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The usual approach to calculating multiphoton collision and half-collision processes uses the interac-
tion picture and introduces a classical time-dependent field into the Hamiltonian for the scattered parti-
cles, which is further simplified using the Floquet ansatz. In particular, the laser-induced decay of an in-
itial -bound state is derived from a half-collision Floquet ansatz that utilizes a complex quasienergy,
whose imaginary part is identified with the laser-induced decay constant of the bound state. This inter-
pretation presupposes a pure exponential decay of the initial-state population and yields a Lorentzian
distribution of product-state energies in the infinite-depletion limit. Here we demonstrate how a full-
collision Floquet ansatz can be derived from a fully quantal wave packet constructed to represent scatter-
ing in the presence of a coherent state of the laser field. The wave packet utilizes the set of the time-
independent close-coupled wave functions for scattering in the field generated by quantized radiation
number states. The resultant Floquet scattering states are energy normalized and stationary, and the
quasienergy is real. We show how to use these states to construct a coherent-state wave packet that de-
scribes the decay of an arbitrarily prepared bound state, and yields a half-collision Floquet ansatz
without any commitment to a complex quasienergy. The product energy and quantum-state distribution
in the infinite-depletion limit are obtained without approximation to exponential decay. Further we
show how the Fourier transform of the infinite-depletion line shape gives the temporal behavior of the
initial bound-state population, often with distinctly nonexponential behavior. Such results are demon-
strated for the above-threshold ionization of H, and the above-threshold dissociation of H,". In the fol-
lowing paper [R. W. Heather and F. H. Mies, Phys. Rev. 44, XXXX (1991)], excellent agreement is
found between the present fully quantal wave-packet approach, utilizing the time-independent scattering
wave functions, and the comparable solutions to the time-dependent Schrédinger equation for a corre-
sponding classical time-dependent laser field.

PACS number(s): 32.80.Wr

I. INTRODUCTION

1 DECEMBER 1991

Nonperturbative treatments of multiphoton ionization
(MPI) of atoms [1-5], e.g.,

H+n#to->H" +e (1)

and multiphoton dissociation (MPD) of diatoms [6-9],
e.g.,

H,"+n#io—-H'+H )

generally proceed from a classical description of an in-
tense single-mode laser defined by the time-dependent
vector potential

_A(x,t)=£ﬁcos(cot—kw-x+¢) . (3)

Heather and Metiu [8] and Bardsley, Szoke, and Comella
[3] have solved the resultant time-dependent Schrodinger
equation for MPD and MPI, respectively, using split-
operator techniques. Such procedures are imperative for
femtosecond pulsed lasers where the electric field ampli-
tude E(¢) varies rapidly with time over the course of the
scattering event.

ﬁ

Alternatively, if we can assume that the amplitude of
the electric field E=(87%wN /V)!/%8, or equivalently the
effective number of photons N contained in the volume V,
is constant in time [10], the periodic time dependence can
be exploited in the following half-collision Floquet ansatz
[11] to describe the decay of some initial bound state i
which is subject to this classical field at t =0. This can be
represented as follows:

— +o .,
V. (E;,x,R;t)= S \I/n,’i(x,R)e«m(mt-hﬁ)
n'=—o0
—iE.t/%
Xe iE;t/ (4)

where the quasienergy E; =E?+ A, —iT, is taken as com-
plex [12]. The quantity A, is interpreted as the laser-
induced shift relative to the unperturbed initial eigenval-
ue EP, and T'; /% is interpreted as the laser-induced rate
of decay of the initial state. Appropriate outgoing
boundary conditions must be imposed on the functions
¥, as R— oo, where R is the magnitude of either the
electron coordinate in Eq. (1) or the internuclear coordi-
nate in Eq. (2), and x represents all the remaining degrees
of freedom.
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In order to avoid a commitment to a purely exponen-
tial decay implied by the complex quasienergy, we will
show how to construct a proper decaying wave packet for
initial bound state ¥, using a complete set of Floquet
scattering states. The following full-collision Floquet an-
satz [2,13] can be used to describe any type of scattering
in the presence of a classical field,

+ _
> U Ax)F, 4 (E,R)

n=—oc y'

@,TY(E,X,R ;1) =

Xe—in'(mt+¢) e_iEt/fi X (5)

