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The decay of the initial bound-state population and the fragment kinetic-energy distribution produced

by the intense-field photodissociation of H2 are calculated using both a time-dependent and a time-

independent method. The time-dependent method calculates the time evolution of the wave function

describing H2 interacting with a classical time-dependent laser field by repeated application of a short-

time propagator. The time-independent method constructs a wave packet using the energy eigenstates of
the total molecule-plus-field Hamiltonian with the field expressed as a superposition of quantized photon

number states. Specifically, the wave packet represents an initial bound-state wave function of the field-

free molecule subjected to a coherent photon state that simulates the classical radiation field at t =0.
The subsequent decay of this nonstationary state can be viewed as a laser-induced predissociation of
field-dressed bound states into field-dressed continuum states with various numbers of photons absorbed

from the field. For very rapid dissociation, the decays of the initial bound-state population calculated by

both methods are in good agreement if a square pulse shape is used and the initial phase of the time-

dependent interaction is averaged over. The fragment kinetic-energy distributions calculated by the two

methods are in good agreement if they are compared at times when there is unit probability for dissocia-

tion. For slow to moderately rapid dissociation, averaging over the initial phase of the field is unneces-

sary because there is no rapid decay component. However, this also implies that the wave function must

be propagated over many time steps before complete dissociation is achieved. To avoid this, we describe

a procedure for fitting a short-time line-shape function, which represents incomplete dissociation of the

initial state, to the nondepletion-limit fragment kinetic-energy distribution. A parametric fit to the cal-

culated distributions allows us to extract very accurate estimates of decay rates„ac Stark shifts, and

branching ratios.

PACS number(s}: 42.60.—v

I. INTRODUCTION

Developments in laser technology have made it possi-
ble to study photon-matter interactions over many orders
of magnitude in the electric field intensity. This range of
intensities extends from where the interaction is a weak
perturbation to where the field strength is comparable to
or greater than the atomic field. At high intensities one
sees interesting phenomena such as above-threshold ion-
ization of atoms [1] and above-threshold dissociation of
molecules [2—5], in which photons are absorbed in the
continuum.

It is not surprising that the applicability of various
theoretical methods for studying photon-matter interac-
tions depends on the strength of the interaction. For ex-
ample, perturbation theory works well at low intensity,
i.e., when the magnitude of the interaction is less than the
intrinsic atomic or molecular frequencies [6]. At higher
intensities nonperturbative methods are preferable. One
such method, presented in the preceding paper [7], is
based on constructing wave packets using the solutions of
time-independent scattering theory with a time-
independent radiation field expanded in quantized photon
number states. An initial bound-state wave packet is ex-
panded in a set of such dressed (atom-plus-field or
molecule-plus-field) scattering states, and the process be-
comes one of laser-induced autoionization or predissocia-

tion of bound dressed states into diFerent ionization or
dissociation continua, one for each absorbed or emitted
photon [7—10]. The coupled equations arising from the
wave-function expansion can be solved using techniques
commonly used in multichannel scattering theory. The
computational eFort increases with increasing strength of
the interaction, because the number of coupled equations
one must solve is equal to the number of atom-plus-field
or molecule-plus-field basis functions in the wave-
function expansion, which increases with increasing in-
tensity and wavelength.

Another class of nonperturbative methods involves
solving the time-dependent Schrodinger equation in the
interaction picture and calculates the time evolution of
the wave function describing the atom or molecule in-
teracting with the time-dependent laser field [11—16].
From the wave function one can calculate such quantities
as the ionization or dissociation probability as a function
of time and the kinetic-energy distribution of the photo-
electrons or photofragments. The computational eFort is
proportional to the number of time steps, which is pro-
portional to the time it takes the atom or molecule to ion-
ize or dissociate. Unlike the time-independent method
just described, the computational eFort associated with
time-dependent methods may actually decrease with in-
creasing intensity, assuming that additional electronic
states are not populated, since the ionization or dissocia-
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tion rate generally increases with intensity. At low inten-
sities, however, the propagation time may be prohibitive-
ly long unless one uses short pulses.

The time-dependent theory of intense-field photodisso-
ciation usually assumes a classical molecule-field interac-
tion of the form p(R)f (t)cos(cot), where p(R) is a dipole
or transition dipole function which varies with the frag-
ment separation R, and f (t)cos(cot) describes the time
variation of the electric field. At t —0 the molecule ini-
tially is in a field-free eigenstate, and the laser-pulse-shape
function f (t) determines how the radiative interaction is
turned on and off. The wave function is propagated in
time until f (t) =0, which implies that the laser pulse has
left the vicinity of the molecule, or when the expectation
value of p(R) vanishes. It is important to note that with
the time-dependent theory one is free to choose the func-
tional form off (t), e.g. , to study pulsed excitation.

Actually, the time-independent theory can be derived
in several ways. In the Floquet ansatz [10] one continues
to use a classical expression, e.g. , p(R)E cos(cut), for the
molecule-field interaction, and takes advantage of the
periodicity to expand the time dependence of the wave
function in a Fourier series. Upon expressing the cos(cot)
as a sum of exponentials and integrating over an optical
cycle, one obtains a set of time-independent coupled
equations in which states with Fourier index n are cou-
pled to states with n+1, corresponding to absorption or
emission of a photon, and the molecule-field coupling is
the same in each Floquet block.

One also can describe the molecule-Geld interaction
quantum mechanically [7—9] by expanding the total wave
function in photon number states ~N n) w—hich are
eigenstates of the radiation-field Hamiltonian, where we
define n =0,+1,+2, . . . as a photon channel index that
labels each block. The coupled equations resulting from
the wave-function expansion are blocked similar to those
in the Floquet theory except that the molecule-field in-
teraction is proportional to (N —n)' =N' . The frag-
ment kinetic-energy distribution is calculated by project-
ing the wave function describing the initial state of the
molecule onto the solutions of the coupled equations as a
function of energy [7].

If a quantum-mechanical description of the molecule-
field interaction is used, the initial-state wave function
must be a product of a wave function describing the mol-
ecule and a wave function describing the initial state of
the Geld. One can make contact with the time-dependent
theory, which uses a classical description of the field, i.e.,
E cos(cot), by expressing the wave function describing
the field as a coherent superposition of photon number
states, such that the expectation value of the electric field
operator in this state is equal to the classical value [17].
It has been shown [7] that for most practical applications
it is entirely adequate to simply represent the Geld by
some average number state

~
N ), even though in this case

the expectation value of the electric field operator is actu-
ally zero instead of E cos(cot) because the phase is com-
pletely uncertain.

