s+1)(d —1)=i (n' —n )2~,
5' —+ oo

where

(34)

d—:exp[i (n' n) m2l(s I+)] . — (35)

With the help of Eqs. (29)—(32), one finds from Eq. (28)
that in the limit s ~ oo

g Pg 8', t=12

and then invoking Eqs. (7) and (26) to express la) and
l8 ) in terms of the number states ln ). The amplitudes
r„—= (n la) are then replaced, apart from the appropriate
phase factor, by the square root of a continuous Ciaussian
distribution. The summation over n that appears in the
calculation of (al8 ) is replaced by an integral. The re-
sulting phase probability distribution Pg =P(8) is now a-

m
continuous function of 0 and the summation over m in
Eq. (38) is replaced by an integral so that

00+2~
(alpgla) = j, P(8)8'd8, r =1,2 . (42)

0

%'hen Oo is chosen to be suKciently far from the max-
imum of P (8), it is found that

I )g
&WD~l4'glfD~&=(8p+~)+i X (n n')—

n 1=n (~p) 1 1

4lal' 4n
' (43)

and
in agreement with the phenomenological result. This
method is obviously unsuited to photon-number distribu-
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FIG. 10. Phase-squeezing parameter S vs y for a Kerr state
with lul=4, y =0.

FIG. 12. Photon-number squeezing parameter S~ vs y for a
displaced Kerr state with lal =4, lg'l =2, and p~=pt=0.

or

&~e'& &,'l&[a, y, ]) l
. (46)

A measure of the squeezing was suggested previously [39]
by introducing the parameters

(~g', ) —
—,'I & [~,g, ]) I

S
—,'l&[~,g.]&l

&~e'& —
—,'l&[e, g, ]&lS„=

(47)

(48)

greatest degree of sub-Poissonian statistics for lal =4,
lgl =2, and plot bn, b,y, and b,nb, y as a function of lgl
for lal =4 and y=0.08 in Fig. 9. We see that b,y does
not change markedly with lgl so that the product b.nkvd
is determined for the most part by An. We see that for
1 & lgl & 3, the displaced Kerr states, although not pre-
cisely MUS's, do not deviate strongly from minimum un-
certainty.

Following Wodkiewicz and Eberly [42], we can say
that the number or phase Auctuations are squeezed if

&~y', & &-,'l&[e, y, ]&, (45)

Maximum squeezing corresponds to S„=—1 or S„=—1.
We first calculate these squeezing parameters as a func-
tion of y for Kerr states and for displaced Kerr states.
Figure 10 shows S„vs y for Kerr states and Fig. 11
shows S for displaced Kerr states. Following the termi-
nology of Glauber and Lewenstein [43], we can say that
the phase is subAuctuant for O~y ~0.17 for the Kerr
states and for 0~y ~0.13 in the case of displaced Kerr
states. Because the Kerr states are Poissonian, S„ is a
constant in that case (S„=31 for

l
a

l

=4), and S„as a
function of y is shown in Fig. 12 for the displaced Kerr
states. We see that S„)0, so that the photon number is
superQuctuant for all values of y. Thus according to the
present definition, the phase is squeezed whereas the pho-
ton number is not. We see therefore that the concept of a
sub-Poissonian statistics (Q &0) is not equivalent to that
of photon-number squeezing [if defined as in Eq. (48)].

V. QUADRATURE SQUEEZING

In the same way as we defined the degree of squeezing
for the phase and photon number, we can define S, 2, the
degree of squeezing for the quadrature operators which
are linear combinations of the photon creation and an-
nihilation operators,

2.0

1.5

1.0

0.5

Thus

s, ,=4[((se, )') —
—,
'

]

(49)

(50)

0.0 since l[a»&2]l= —,'. Substituting (49) into (50), we find
that

—0.5

—1.0

—1.5
0.150.050.00 0, 10 0.20

7
FIG. 11. Phase-squeezing parameter S~ vs y for a displaced

Kerr state withlal =4, lgl =2, and P =/&=0.

S, =2(h )+2Re(8 ) —4Re((a) )

S,=2(n &
—2 Re(e'& —4 Im((a ) )',

where

(u) = g c~c„+,(n+1)'~
n=0

(51)

(52)

(53)
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FIG. 13. Quadrature squeezing parameters S, z vs y for a
Kerr state with ~a~ =4, P =0.

(8 ) = g c„*c„+&[(n+1)(n+2)]'~
n=0

(&4)

for displaced Kerr states and similar expressions with c's
replaced by q's for the Kerr states. As may be expected
physically the degree of quadrature squeezing is indepen-
dent of ~g~: displacing a QPD in phase space does not
alter its degree of quadratic squeezing. We plot S& 2 as a
function of y in Fig. 13 and observe that squeezing is ob-
tained for 0 ~ y ~ O.OS with a maximum degree of quadra-
ture squeezing of S& = —0.6. Thus there exists a range of
parameters for which the sub-Poissonian statistics and
quadrature squeezing can coexist (0 ~ y 50.05 for ~a~ =4,

VI. CONCLUSIONS

We have studied the statistical and phase properties of
the output states of a Mach-Zehnder interferometer with
a nonlinear Kerr medium in one of its arms. We found
that the combination of nonlinearity and displacement
produced by the interferometer generates output states

(displaced Kerr states) which, unlike those generated by
the Kerr medium along (Kerr states), do not necessarily
retain the Poissonian statistics of the input coherent field.
We found for small photon numbers that as the parame-
ter y characterizing the nonlinear Kerr medium is varied,
the statistics of the output field as determined by the
Mandel Q parameter range from sub-Poissonian to
super-Poissonian. The photon-number distribution of a
sub-Poissonian state is characterized by a small peak to
lower photon number of the main narrow peak, whereas
that of a moderately super-Poissonian state exhibits in-
terference peaks of decreasing amplitude to the higher-
photon-number side of the main peak. The photon-
number distribution of a highly super-Poissonian state
has no discernable pattern. These characteristic features
have been rationalized by examining the overlap of the
appropriate QPD's with those of the n-photon states.
The QPD's of the displaced Kerr states vary from bana-
nalike for sub-Poissonian states to ringlike with a compli-
cated interference structure for highly super-Poissonian
states.

The number-phase properties of both the Kerr and dis-
placed Kerr states have been studied for small photon
numbers using a methodology based on the Pegg-Barnett
formalism but taking account of the discrete nature of
the phase distribution for low photon numbers. We have
determined the range of parameters for which the Kerr
and displaced Kerr states are MUS's and have shown the
coherent states approach MUS's with increasing photon
number. We have investigated the squeezing with respect
to number and phase of the Kerr and displaced Kerr
states, clarifying the distinction between a sub-Poissonian
nature and number squeezing. Finally, we found that
quadrature squeezing which is independent of the dis-
placement can coexist for a range of parameters with
sub-Poissonian statistics.
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