The incoming state @,Ty(E,x,R ;) is a particular time-
dependent solution of the total Hamiltonian, expanded in
a set of channel states [14] ¢, appropriate to processes (1)
or (2). Typical incoming scattering boundary conditions
are applied to the matrix of time-independent radial solu-
tion vectors F(E, R) which are obtained numerically from
close-coupled scattering codes. Since the bracketed por-
tion of Eq. (5) is perfectly periodic in time, i.e.,
W(E,t)—>VY(E,t +2mm /o), the parameter E is referred
to as a ‘‘quasienergy” and solutions can only be uniquely
specified within multiples of the photon energy [11], i.e.,
V(E,t)—Y(E +mtio,t). However, the radial functions
are chosen to be energy normalized, and the quasienergy
E is real. The parameter n' is the Floquet index and indi-
cates the number of photons absorbed (n'—n >0) or em-
itted (n’—n <O0) relative to the initial scattering state in-
cident in channel ¥ in a field with mean number N —n.

TABLE I. Schematic of theoretical analysis.
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We have two objectives in this paper. The first is to
derive the full-collision Floquet ansatz (5) using a com-
pletely quantum approach for both the radiation field and
the scattering. The second is to use the same approach to
construct the half-collision Floquet ansatz (4) corre-
sponding to the photodissociation or photoionization of
some prescribed initial bound state which is abruptly sub-
jected to the time-dependent field (3) at t =0. Using the
full-collision solutions to construct a proper decaying
wave packet we avoid any commitment to the complex
quasienergy approximation. We will use the specific
MPD and MPI processes in (1) and (2) to demonstrate
that the half-collision Floquet ansatz is not restricted to
isolated, exponentially decaying states.

The analysis we employ is outlined schematically in
Table I. Everything is accomplished using the complete
set of either incoming (+) or outgoing ( — ) close-coupled
field-dressed scattering states Q,ﬁ,(E,N,t) as a basis.
These describe a full-collision process occurring in a field
represented by quantized number states |N ). Since |[N)
is an exact energy eigenfunction, the total energy of the
colliding system is conserved, and Qf,, can be constructed
from time-independent, close-coupled scattering wave
functions, with E real. As a corollary the complete set of
outgoing scattering wave functions (1, can be used to
construct a fully quantized wave packet Q;(N,t) for a
half- collision process in quantized field.

Using arguments first presented by Shirley [15] in his
original derivation of the Floquet theory for a two-level
system, the classical expression (5) for a full-collision pro-
cess can be derived using a quantal description of the

(A) The time-independent close-coupled solutions for scattering of particles

A(y)+B(y) in an incident laser field represented by the number state [N —n ), are used to construct the in (+) or out (—) quantal
field plus full-collision wave packet Q,,i},(E,N,t) in Sec. II. (B) A half-collision wave packet Q;(N,?) is constructed in Sec. III which
represents decay of an initial bound state 4B (i) atom or molecule induced by the quantal radiation field [N —n ). (C) A Poisson dis-
tribution of number state packets is used in Sec. IV to construct an incident coherent radiation state |&) and an expression for the
full-collision Floquet state \T,,},(E,t) is obtained. (D) Starting with either (B) or (C) a half-collision wave packet for decay of AB (i) in
a coherent radiation field is constructed and a half-collision Floquet state W, is defined at the conclusion of Sec. IV.

(A)

Quantal-field plus full-collision wave packet

A(y)+B(y)+(N—n)fiwo— A(y')+B(y')+(N —n')fiw

Qi (E,N,1)
(B) ©
Quantal-field plus half-collision wave packet (Coherent state) X (full Floquet state)
AB(i)+N#io— A(y)+B(y)+(N —n)fio A(y)+B(y)+|a)— A(y)+B(y)—(n'—n)io+|a)
Q;(N,n)=73, deCM‘w,-(E,N)Q,,“,,(E,N,t) Ia_)W,,iy: ZE(N)Q,%’Y(E,N,t)
ny N
(D)

(Coherent state) X (half Floquet state)

AB(i)+|a@)— A(y)+B(y)—nfio+|a)
@)= N3 [dEC,, (E,NQ;,(E,N,1)
N ny

~la) 3 [dEC,, (EN)¥,,E,1)
ny
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laser expanded in a complete set of photon number states
|N). The exact close-coupled scattering wave functions
Q;L?,(N, E,t) are combined to form a wave packet incident
in a pure coherent radiation state [15-17]

la))y= S e

N=0

—lap @Y

v TiA A (6)

which leads to the quantal representation of the classical
field (3) if we choose a@=e YV'N, where
N=|E|*V /(8n#iw) [12]. Assuming that N is sufficiently
large, the resultant packet factors as |&'(t))@:},(E,t) and
yields the expression (5). In this case E still remains real.
Using these full-collision Floquet solutions we can also
construct a half-collision wave packet subjected to the
classical time-dependent field (3) at t =0. Again we ob-
tain a factorization |@(z))W,(¢) which defines the half-
collision Floquet expression comparable to (4), but
without any introduction of a complex quasienergy.