An important difference between the time-independent
and time-dependent descriptions of the process is that the
former is a steady state description in which the molecule

is always interacting with the field; whereas in the latter
descriptions the molecule interacts with the field only
when f (t)%0. This difference is important when discuss-
ing issues of initial-state preparation.

In principle the time-independent (wave-packet)
methods and the time-dependent methods should yield
essentially equivalent results, although in practice they
are somewhat complementary in that the first one works
best in the limit of weak fields and the second in the limit
of strong fields. This complementarity is made manifest
in a computational sense: the computational effort for
time-independent methods decreases with decreasing Geld
intensity, because fewer molecule-plus-field basis func-
tions are needed in the wave-function expansion, whereas
time-dependent methods uncover the computational
effort of the decreases with increasing intensity, because
the molecule dissociates more rapidly and the wave func-
tion is propagated for fewer time steps. This raises the
question of whether there exists a middle ground where
both methods are equally applicable. In this paper we ex-
plore this question by using both methods to calculate the
decay of the initial bound-state population and the frag-
ment kinetic-energy distribution produced by the
intense-field photodissociation of Hz, using several in-
tensities, wavelengths, and initial vibrational states. Of
primary interest is how sensitive the results are to the
basic assumptions that are required to derive the time-
independent theory from the time-dependent theory, e.g. ,
assuming a square pulse shape or averaging the interac-
tion over the optical cycle. We note that H2+ photodis-
sociation has attracted both experimental and theoretical
interest, and that peaks in the fragment kinetic-energy
distribution, due to above-threshold dissociation (ATD),
have been observed experimentally [2—5] and in theoreti-
cal calculations [8,15].

In addition to ATD, another interesting feature of
intense-field photodissociation is laser-induced bond
softening [5], in which the molecular bond is weakened
due to the molecule-Geld interaction. This phenomenon
can be easily understood upon inspection of the dressed-
state potential energy curves of the time-independent
theory: increasing the molecule-field interaction in-
creases the separation of the adiabatic potentials at the
avoided crossing of the diabatic dressed-state potentials,
which has the effect of lowering both the barrier to disso-
ciation and the vibrational force constant if the curve
crossing occurs at an internuclear separation greater than
the equilibrium separation.

Peaks in the experimental photoelectron kinetic-energy
distribution [4,5, 18] suggest that a distribution of H2 vi-
brational states is populated by the intense-field ioniza-
tion of Hz. Bond softening affects the higher vibrational
states the most, since the initial-state field-free vibrational
wave function is projected onto more field-dressed vibra-
tional states, and possibly continuum states if the barrier
to dissociation is pulled down far enough. This rapidly
dissociating continuum component is treated differently
in the time-independent and time-dependent theories, be-
cause the time-independent theory assumes that dissocia-
tion is much slower than the optical period in order to
justify averaging over the optical cycle. In the time-
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dependent method, how the continuum component ap-
pears in the kinetic-energy distribution is sensitive to the
pulse shape, i.e., on how rapidly the interaction is turned
on. Rapidly turning on the interaction with a square
pulse shape, the Fourier transform of which is not mono-
chromatic for finite pulse widths, will cause transients to
appear in the kinetic-energy distribution if dissociation or
ionization is rapid, which is the case for the continuum
component.

This paper is organized as follows. In Sec. II the two-
state model of H2+ is described. This model previously
has been used to study ATD using both time-dependent
[15] and time-independent [8] methods. In Sec. III the
time-dependent and time-independent methods are
presented, along with a method for obtaining depletion-
limit quantities at short times. In Sec. IV the fragment
kinetic-energy distributions and the decay of the initial-
state population, calculated using both methods, are com-
pared for several wavelengths, intensities, and initial vi-
brational states.

II. H2+ MADEL SYSTEM

=D [ Y(R) —2Y(R)] (2)

V„(R)=Idr $„(r,R)*H„(r,R)$„(r,R)

=D [ Y(R) +2.22Y(R)],
in atomic units, where Y(R) =exp[ —a(R —Ro)],
D =0.10262 a.u. , +=0.72ap ', and Rp=2. 00p.

Nuclear motion in the X+ and X„+ states is coupled
by the Inolecule-field interaction:

V„(R,t)= A(r=O, t) J dr/ (r, R)*pg„(r,R), (5)
PlC

here expressed in the radiation-field (velocity) gauge and
the dipole approximation, where A(r=O, t) is the vector
potential and p is the electron momentum operator. As-
suming that A(R=O, t) =cE sin(cot)/co, then Eq. (5) can
be recast as [20]

V „(R, t ) =p „(R )E cos( cot ) [ V„(R ) —V (R ) ]/fico,

Hz+ is the simplest molecule and its electronic struc-
ture has been studied extensively. Our model includes
only two electronic states: the bound X+ and the un-
bound 2„+ states [(Is)cTs and (2p)cr„ in the united-atom
limit], which are asymptotically degenerate and correlate
to symmetric and antisymmetric combinations of atomic
ls states [19]. The Xs+ and X„+ electronic states are de-
scribed by the wave functions Ps(r, R) and P„(r,R), re-
spectively, which are eigenfunctions of the electronic
Hamiltonian H, i(r, R), where r is the electron coordinate
and E. is the nuclear separation.

Nuclear motion is inAuenced by the Born-
Gppenheimer potential energy curves (here taken to be
attractive and repulsive Morse potential functions [10])

Vg(R)= Idr Ps(r, R)*H,i(r, R)gs(r, R)

where E is the maximum amplitude of the electric field
vector, with a unit polarization vector e which defines the
transition dipole matrix element

p „(R)=eJdrgs(r, R)*r eg„(r,R) . (7)

This is taken to be of the form

p „(R)=(R.e)(1.07+7.2Iexp[0. 55(R —Ro)] —I] ) (8)

(in atomic units) where R is a unit vector defined by the
internuclear coordinate R. We use the radiation-field
gauge because, unlike the electric field gauge, the
molecule-field interaction in Eq. (6) vanishes at large R
due to the V„(R)—Vg(R) term, which goes to zero. This
makes it possible to apply the proper asymptotic analysis
of the wave function.