Aside from the pleasing feature of unifying the two ap-
proaches, the quantal derivation gives us a rigorous basis
for extracting observable macroscropic properties from
the Floquet ansatz, allows us to use the full apparatus of
quantal scattering codes, and avoids the limitations im-
posed by the usual complex-quasienergy algorithms
which assume all line-shape profiles are Lorentzian as
prescribed by a pure exponential decay of the initial
bound state. In particular we will show how the distribu-
tion of final channel states, in the limit of infinite de-
pletion (#— o) can be related to a simple integral over
time-independent scattering solutions

P,, (E)= |3 (¢, F5, .., (E)¥]) |? (7
<

where the total kinetic energy of the fragments exciting
in channel ¢, is €,,=E +nfio—E,,. This is an extremely
useful result. Simply given the time-independent close-
coupled solutions, we can always predict the energy dis-
tribution of fragments [18]. Of course, this does not tell
us how long it takes the initial nonstationary bound state
to decay or how long it takes the fragment wave packets
to arrive at the detector at R = . However, when we
construct and evaluate the appropriate wave packets as-
sociated with these solutions [19], we obtain a simple ex-
pression for the initial-state decay which is related to the
Fourier transform of Eq. (7).

In Sec. II we present the time-independent quantal
theory of laser-induced scattering using photon number
states |N ) which are exact energy eigenfunctions of the
radiation field. In Sec. III we consider the construction
of appropriate wave packets which can represent the
photodissociation or photoionization in such a field. In
Sec. IV we further modify the wave packet to conform to
the coherent radiation state in Eq. (6), and we show what
assumptions are required to yield the Floquet ansatz. A
specific application of the theory to H,' in Eq. (2) is
presented in Sec. V which demonstrates the procedures
required, and results that can be obtained from conven-
tional scattering codes. These results are examined in
greater detail in the following paper [20] where they are
compared to the results obtained from direct integration
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of the time-dependent Schrédinger equation using a clas-
sical field in Eq. (3). (It is perhaps appropriate to mention
here that excellent quantitative agreement is obtained be-
tween the two methods.) In Sec. VI we consider the pho-
toionization of H in Eq. (1), with specific use of mul-
tichannel quantum defect theory (MQDT) to analyze Eq.
(7.

II. QUANTAL THEORY
OF LASER-INDUCED SCATTERING

We begin our analysis with the conventional channel
state expansion of the time-independent scattering wave
functions,

0,,(NE,p,R)= 3 0,,4p)F,. .. \NER). (8
n'y'

These are constructed to be stationary state solutions
[17,21] of the combined scattering particles-plus-field
Hamiltonian [16]

Hp=%w(a%a)+H(x,R, A)
=tio(a'a)+V, 4(x,R, A)+Tx +H%x,R)  (9)

where T is the kinetic-energy operator for the radial
coordinate R, and the channel state Hamiltonian
H°=Tg +H,(x,R) which defines the set of channel
states 1,.(x) in Eq. (5) includes both the radial angular
momentum and any remaining internal coordinates of the
hydrogen atom in (1) or the diatom in (2) [14]. The classi-
cal time-dependent vector potential in Eq. (3) is replaced
by the time-independent operator [15-17,21],

1/

ta ik, X

2
—ik 'x
(a'€e +at*e ¢

2mhie Y, (10)

A(x)= v

C
0]

and, in the minimal (Coulomb) gauge [22] the radiative
interaction is [23]

Vrad(X,R, A)= 2 —(eZ,- /CM,' )p," A(xi)
N (eZ; /c)?
2M;

I

A(x;) A(x;) . (11)

The time-independent close-coupled scattering formu-
lation [17,21] is based on defining a product set of
particle-plus-field channel states

0,,(p)=IN—n)9,(x) (12)

involving different photon number states |N), |[N*+1),
IN+2) ..., which are energy eigenfunctions of the quan-
tized source-free radiation field defined by the normal
mode functions associated with the frequency o, polar-
ization €, and Poynting vector k, in Eq. (10). Formally,
the particle-field channel states 6,,(p) now span the com-
bined space p=(g,,x) where q,=(%/20)"*(a +a')
[which implies ¢, = —i(#%w/2)!"*(a —aT)] is a general-
ized position ‘“‘coordinate” for the single laser mode.
This construction yields
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tivaa ——iﬁi

—iNowt =0
at e |N) >

and ensures that, asymptotically, the channels are exact
eigenfunctions of H(R = ) as they must be to satisfy
the requirements of scattering theory [24],

+ik, R

lim (Hy—E7)0,,(ple” ™" /R=0 . (13)

R—
The combined particle-plus-field energy Er=E + N#io is
a constant of the emotion, and, for a given initial number
state |N ), the energy E is conserved. This can be used to
define the asymptotic kinetic energy in each channel [23],

€ny=(#ik,,)*/2M =E;—[E,, +(N —n)fio]
=E —E., +ntio (14)

where E, defined asymptotically by
limg ,  H,=E, 1, represents the sum of the internal
energies and M the reduced mass of the scattered frag-
ments associated with the channel state 1/1,,. The index n,
which is associated with the number state |N —n),
represents the number of photons that have been re-
moved by absorption (n >0) from the initial number
state |N ) or added to it by stimulated emission (n <0).
If we restrict the expansion in Eq. (8) to include only a
finite number N, of particle-field channel states the ma-
trix of coupled radial equations generated by the
Schrodinger equation, (Hy—E —ﬁcoN)e,,,,=O, ie.,

[Tz +U(N,R)—E]F(N,E,R)=0 ,

Unryrony(N,RY=(6,,0| V0416, (15)

+6n’,n(<9ny’IH0|9n7>'—nﬁa))

can be solved using the usual close-coupling procedures.
Let us arrange the channel indices {ny} in order of in-
creasing asymptotic energy. Generally the set of
Ny=N,+ N channels {ny} contains a subset of N,
open channels with €,,>0 and N closed channels with
€,y <0 which we further designate as {o} and {c}, re-
spectively. At a given energy E, we obtain an N,-fold
degenerate set of orthogonal energy-normalized solution
vectors, by imposing the following asymptotic behavior
on the radial wave functions:

Foo ~ 0,

1/2
F, ~ |-2*_5 (16)
%R Hw ’ITko,ﬁ

—ik +ik_,
X[e "8, ,—e RS, (N,E)]/2iR

where S is the Ny X N, unitary scattering matrix.

For a given incident channel state 6,,=|N —n )4, we
expect that a possibly large but finite range
[n"—n|=0,1,2,. .. of final channel states
6,,=IN —n'>14,. will contribute to the solution vector
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F, ny(N,E,R) centered about n’'=n. Thus even for

modestly intense laser fields we can assume N >>|n’|, |n|
such that
Ay NER) _ dSyynNE)
dN dN

if N>>|n'l,|n|l . (17)

As we shall see in Sec. IV, this will be a sufficient condi-
tion to derive the Floquet expressions (4) and (5).

The time-independent wave function ©,,(N, E) in Eq.
(8) corresponds to an “incoming” state prepared in the
incident channel |N —n )t,t',, with total energy
E;=E + Nfiw. Implicitly one assumes that the “initial”
state in a given experiment is represented by an incoming
wave packet at t— — oo that is sufficiently extended in
time to allow arbitrarily precise evaluation of the total
collision energy Er=FE +N#w. Such a wave packet is
well approximated as a pure eigenstate of the total ener-
gy7

Q. (N,E,x,R,1)=6,,(N,E,p,R)e "Et/fg "iNot  (18q)

for the incoming state. A comparable “outgoing” wave
packet which we designate as

Q,,(N,E,x,R,t)=0} (N,E,p,R)e ~E/fe ~iNot = (18p)

for the outgoing state, is obtained by replacing ©,, with
the conjugate function ©;,. These are only approxima-
tions to a real experimental situation since the field de-
scribed by pure number states |N ) can differ substantial-
ly from the typically classical optical cavity mode [16].
In Sec. IV we will use this complete set of number state
scattering wave functions to construct more realistic
wave packets for scattering by a laser in a pure time-
dependent coherent state |&@(z) ).

III. HALF-COLLISION ANALYSIS
OF LASER-INDUCED DECAY
OF BOUND STATES

Before proceeding to the coherent-state wave packet,
we will consider the proper use of these full-collision
wave functions to describe a half-collision process corre-
sponding to the photodissociation (photoionization) of
some initial bound state ®;(N,p,R),

®;(N,p,R)= 3 0.(p)P. ;(N,E,R),

c'=n'y'