Note that gauge invariance can be assured only if a
complete set of electronic states P~ is included in the
wave-function expansion [21]. In our model we include
only the A=g ( X+) and A=u ( X„+) electronic states.
As discussed elsewhere [7], this causes great sensitivity to
the choice of gauge, and brings into question the accura-
cy of the results presented in this paper. However, since
our purpose here is to demonstrate the excellent agree-
ment one obtains between the time-dependent and time-
independent methods of calculation, we ask the reader to
accept the limitations imposed by the two-electronic-state
approximation. Further details of these calculations are
given in the preceding paper [7].

In fact, the model is simplified even further by severely
restricting the rotational basis used in the expansion of
the total wave function. In principle, we should intro-
duce a complete set of rotational states YJ M(R) in order
to span the space associated with the molecular orienta-
tion vector R. Normally this would be accomplished by
expanding the total wave function over a complete set
of electronic-rotational channel states P ( x, R )

=Pz(r, R) YJ M(R) which together span the entire space
of the vector x=r, R. Instead, we choose to ignore many
interesting optical pumping and orientation e6'ects associ-
ated with the rotational state of Hz+ and expand the total
wave function with only a single pair of electronic-
rotational channel states represented simply as
gs(x, R)=pg Y~M and itj„(x,R)=Q„YJ, M, , respectively,
first in the time-dependent expression, Eq. (10), and later
in the time-independent expansion, Eq. (24). In this mod-
el we introduce a mean rotational quantum number J
and merely add a common centrifugal potential
A' J(J+ I)/mHR to each of the potentials V„and V„ in
Eqs. (1) and (3), respectively. The unit vector in Eq. (8)
should now be replaced by the rotational line strength
SJJ.= ( YJ M ~R e~ YJ ~ ). Depending on how one
chooses to interpret the product of rotational line
strength and electric field, S~J.E =SJJ.(8~I/c)', which
now appears in Eq. (6), where I is the laser intensity, we
can qualitatively model several experimental situations.
In particular, the high degree of fragment orientation
seen experimentally for linear polarization [4,5] suggests
that we might want to take S~J.=1 to simulate R.e=1
alignment of the molecule in the laser field. Current
studies, which include a more complete expansion in ro-
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tational channel states, are in progress to test this model
and achieve a more quantitative comparison with experi-
ment. Thus we must stress that we are presenting a mod-
el system designed to facilitate the comparison of the
time-dependent and time-independent methods to each
other, rather than to experiment.

III. THEORY

A. Time-dependent method

In the time-dependent method used in this study, the
wave function describing the system is propagated in
time by the repeated operation of a short-time propagator
U(t, +„t,), i.e. ,

Ã —1

%(r =%br, x,R)= + U(r, +„r, ) %(r =O, x,R),
j=0

(9)

%(t,x,R)=f (x,R)G (t, R)+g„(x,R)G„(t,R), (10)

where G (t, R) and G„(t,R) are wave functions describ-
ing nuclear motion associated with the g~ and g„chan-
nel states, respectively. Substituting Eq. (10) into the
time-dependent Schrodinger equation, operating from the
left with g (x,R) and iP„(x,R), and integrating over x,
one obtains an expression for the time evolution of
Gs(r, R) and G„(r,R) (in matrix form):

i' — ' =[T„+V(r, R))G(r, R), (11)

where Tz =IT~ is the kinetic-energy operator for the
relative motion of the nuclei, I is a 2 X 2 unit matrix,

V (R) V „(r,R)
V „(r,R) V„(R) (12)

is the potential matrix, and

Gg(t, R)
G(t, R) G(t R)— (13)

is a column vector containing the nuclear components of
the wave function.

Equation (11) permits us to write the short-time propa-
gator in "split operator" form [22],

iAt
2A

U(t +„r ) =exp — T z exp[ —i V'(r, R)ht/fi]

where t +,= t.+At.
The total wave function is expanded in eigenstates of

the electronic Hamiltonian and scattering wave func-
tions:

In practice G(t =O, R) is evaluated on a position grid
[R ], j =1,2, . . . , M, which is related to the wave func-
tion evaluated on a momentum grid [pk ],
k =1,2, . . . , M, by a discrete Fourier transform. When
applying U(t +„t ) to the wave function, it is best to cal-
culate the operation of the kinetic-energy part of the
propagator on the wave function in the momentum repre-
sentation, and the operation of the potential energy part
of the propagator on the wave function in the position
representation. In each time step one must also trans-
form the wave function to a representation that diagonal-
izes V(t, R) [15,23].

One problem associated with calculating the time evo-
lution of a wave function corresponding to an unbound
degree of freedom is that it becomes spatially extended at
long times. To deal with this problem we often use a pro-
cedure described in Ref. [15],which splits the wave func-
tion during its evolution into an interaction region piece
(where BV/BRIO) and asymptotic region pieces (where
BV/BR =0). We can then propagate the interaction re-
gion piece using the short-time propagator, Eq. (14), and
the asymptotic region pieces using a (long-time) free-
particle propagator. Details of the time-dependent prop-
agation and the wave-function splitting procedure, for
this particular H2+ system, are given in Ref. [15]. It
might be appropriate to mention at this point that the
present calculations using the velocity gauge couplings,
which vanish asymptotically, take good advantage of this
asymptotic splitting procedure. Other studies we are
conducting, using a presumably more accurate [24] (con-
verged) two-electronic-state model in the length gauge
(this is still a fundamental question being studied for
ATD) cannot enjoy the computational benefit of this
splitting since 8 V/BR never vanishes if the field is
present.

In the absence of the laser field the bound eigenstates
of H2+ are well represented as simple products

—iE,. t/A
4, ( t, x, R ) =e ' P„gg of the bound vibrational wave
functions P, (R) of Hz+ in the ground X+ electronic-
rotational state together with the electronic-rotational
channel state P (x,R ), which we emphasize is an implicit
function of R. In the presence of the laser field, which is
imposed at t=0, this stationary state suddenly becomes
nonstationary, and can be viewed as undergoing a kind of
laser-induced "predissociation" [8,9]. To describe such
an experiment we impose the initial condition
%(t =O, x, R)='p;(t =O, x,R)=P, (R)g (x,R) on the
wave function %'(t, x,R) in Eq. (10) at t=O The co.mpu-
tational quantities of interest are the decay of the initial-
state population,

&,(r)=l(+(i)l+(r =0)) I'

iAt
Xexp — T & (14)

f dR G (t,R)*P,(R) (16)

where
and the relative kinetic-energy distribution of the frag-
ments,

V'(r, ,R)= f Ch V(r, R)/b, r
J

is the interaction averaged over the time step.