(19a)

which is subject to a laser incident in a pure number state
|[N) at t =0. Radiative interactions cause the state to be-
come hnonstationary and it subsequently decays into the
complete set of outgoing states defined by Eq. (18b). We
have expanded this state in the same complete set of
closed-channel states {c'} used in (8), but the radial func-
tions P, ;(N,E;,R) are not solutions to Eq. (15), since ®;
represents a solution to some totally different Hamiltoni-
an which describes conditions just before the field was in-
troduced and generally excludes the set of open channels
{o}. The expansion (19a) includes channels ¢’=(n'y’)
with 7’0 and can allow for initial dressing of the bound
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state by the applied field. However, in many experiments
we expect that ®; is best represented as a field-free bound
state associated with a specific closed channel ¢ =(0y)
and a radial function in the bound state i,

®,(N,p,R)=~6,(p)P,;(R)=|N)¥x,R) (19b)

where ¥)=1,(x)?,;(R) and E’=E; — N#iw approximate
the initial field-free particle state and its energy. The ra-
dial function ?_;(R) represents a specific normalized
bound state i supported in the field-free attractive diago-
nal potential U,.(R)={c|H®c)

[T+ U, (R)—EP]P, ;(R)=0 (20)

and can be viewed as a resonance state in the closed
channel c¢. It should be emphasized that this initial state
is predicated on a particular experimental situation where
the initial bound state is an exact eigenfunction of the
field-free (T,+H 9) which is “abruptly” exposed to the
laser field at t =0 [26]. Specific examples are given in
Secs. V and VL.

We can always use the complete set of outgoing number
state solutions (18b) to form an appropriate nonstationary
wave packet [18,19]

Q(N,p,R,)="3 [dE Q. (N,E,p,R,1)C,, ,(N,E)
o=ny
~0<I>,-(N,p,R) (21)
t—
where the channel summation is restricted to the set of

open channels {o}. The coefficients C,, _; are given by
the following expressions using Egs. (16) and (19a):

C,.(N,E)={(OX(N,E)|®;,(N))
= 2<Fcf,o(N,E>l?c.,i> , (22a)
or (19b) ’
C, ;(N,E)Y=(F},(N,E)|P,,) , (22b)

respectively. In Sec. V the coefficient C,_;(n,E) is evalu-
ated numerically [28] using the matrix F(NV,E,R) of
close-coupled radial solution vectors for H2+ MPD,
while in Sec. VI MQDT is used [2] to obtain (22) from the
close-coupled solutions for H atom MPI.

All the subsequent dynamics of this abruptly prepared
initial bound state can be extracted from the wave packet
(21). For instance, the probability of finding the system
in the outgoing dissociated state 1, (N, E,?) ,-which is an
exact eigenstate of the total Hamiltonian H, is indepen-
dent of time [29] and simply given by the expansion
coefficient in Eq. (22),

Py (N,E)=[{Q, (N,E,1)|Q;(N,1))|?
=|C,,. ;(N,E)|*. (23)

yi

This defines the probability that fragments originating
from the particle channel state ¥, with total internal en-
ergy E, are produced via an n-photon absorption with
relative kinetic energy €,, given by Eq. (14). The total
probability of dissociation or ionization in the infinite de-
pletion limit must sum to unity:

S [dEP,, (N.E)=3 b, (N)=1. (24)
ny

ny

The sum only extends over open channels and b,,. ;(N)
defines an integrated branching ratio into the energetical-
ly accessible channel 6,,,.

The probability of this nonstationary wave packet
remaining in the initial state at times ¢ >0 is simply given
as follows:

P(N,t)=|(®,(N)exp( —iE;t /#)|Q;(N,¢))|?

2
—i(E—E)t/#

(25)

[dE [EP,,%_,.(N,E) e
ny

In many circumstances we find that P,,_;(N,E) is well
represented to high order by a perfect Lorentzian expres-

sion
P, i(N,E)=b,, T;/2m)/[(E —E)}?+(T;/2)*]
(26)

where the initial bound-state energy E°=E;+ A, is basi-
cally ac Stark “shifted” by an amount A; due to multi-
photon interactions, and we can extract a total laser-
induced rate “constant” I'; /7 for the decay of the initial
state ®;=|N )WY from this expression. Whenever this
Lorentzian behavior can be confirmed far in the wings of
Eq. (26) we can avoid the explicit numerical evaluation of
Eq. (25) and simply infer a near-perfect exponential decay
of the initial bound state

P,(N,t)=exp(—T;t /%) . (27)

IV. COHERENT-STATE WAVE PACKETS
AND FLOQUET THEORY

The Floquet wave functions (4) and (5) represent an in-
teraction picture wave packet, which treats the time-
dependent radiation field classically. In this paper we
want to emphasize the equivalence of using a fully quan-
tal description of the half-collision process in the strong
laser field limit. Note that the set of time-independent
close-coupled equations which define the Floquet radial
solution vectors F(E,R) in Eq. (5) are identical to the set
of Egs. (15) which define the fully quantal radial solution
vectors F(N,E,R) in Eq. (15), with N simply replaced by
the effective photon number N associated with the classi-
cal field in Eq (3). Using the time-independent
Schrodinger representation of the radiation field we will
arrive at a result identical to Eq. (5), with
F(E,R)=F(N,E,R), but hopefully with a better and
more unified interpretation of the initial preparation and
subsequent evolution of observable properties associated
with this wave packet.