(15) P(Ek, t)dE=(mH/2pk)[~G ~(t pk)~

+ IG, , „(tpk)i ]dc, (17)
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k =1,2, . . . , M, where ck =@I,/III is the relative kinetic
energy and Gs „(t,pk ) and G„~ ( t,pk ) are related to the
asymptotic (denoted by subscript A) wave functions in
the momentum representation. Note that in the de-
pletion limit [P;(t)=0] we have Gs ~(t,pk ):—Gs(t, pk )

and Gs „(t,pk ) = Gg (t,pk ).
We show later in this section that the decay of the

initial-state population and the fragment kinetic-energy

distribution are related by a Fourier transform. If P, (t)
decays exponentially then, in the depletion limit as t ~ ~
and P, (t)~0, the distribution P(c,, t) as a function of s
consists of a series of Lorentzian peaks, each with identi-
cal half-widths I /2 which cumulatively integrate to a
unit probability for dissociation. At times less than the
depletion limit when exp( —I t/2') has yet to approach
zero, P (E, t) is of the form [15,25,26]

P„(1/2ir)[[1 —exp( —I t/2A)] +4exp( —I t/2R)sin [(E—E„~)t/2'lt]I
P E, t=V'V

(e —e„~) +I /4
(18)

where P„ is the probability of the molecule dissociating
into a particular channel defined by the photon number n
and electronic-rotational state y, and I /A is the decay
rate of the initial bound state. The predicted position of
the n y peak in the kinetic-energy distribution is
E„z=nAto+E, +Ess —Vr(R = ~ ) and represents an n

photon absorption by the initial E; bound state with
resultant dissociation into molecular state y with asymp-
totic energy Vr(R = ~ ). For H2+ both the V and V„
potentials vanish identically as R ~~. An important
element in the analysis, in addition to the decay rate and
branching ratios, is the ac Stark shift Ess of the initial
state which is induced by the applied field. In Sec. IV we
explore the possibility of obtaining P„, I, and Ess at
short times by fitting Eq. (18) to the nondepletion-limit
kinetic-energy distribution using a global minimization
procedure. The goal is to extend the applicability of the
time-dependent method to lower intensities.

expectation value of the maximum electric field opera-
tors, E =( Svr idio /V)' ~ct =(SvrhtoN/V)', where
X= K is the mean number of photons in volume V.
This in turn is related to the mean incident intensity of
the laser I=ch'~X/V.

The expansion requires a complete set of energy eigen-
states B„~(N,E,x,R) of the total molecule-field Hamil-
tonian

HT=hcoa a + Tz+ TR+H, i(r, R)+ V„d(r, R, A), (22)

where A'era a is the radiation-field Hamiltonian (with
eigenstates ~N ) ), T~ and TR are the radial and rotational
kinetic-energy operators associated with the internuclear
coordinate R, H, i(r, R) is the electronic Hamiltonian,
and the time-independent molecule-field interaction in
the radiation-field (velocity) gauge is

V„d(r, R, A)= —(e/m„)p A(r)

B. Time-independent
and associated wave-packet method where

+(e /2m, ) A(r) A(r),

X c(N)C„r(E,N), (19)

In this section we will summarize the time-independent
method presented in the preceding paper by Mies and
Giusti-Suzor [7]. Basically, the decay of the initial-state
population in Eq. (16) and the fragment kinetic-energy
distribution in Eq. (17) are calculated by constructing a
fully quantum-mechanical molecule field toaue packet-

&;(t)= let(t) )~p(t)

=ggg JdEe ' +" B (NExR)

1/2
2~Ac iIt; .r ~ +

—ik .r
A(r) = (a ee +ae *e )

A@V

is the usual vector potential ~ In this study we invoke the
dipole approximation (r=0) and neglect the A A term
in Eq. (23), which couples photon state ~N) with states
IN+2).

We expand the eigenstates B„(N,E,x, R ) of the total
Hamiltonian HT in a product basis of photon number
states ~N n&, channe—l states g~(x, R ), and nuclear
scattering wave functions F„„(N,E,R), i.e.,

which closely approximates a product of the time-
dependent classical field (interaction picture) wave func-
tion in Eq. (10) times a coherent radiation state ~a(t) ),

B„(N,E,x, R) = g g ~N n')g .(x,R)—
n' y'

XF„, , „(N,E,R)/R (24)

~&(t) &
= y e ' ' "c(N)~N & (20)

with

c(N) =exp( —

libel'/2)n

~/(N! )'" . (21)

This radiation state is the quantum analog of the classical
field used in the time-dependent method, with the same

These denote a degenerate set of multichannel scattering
eigenstates of HT for a given total energy ET =E +%A~,
and the radial solution vectors F(N, E,R), which are cal-
culated using a multichannel close-coupling algorithm
with usual scattering boundary conditions, are solutions
of the coupled radial equations, [ T ~ + U(R )

E]F(N,E,R)=0, w—here
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=E + n fico V(R = oo—) . (26)

In order to compare with these results to the time-
dependent method, we construct an initial wave packet of
the form

U„~ „y(R)= &N —ii'~ & @~ I V„dI1(i~ & IN —ii )

+6„„5 [V~(R) n—A'co] .

Rigorously, the summation in Eq. (24) must run over all
electronic-rotational channel states y=A, J,M. Howev-
er, in our model, as in Eq. (10), we include only the two
channel states P~=Pg YJM and i(„=P„I'z,~,. As dis-
cussed earlier, this severe truncation causes great sensi-
tivity to the choice of gauge, and brings into question the
accuracy of the results presented in this paper. However,
since our purpose here is to demonstrate the excellent
agreement one obtains between the time-dependent and
time-independent methods of calculation, we ask the
reader to accept the limitations imposed by the two-
electronic-state approximation.

The index n associated with the radiation number state
~N n) d—enotes the number of photons that are removed
by absorption (n )0) or added by stimulated emission
(n (0) from the initial number state N Eden. otes the to-
tal energy of the molecule-field system scaled to a given
initial number state X, and the asymptotic kinetic energy
in dissociation channel n y is

In practice, a close-coupling calculation is performed
for many values of E in order to obtain the kinetic-energy
distribution. Due to the time-energy uncertainty princi-
ple, very rapid dissociation results in a very broad
kinetic-energy distribution, and calculations must be per-
formed for many n and over a large range of energies.
One can determine whether P (e) has been calculated at
all important n, y, and E by determining whether the
kinetic-energy distribution integrates to one. On the oth-
er hand, if dissociation is slow the kinetic-energy distribu-
tion consists of narrow peaks which are Lorentzian in
form, and the positions, widths, and heights of the peaks
can be determined by calculating P„(E)at only a few en-
ergies.

By using the expressions (27) and (19) for 0; ( r ) and
0;(t) one can evaluate the decay of the initial-state popu-
lation, P;(t)=

~ &0;(t)~Q;(t) ) ~
. If we average over one

optical cycle we find that this reduces to a relatively sim-
ple expression

P, (t) = g g JdE P„r(E)exp
n y

i (E; E)t—
(31)

P„y(E)= (P„~I I2~) l[(E —e„)'+(I /2)'], (32)

which is the square modulus of the Fourier transform of
the fragment kinetic-energy distribution given in Eq. (29).
Note that if P„~(E) is Lorentzian,

(27) then P, (t) decays e.xponentially:

which difFers from the g, used in the classical field time-
dependent method by the initial presence of the coherent
state of the radiation field a(0)) = g~ c(N)~N). The
time evolution of this initial state is given by Eq. (19) with

C„z coe%cients obtained from the projection,

C„,(N, E)= &P,*,„,(N, E)IP, )

= f dR Fag „q(N, E,R)P, (R) . (28)

(29)

Since both V (R) and V„(R) vanish as R ~ oo, the
asymptotic kinetic energy of the fragments in Eq. (26) is
simply given as c=E +n Ace. The fragment relative
kinetic-energy distribution comparable to Eq. (17) ast~ ~ is given by the following sum over molecule-field
channel states:

P( t=e~)= g QP„y(E =s nfico) . —
n

(30)

Details of this procedure can be found in the preceding
paper. In particular we find that in the limit of infinite
depletion, as t~ ~, the probability P„E of finding the
system dissociated into channel state ny after having
removed a total of n photons from the coherent radiation
field ~K) is simply related to the projection (28) using
1V=X,

P;(t)=exp( —I tliii) . (33)

The short-time line-shape function, Eq. (18), is obtained
by substituting Eq. (33) into Eq. (31) and applying the in-
verse Fourier transform with the limits of integration
from t=0 to t =t .f

IV. RESULTS AND DISCUSSIQN

In this section we calculate the fragment kinetic-energy
distribution and the decay of the initial bound-state pop-
ulation, using both the time-dependent and time-
independent methods, under conditions that result in ei-
ther very rapid, moderately rapid, or slow dissociation.
By rapid dissociation we mean that the dissociation rate
is large enough that the depletion limit [P;(r&)=0] can be
reached by the time-dependent method in a computation-
ally acceptable length of time (t& & 5000 optical cycles).
Very rapid dissociation implies that the kinetic-energy
distribution is broad, non-Lorentzian, and with adjacent
kinetic-energy peaks possibly overlapping. By moderate-
ly rapid we imply that the decay is essentially exponential
as in the slow dissociation case, with well-resolved
kinetic-energy peaks associated with specific Floquet
channels n. In the slow dissociation limit it is numerical-
ly inconvenient to carry the calculations through to com-
plete dissociation. However, this computational restric-
tion can be circumvented if the decay is purely exponen-
tial by fitting Eq. (18) to the fragment kinetic-energy dis-
tribution.
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A. Slow and moderately rapid dissociation

For our study of slow and moderately rapid dissocia-
tion we use the ground vibrational state (U=O) as the ini-
tial state, and a laser field of wavelength A, =3297 A, for
which the three-photon transition is near resonance, and
intensities of either I =7.0 X 10, 1.4 X 10, or 5.6 X 1012 13 13

W/cm . The Gg(t, R) and G„(t,R) components of the
time-dependent wave function [see Eq. (10)] are propagat-
ed on an %=256 point grid of length L =25ao, the time
step is bt =m/20co, and G (t, R) and G„(t,R) are split
into interaction and asymptotic region pieces (see Ref.
[15])whenever their modulus exceeds 10 ao '~ near the
end of the grid. The asymptotic region pieces of the wave
function are propagated on an N =8 192 or 16 384 point
momentum grid in order to obtain a high-resolution
kinetic-energy distribution. For the time-independent
calculation the wave function [Eq. (24)] is expanded in 25
photon states around ~N ).

The bare (solid curves) and dressed (dashed curves)
molecule-plus-field potential-enerl'y curves for
I =5.6X10' W/cm and A, =3297 A, for photon states
in the vicinity of ~N), are shown in Fig. 1. The bare
molecule-plus-field curves are the R-dependent eigen-
values of TR +H, 1

+A'cuba a, with eigenstates

~
N —n )P~(x, R ), and the dressed molecule-plus-field

curves are eigenvalues of HT —T~ = TR +H, 1
+A~a a

+ V„d(r, R, A), whose eigenstates are linear combina-
tions of ~N —n )f~(x,R), found by diagonalizing
HT —T~ in that basis.

Several features of the molecule-plus-field potential en-

ergy curves are worth identifying. Avoided crossings
occur at internuclear separations R satisfying
V„(R)+n 'A'co =

Vg (R )+n %co, whenever n n' is an —odd

number. Starting from a bound vibrational state in the
~N)gg diabatic channel, the system undergoes a kind of
laser-induced predissociation [7—10], and the fragments
may undergo a series of such curve crossings as they
proceed to large separation. The larger n —n

' is the
higher the order of the molecule-field interaction and the
less severe the avoided crossing. The avoided crossing at
R =3.6ao satisfies n —n

' = 1 and has the effect of pulling
down the barrier to dissociation. This "laser-induced
bond softening" [5] affects the upper vibrational states
more than the lower vibrational states because the bot-
tom of the potential well remains relatively undistorted,
although it is ac Stark shifted downward in energy. Since
the shift of the bound state is downward relative to the
asymptotic potential energy, the fragments have less ki-
netic energy than would be expected from energy conser-
vation, which predicts E„r=nhco+E; Vz(R—= oo ).