We shall only be considering fields for which N >>1
and we can safely dispense with the zero point energy in
the laser mode. As is well known [16] the quantum-
mechanical number state |N ), which precisely specifies
the total energy N7iw of the eigenmode, yields complete
uncertainty in the phase ¢ of the field in Eq. (3) such that
the expectation value for the electric field vanishes,
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(N|E|N)=0, and only {N|E-E|N)=7%w(4wN /V) has a
classical analog. We shall use the complete set of exact
time-independent number state solutions ©,,,(N,E,p,R)
to construct a particle-plus-field wave packet incident in
the pure coherent state |@(t)) given in Eq. (6). This is the
quantum equivalent of the classically stable field (3) and
gives the minimum uncertainty in the field parameters.
The function |&@) is an exact eigenfunction of the annihi-
lation operator

al@)=ala)=e VN |a) (28)
such that (&|aTa|&>=N and
(@|E(t)|@)=—(87N#iw/V) /% sin(wt —k, x+¢) .
(29)

In principle, explicit laser pulse shapes can be described
by introducing a time dependence into the coherent-state
eigenvalues @(1)=e ~'*“V'N(z). In practice, it is numer-
ically much more efficient to simply integrate the time-
dependent Schrodinger equation [3,8] using the classical
field (3) with time-dependent amplitudes E(z) and or
phase ¢(¢).

In place of the number state wave packet in Eq. (18),
we can weight the infinite set of such incident scattering
states with the normalized set of Gaussian coefficients
defined in Eq. (6) [15]." This defines a new wave packet
which is still incident in the particle channel state ¥, but
which now scatters in the presence of a coherent laser
mode |&).

Q) (E,t)= zc(N)Q (N,E, 1)
= %E(N)e TiNelg, (N,E)e ~E/
=3 [Se(Ne NN —n')
w N
X 3 0, Fyp (N, E)e ~E/R (30)
<
where ¢(N)=e ~@*/2(g)" /V/N1. The peaked value |N>

in the P01sson distribution of number states in (6) i
determined by equating (87N#w/V)!/% in Eq. (29) to E
in the classical expression for A in (3). The fractional
uncertainty |A|/N in the distribution of number_states
|N—A) about the mean value N decreases as 1/V' N and
we can use Eq. (17) to justify replacing F(N,E) by the
mean value solution vectors F(N,E) in Eq. (30). We are
now free to replace the summation index N within the
brackets by M =N —n’. Noting that, for N >n’

(c_z)"'[(N——n')!]l/z
VN1

¢(N)/e(N —n')= —e ™ (31

we can sum the bracketed term

S e(N)e N|N—n') | —|a(t))e niottd (32)
N

and express the quantal wave packet (30) as follows:

F. H. MIES AND A. GIUSTI-SUZOR
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Q. (E,n)=l|a(1) [22% iy ny (V5 E)
xe—in’(wt+¢) e—iEt/ﬁ (33)
=la))¥, (E,1) . (34)

Thus, in the limit of strong fields, the fully quantal wave
packet factors into a product of a coherent state which
remains unperturbed by the laser-induced particle in-
teractions, and a time-dependent Floquet-like scattering
wave function that conforms to the classical interaction
picture with F(N,E,R) equivalent to F(E,R) in Eq. (5).
Note that for a given mean N the set of incoming Floquet
states V" A E,x,R,t), when averaged over an optical cycle
T= 27r/co, form a complete “energy” normalized ortho-
normal set

(1/7) [T (B DI (E,0)=8,,,8,,,8(E'~E) .

(35)

A comparable complete set of outgoing Floquet states
¥, (E,1) is obtained by replacing F(N,E,R) with its con-
jugate in Egs. (5) and (33).