The exponential decay of the initial v =0 bound-state
population, shown in Fig. 2 for I =5.6 X 10' W/cm, is
due to the n —n ' = 3 avoided crossing occurring at the
H2+ equilibrium separation R =2ao. Since this is third
order in the laser-molecule coupling the avoided crossing
does not distort greatly the dressed-state potential curves
and, at least for I =7X10' and 1.4X10' W/cm, the
field-free U =0 vibrational wave function is almost ex-
clusively projected onto the v =0 dressed-state eigenfunc-
tion and not other bound or continuum dressed states.
The rapid oscillation in P;(t) seen in Fig. 2 is due to the
mixing of states during the optical cycle —the minimum
occurring when cos(cot) equals +1 or —1. Shown for
comparison in Fig. 2 is the exponential decay
P;(t) =exp( —I t/A') with I determined by fitting Eq. (18)

n= 0 CL

~17

J 77II(I
(777

I~~I 7~777
&

CO
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—100OOO
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R(a,u.)

~ ~ ~ ~ ~ ~ ~ ~ ~
1

~ ~ ~ ~ ~ ~ ~ ~ ~

6 7 0.0 Xk0

C$ ~ ~ 'I F
$

5 ~ 0
$

~ ~ I '
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'~ ~

20.0 30.0 40.0 50.0

FIG. 1. Bare (solid curves) and dressed (dashed curves)
molecule-plus-field potential energy curves, for A, =3297 A and
I=5.6 X 10' W/cm . Shown are curves which asymptotically
correlate with photon number states ~N n) in the v—icinity of

~
n

~

~ 3. Excellent convergence of time-independent close-
coupled calculations was obtained by including a set of 25 num-

—1ber states with ~n~ ~ 12. E„=o„=o(bare) = —21298 cm
E =p =p(dressed) = —25 998 cm

0
FIG. 2. Decay of the initial-state population, for A, =3297 A,

I =5.6 X 10" W/cm, and U =0, calculated using the time-
dependent method (solid curve) along with the exponential de-

—1cay P; ( t) =exp( —I t /fi) (dashed curve), where I =78.0 cm
was determined by fitting Eq. ( 1 8) to the fragment kinetic-
energy distribution. The broken curve has been shifted by 1.5~
to compensate for the 3~ turn-on time of the time-dependent
calculation.
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to the fragment kinetic-energy distribution (dashed
curve).

Two peaks corresponding to n=2, y=g and n=3,
y =u are seen in the short-time fragment kinetic-energy
distributions shown in Fig. 3, for tf =500& (&=2'/ro),
and using an intensity of (a) I =7.0X10' W/cm, (b)
I =1.4X 10' W/cm, and (c) I =5.6X 10' W/cm . In
Fig. 3 the points represent the kinetic-energy distribution

calculated by the time-dependent method [Eq. (17)j and
the curves are fits of Eq. (18). The n=3 peak is produced
by three-photon absorption to the unbound X„+ state.
As the molecule falls apart, stimulated emission occurs at
a separation R =3.6ao where the diC'erence between the
V„(R ) and V (R) potentials equals the photon energy. In
Fig. 1 this appears as an avoided crossing at R =3.6ao in
the dressed-state potential curves labeled asymptotically
as n=3 and 2. The decrease in the G„(t,R) amplitude
and the increase in the G (t, R ) amplitude between 3ao
and 4ao —seen in Fig. 4 for the I =5.6 X 10 W/cm
example —is further evidence for this interpretation of
the origin of the n =2 peak. At lower intensity the stimu-
lated emission is less eKcient and more fm.ux remains in
the n=3, y=u channel. Note that the short-time frag-
ment kinetic-energy distribution shown in Figs. 3(a) and
3(b) displays oscillations predicted by the line-shape func-
tion Eq. (18) for times less than the depletion limit.

We now explore the possibility of fitting Eq. (18) to the
short-time fragment kinetic-energy distribution in order
to accurately determine the decay rate I /A, the branch-
ing ratio P„—2 g/P„—3 „, and the ac Stark shift Ess at
times much less than the depletion limit. We use the
same initial state and wavelength used above, and intensi-
ties of I =7 X 10' and 1.4X 10'3 W/cm2, which result in
slow dissociation, in addition to I =5.6X10' W/cm
which results in what we term moderately rapid dissocia-
tion. Values of the decay rate, branching ratio, ac Stark
shift, and the final initial-state population, for the three
intensities and propagation times ranging from 25~ to
1000~, are tabulated in Table I. Except where noted, the
time-dependent interaction was ramped on (and off} over
three optical cycles. Values of the quantities obtained us-
ing the time-independent method are listed for compar-
ison. Upon inspection of Table I one sees that, except for
the high-intensity decay rate, the long-time time-
dependent and time-independent results are in good
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FIG. 3. Short-time (t =500&) fragment kinetic-energy distri-
butions calculated using the time-dependent method (points),
and the fit of the short-time line-shape function, Eq. (18), to
these points (solid curves), for A. = 3297 A, U=0, and intensities
of (a) I =7.0X10' W/cm; (b) I =1.4X10' W/cm and (c)
I =5.6X 10' W/cm .

O
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FIG. 4. The nuclear wave functions G~(t, R) (solid curve) and

G„(t,R) (dashed curve) associated with the t( and g„channel
states at t=50 fs for k =3297 A, I = 5.6 X 10' W/cm, and
U=O.
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agreement. The short-time and long-time time-
dependent results are in better agreement as the intensity
is decreased, which is the desired trend if one wishes to
extend the time-dependent method to lower intensities.

Table I displays several trends in the values of the cal-
culated quantities as a function of intensity and propaga-
tion time. For example, the branching ratio increases
with propagation time, with the greatest change occur-
ring at high intensity. This is due to the average intensity
being lower for short propagation times, where by aver-
age intensity we mean the intensity averaged over the
turn-on, constant, and turn-off' periods of f (t). The
amount of stimulated emission and therefore the branch-
ing ratio decreases with decreasing average intensity.
The difFerence between the average intensity and the
maximum intensity increases with maximum intensity,
thus the increased sensitivity of the I =5.6X 10' W/cm
branching ratio to the propagation time (15% error for
t&=50r), compared to the I =1.4X10' W/cm (6.5%
error) and I =7.0X10' W/cm (3% error) cases. A
slight improvement is obtained in the I =S.6 X 10'
W/cm calculation by decreasing the turn-on and turn-ofF
periods from three to one optical cycles (29% versus 34%
error for tI=25r), although one runs the risk of intro-
ducing transients into the kinetic-energy distributions if
the turn-on and turn-ofF times are made too short.

Trends in the decay rate of the initial bound state as a
function of the propagation time are difFerent for the

three intensities, i.e., the decay rate increases for
I =7.0X 10' W/cm, remains constant for I =1.4X 10'
%'/cm, and decreases for I =5.6X10' W/cm as t& in-
creases. The latter case is contrary to the argument that
the average intensity increases with propagation time,
and that the decay rate increases with average intensity,
therefore one expects the decay rate to increase with
propagation time. Another possible source of error at
short times may be due to a fast decay component, which
would appear first in the kinetic-energy distribution. In
the language of time-independent theory the fast decay
component results from a nonzero projection of the ini-
tial field-free bound-state ave function onto high-lying
bound or continuum dressed states. %'hile possibly small
in magnitude, the fast decay component may at short
times make a large relative contribution to the fragment
kinetic-energy distribution compared to the slow decay
component. The fact that the fast decay component in-
creases in magnitude relative to the slow decay com-
ponent, as the intensity increases, may explain both the
unexpected trend in the I =5.6 X 10' W/cm calculation
and why the values of the decay rate calculated by the
time-dependent and time-independent methods difFer by
several percent at this intensity. Of course, the line-shape
expression Eq. (18) assumes that there is only one decay
rate. Note that the decay rate scales as I for the lowest
and intermediate intensities, as expected from perturba-
tion theory if dissociation is due to a three-photon pro-

TABLE I. Parameters of the short-time line-shape function fit to the fragment kinetic-energy distribution as a function of intensity

and propagation time.

Method'

TD
TD
TD
TD
TD
TD
TI

I (10' W/cm )

7.0
7.0
7.0
7.0
7.0
7.0
7.0

50
100
200
300
SOO

1000

0.998
0.990
0.980
0.969
0.950
0.902
0.0

~n =2,g /~n =3, u

0.483
0.493
0.498
0.500
0.500
0.498
0.501

I (cm ')

0.205
0.207
0.207
0.207
0.207
0.208
0.211

Ess (cm ')

—626
—627
—628
—628
—628
—628
—633

TD
TD

TD
TD
TD
TI

14.0
14.0
14.0
14.0
14.0
14.0
14.0

50
100
200
300
500

1000

0.983
0.967
0.935
0.904
0.846
0.715
0.0

1.16
1.20
1.22
1.23
1.24
1.25
1.26

1.62
1.62
1.62
1.62
1.62
1.62
1.64

—1247
—1245
—1245
—1245
—1245
—1245
—1251

TD
TD
TD
TD
TD
TD
TD
TD
TI

56.0
56.0
56.0
56.0
56.0
56.0
56.0
56.0
56.0

25
25
SO

100
200
300
500

1000

0.660
0.661
0.441
0.195
0.040
0.008
0.0003
0.0
0.0

13.3
14.4
17.2
19.0
19.8
19.8
20.3
20.3
20.2

80.2
79.9
79.1

79.0
78.0
77.9
77.9
78.0
79.4

—4737
—4695
—4692
—4684
—4682
—4682
—4682
—4682
—4700

'Calculated using the time-dependent (TD) or time-independent (TI) method.
For this calculation the interaction was ramped on (and off in 1~ (~=2~/co), for all others 3~.
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FIG. 9. Short-time behavior of the decay of the initial-state
population shown in Fig. 8. The dotted curve excludes the corn-
ponents with E)0 in Fig. 7.

high total energy continuum component, which decays
within the first several optical cycles. The broad u~ =3
component decays within roughly the first ten optical cy-
cles, and the narrower u, =0, Ik, and 2 components are
depleted within roughly 50 optical cycles. The oscilla-
tions in P, (t) are a consequence of the overlap of the
peaks in the kinetic-energy distribution: interference re-
sults from the ability of two di6'erent vibrational states to
produce fragments with the same kinetic energy.

P, (t) at short times is shown in more detail in Fig. 9.
Without including the components with E 0 in Fig. 7
the wave-packet expression Eq. (31) gives the smooth dot-
ted decay curve in Fig. 9. However, by including the
remaining components the wave packet produces a com-
plicated interference pattern shown by the dashed curve.
It is a tedious but simple matter to associate these oscilla-

A
aq

"

f3=1
y=u - v„= 0

tq

tions with various features in Fig. 7. However, what is
most pleasing is to find this very excellent agreement with
the time-dependent decay curve shown by the solid curve.
The solid curves in both Figs. 8 and 9 were obtained by
averaging P, (t) of the . time-dependent calculations over
the initial phase 5 of the time-dependent field
E cos(cot+5). This gave the best agreement with the
time-independent result: 6=0 resulted in too much con-
tinuum component and 6=m/2 too little, as did turning
on the interaction over several optical cycles.

In Fig. 10 we plot the depletion-limit fragment
kinetic-energy distributions corresponding to these decay
curves, calculated using the time-independent method

(0
O

CO
O

CL

O

O

O O-
~ I

I
I I ~ ~

I

KO 10.0 Q.O
c(10'

~
I ~ ~ III ~ I

14.0 16.0
~ ~ ~ ~ ~ ~ lI ~ ~ ~ l ~ ~

18.0 48.0 50.0 52.0
e (iO'

54.0 56.0 58.0

C)
CS

0.0
~ ~ ~ I ~ ~ I ~ I ~ ~ ~ ~ I ~ ~ I ~ I ~ ~ I ~

R.O 20.0 30.0 40.0 50.0

FIG. 8. Decay of the initial-state population calculated using
the phase-averaged time-dependent method (solid curve) and

0
the time-independent method (dashed curve), for X=2480 A,
I =2 X 10'~ W/cm, and U =2.