We can perform the same coherent-state summation on
Eq. (21) to conmstruct a nonstationary wave packet
Q,(p,R,1) Ia(O))\I’O(x R) which represents exposing a

system in the initial bound state ¥? to a coherent radia-
tion field |@) at t =0, rather that to the number state
|N) in Eq. (19b),

Q)= 3e(N)Q,;(N,E,1)
N

= %a N33 [dE Q. (N,E,0C,, (N,E)
n.y

~lan) ¥y [dEV, (EC,, (N,E)
noy

=|a(1))¥,(E;,x,R,1) (36)

where we have utilized Eq. (17) to justify replacing
C(N,E) with his mean value C(N,E) in (36). The half-
collision Floquet state in Eq. (4) is an approximation to
the following expression:

\II(E,,xRt)*Ezde\P (E,x,R,1)C,,_;(N,E)

ny<i
~01&(O))‘I’i(x,R) ) (37)

If we use Eq. (35) and average the absolute square of the
projection of the outgoing Floquet states onto this
bound-state wave packet over one optical cycle, we ob-
tain the same expressions for the distribution of dissociat-
ed states as given in Eq. (23) with N=N.

P,, «N,E). (38)

Pny<——i (E) =~
The amplitude for the wave packet (36) remaining in the

L —iEStsH, o
initial state |@(#))¥% " is given by the projection



&

—iEQt /#
(a@|(Wo% ' i
ny

Again averaging the absolute square of this amplitude
over one optical cycle, we obtain the following probabili-
ty of the wave packet remaining in the initial state:

‘iEiOt/ﬁlﬁ.)lz
1

P(t)y=|{a|{¥e
= ‘ %lE(N)szdE >Ck (N,EXC,, ,(N,E)
n’y

2

i(E)—E)t /%

Xe (39)

Using Eq. (17) to justify replacing C (N, E) with C(N,E)
and noting that the coherent-state coefficients T(N) are
normalized to one, we obtain

2

— i(E0—
de |2Pny<—i(N’E) ]e (E/—E)t/#
n’y

This final result is simply equivalent to Eq. (25) with N re-
placed by N.

We have arrived at the rather simple and anticipated
result that we can often represent laser-induced phenom-
ena in intense fields simply by using a single number state
IN) to represent the more proper coherent states la&).
This can be attributed to the factorization of the wave
functions in Eq. (33) and (36) in the strong field limit,
which implies that the radiative field simply acts as an
infinite reservoir (or sink) of photons. Obviously, this
means we can only calculate observable properties associ-
ated with the scattered particles. We now consider the
application of these simple results to processes (1) and (2).

V. DISCUSSION OF RESULTS FOR H,* AND MPD

In studying the strong field dissociation of H,™ we [30]
expand the full-collision wave function in Eq. (8) over the
restricted set of molecule-field channel states 6,,
=|N—n )¢, where ¥ =(A,J,M) only includes the two
lowest electronic states AElsog(22; ) and 2p0g(22,'f )
which correlate with the fragments H +H(1ls). The
quantum numbers J and M designate the total angular
momentum of the field-free molecule.

Because the two radiatively coupled A states are
asymptotically degenerate for H," the radiative interac-
tion in the dipole approximation, using the usual electric
field (EF) [22] or “length” gauge [31], becomes infinitely
divergent as the internuclear coordinate R — co. Bates
[32] evaluated the transition moment uEF(R) for the
Iso,—2po, transition in H," and found it diverges as
R /2. By evaluating the radiative interactions in the radi-
ative field (RF) or velocity gauge we avoid this divergence
[30]. This had already been noted by Chakrabarti, Bhat-
tacharyya, and Saha [33] for HD ", who recommend us-
ing the convergent radiative gauge (RF) whenever free-
free molecular transitions are involved (see Refs. [2] and
[5] for discussions of similar divergences in electron-ion
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scattering). Numerical values for the RF (velocity) dipole
transition moment pRF(R) are deduced from the EF
(length) results of Bates by using the commutator relation
(u|A-plg)=[AU(R)/hv]{u|E-x|g)/c, where AU(R)
=U, — U, is the energy difference between the two states
u and g which are asymptotically degenerate [34]. This
device permits us to use a truncated set of channel states
and still apply physically meaningful scattering boundary
[24] conditions to our close-coupled radial solutions in
Egs. (15) and (16). Unfortunately, since only two elec-
tronic states of H,™ are employed in these calculations
there is no assurance that gauge invariance [35] will be
satisfied. In fact, based on as yet unpublished calcula-
tions of Muller [36] it would appear that any ultimately
converged results will be much more in keeping with the
two-state length gauge calculations first proposed by Zav-
riyev et al. [37] rather than the present two-state velocity
gauge model. However, for the general purpose of
demonstrating the wave-packet description for laser-
induced half-collision processes we shall continue to em-
ploy the velocity gauge model.