FIG. 10. Fragment relative kinetic-energy distribution calcu-
lated using the time-independent method (points), the time-
dependent method averaged over the initial phase of the field
(solid curve), and the time-dependent method with the field
ramped on over three optical cycles (dashed curve), for X=2480
A, I =2X10'" W/cm, and U=2. The left panel is predom-
inantly P„& „contribution, the right panel is predominantly
P„2g contribution, and the peaks are labeled according to the
dressed vibrational state they originated from.
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(points), the time-dependent method with the interaction
ramped on over three optical cycles (dashed curve), and
the time-dependent method using a square pulse shape
and averaging over the initial phase of the field (solid
curve). Unlike the A, =3297 A, U=O example of Sec.
IV A, the one- and two-photon peaks have dissimilar,
non-Lorentzian line shapes. The time-independent result
was obtained by rearranging the various n y components
of the distribution shown in Fig. 7 according to their ki-
netic energy E„~=E+ nba Vr(—R = ~ ). As a result of
the high intensity, the time-independent calculations
must be performed over a range of total energy of more
than 200000 cm ' (as evidenced in Fig. 7), and much
bookkeeping is required to construct the kinetic-energy
distribution.

The positions of the peaks corresponding to the decay
of the dressed vibrational states are labeled to indicate
their relative contribution. The distributions shown in
the first and second panels represent dissociation via
mainly the n = 1 and 2 channels, respectively, although at
this intensity many different channels contribute, over a
broader range of kinetic energy than that shown. Due to
the time-energy uncertainty principle, which manifests it-
self as the Fourier transform in Eq. (31), rapid decay
components appear as broad features in the kinetic-
energy distribution. In the example shown in Fig. 10, the
initial field-free u=2 bound state is projected onto the
uz =0—3 dressed bound states as well as the continuum.
The u~ =0 and 1 dressed-state components decay via the
two-photon channel, and the v ~

=2 and 3 components
decay via mainly the one-photon channel, but also the
two-photon channel. Also visible in the first panel of Fig.
10 is a flat, high total energy continuum contribution,
which extends from near zero kinetic energy to more
than 10000 cm '. This component of the kinetic-energy
distribution is associated with the very rapid decay of
I', (t) in the first . several optical cycles.

In Fig. 10 one sees that the fragment kinetic-energy
distribution calculated using the time-independent
method (points) agrees well with the square pulse time-
dependent calculation (solid curve) that was averaged
over ten values of the initial phase of the field, but not as
well with the time-dependent calculation using an in-
teraction that was ramped on over three optical cycles
(dashed curve): the phase-averaged time-dependent cal-
culation slightly underestimates the contribution from
the uz =1 and 2 levels; whereas the ramped-on time-
dependent calculation substantially overestimates the
contribution from the u~ =1 and 2 levels and the n=1,
u„=3 level. On the other hand, the ramped-on calcula-
tion underestimates the broad low kinetic-energy contin-
uum component, which is slightly overestimated by the
phase-averaged calculation. The good agreement be-
tween the time-independent and phase-averaged time-
dependent result is not surprising considering the fact
that the decays of the initial-state population are in good
agreement, and that the decay and kinetic-energy distri-
bution are related by a Fourier transform. Finally, we
note that ramping on the interaction over several optical
cycles works well at lower intensities, because there is no
rapid decay component, and that performing the calcula-

tion with different values of the initial phase and then
averaging is both unnecessary and very inefficient compu-
tationally if dissociation is slow.

V. CONCLUSION

In this paper we explored the complementarity of
time-dependent and time-independent methods in the
study of intense-field photodissociation of H2+ by calcu-
lating the fragment kinetic-energy distribution and
initial-state population decay for several intensities,
wavelengths, and initial vibrational states. The time-
dependent method propagates the wave function in time
by the repeated application of a short-time propagator,
and it assumes a classical, time-dependent interaction for
which one is free to choose how the field is turned on and
off. On the other hand, the time-independent method
projects the initial bound-state wave function onto eigen-
states of the total molecule-plus-field Hamiltonian, and
the process becomes essentially one of laser-induced
predissociation. The time dependence is eliminated by ei-
ther using a classical molecule-field interaction and then
integrating over the optical cycle, or by using a quantum
interaction and assuming that the field can be described
by an average photon number state ~X). Since the time
dependence has been eliminated, one cannot easily ac-
count for different pulse shapes, i.e., different ways of
turning on and off the field.

The time-independent method is more efficient at low
to moderate intensities because few molecule-plus-field
basis functions are needed in the wave-function expan-
sion, and the positions, heights, and widths of peaks in
the kinetic-energy distribution can be determined by per-
forming the calculation at only a few values of the total
energy and then fitting the results to Lorentzian line-
shape functions. On the other hand, the time-dependent
method, as usually applied, is inefficient at low to
moderate intensities because the wave function must be
propagated for many time steps before the depletion limit
is reached. In this paper we successfully applied a pro-
cedure for obtaining depletion-limit quantities at short
times by fitting a short-time line-shape function to the
nondepletion-limit fragment kinetic-energy distribution
using a global minimization procedure. Values of the de-
cay rate, branching ratio, and ac Stark shift, calculated
using the fitting procedure, were in very good agreement
with those calculated with the time-independent method
at the lowest intensities studied. At high intensities the
time-independent method becomes less efficient because
many molecule-plus-field basis functions must be includ-
ed in the wave-function expansion and the calculation
must be carried out over a wide range of total energy.

At the highest intensities studied we found evidence for
multiple decay components in the fragment kinetic-
energy distribution and in the decay of the initial-state
population. In the language of the time-independent
theory, these decay components result from a nonzero
projection of the initial bound state onto continuum as
well as high- and low-lying dressed vibrational states.
The rapidly decaying continuum component is very sensi-
tive to how the time-dependent interaction is turned on,
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and can cause differences between the time-dependent
and time-independent results. We found that these
differences were minimized if one performed a series of
time-dependent calculations using a square pulse shape
with a series of initial phases, and then performs a subse-
quent average of the results over this phase. This is very
similar in philosophy to the implied average over an opti-
cal cycle that is at the heart of the Floquet-like methods.
The computationally more efficient procedure of turning
on the interaction over several optical cycles and not
phase averaging resulted in an increase in the slow decay
contribution and a decrease in the fast decay contribution
to the fragment kinetic-energy distribution, compared
with the time-independent result.

In conclusion, we wish to stress that even under condi-
tions for which it is very di%cult to perform the time-

independent calculation, e.g. , at very high intensity or for
pulsed excitation, the dressed molecule-plus-Geld poten-
tial energy curves —which are easily calculated —provide
much qualitative insight into such processes as laser-
induced bond softening, laser-induced bound states, ac
Stark shifts, and the intensity dependence of ATD
branching ratios and photodissociation rates.
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