At each interatomic distance R, only molecule-field
channel states whose occupation numbers differ by one
photon can be directly coupled by the RF radiative in-
teractions. (Actually the A- A operator can introduce
|n—n'| =2 couplings [25] which are generally ignored.)
In the weak field limit, these couplings correspond to typ-
ically allowed, one-photon electronic-rotational transi-
tions A,J,M —A',J',M' which are well described by per-
turbation theory and conform to the usual molecular
selection rules. However, in the strong field limit, the ra-
dial motion associated with the photodissociation of an
initially bound vibrational level of the molecule is best
solved in full multichannel close coupling without any
recourse to perturbation theory.

Results have already been presented in Ref. [30] for
photodissociation of the v =0 state of H, " ( Iso, 22; ) by
A=3297 A radiation for a range of intensities

I=7.0X10"2-5.6X10"* W/cm? A “mean” J value was
used which implies that the effect of optical pumping of
the rotational levels was ignored [38], and the molecule
was considered aligned by the linearly polarized field.
Projecting the outgoing multichannel scattering wave
functions onto the initial bound state in Eq. (22) we ob-
tain the line shapes (23) and decay behavior (25). Al-
though we have not made any commitment to an ex-
ponential decay of the initial state, as is implicitly in-
ferred in the usual complex-quasienergy approach [39] to
the half-collision Floquet ansatz, the Lorentzian behavior
(26) and exponential decay (27) is well substantiated by
our numerical results. An example of one such line shape
is shown in Fig. 1. In this case the total width and resul-
tant decay rate agree perfectly with the complex eigenval-
ue approach used in Ref. [9]. In addition, Eq. (23) gives
us the probability that the fragments possess a kinetic en-
ergy associated with an n-photon dissociation process.
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FIG. 1. Energy distribution of H(1s)-+H™" photofragments

from H2+(og,v =0) for A=329.7 nm and intensity
I=1.4X10" W/cm? The relative kinetic energy ¢, of the frag-
ments formed by absorption of n photons is €, =E +n#w. The
total probability distribution 3, P,,. ;(E), as well as each of the
individual n-photon peaks, are almost perfectly Lorentzian with
a half-width T';=1.7 cm™! which predicts a pure exponential
decay of the initial state, with a dissociation rate 3.2X 10! s,

Note that, although the rate of decay was primarily third
order in I, the separating fragments returned one photon
to the field by stimulated emission, and the observed dis-
tribution of fragments conformed to n ~2. .

Another example is shown in Fig. 2(a), with A=2480 A
and I =2X%10""* W/cm? Here we obtain a distinctly
non-Lorentzian line shape for the photodissociation from
v=2. As emphasized in Ref. [30] the exact close-
coupled scattering wave functions F (N, E,R) which enter
Eq. (22) and define the line shape in Egs. (23) and (38) are
very well understood in terms of the ‘adiabatic”
molecule-field dressed-state potentials obtained by di-
agonalizing the ‘‘diabatic” interaction matrix U(N,R) in
Eq. (15). The dashed curves in Fig. (3) show the resultant
adiabatic potentials defined by the parameters associated
with Fig. 2(a). Starting with an initial wave packet with a
vibrational wave function ?_;(R) in Eq. (22b) defined by
the diabatic A=crg(v =2) state, which has an eigenvalue
E,=—16949 cm™ ! in the absence of the laser field, this
is primarily projected onto a resonance state defined by
the adiabatic potential at E,~ —27 300 cm ™! which is, of
course, substantially broadened by what can be viewed as
a multiphoton laser-induced ‘‘predissociation.” This
shows up as the major peak in Fig. 2(a). However, we see
that there is also a significant component projected onto
the adiabatic v =1 state at E; ~ —28 825 cm ™! as well as
other structure in P,,.; which might be attributed to a
very small adiabatic v =0 and a significant adiabatic v =3
contribution to Fig. 2(a).

The line shapes are defined in the infinite depletion lim-
it. The total decay of the initial v =2, A=?% popula-
tion as a function of time is simply obtained by perform-
ing the Fourier transform over the total line shape in Eq.
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FIG. 2. (a) Probability distribution per unit energy of pho-
tofragments from H,*(o,,v =2) for A=248.0 nm and intensity
I1=2.0X10"* W/cm?. Only 0.82 of the fragment distribution is
contained in this energy region, and the remaining 0.18 is distri-
buted over broad range of energies. (b) The probability of the
half-collision wave packet remaining in the initial state exhibits
distinctly nonexponential decay. The initial value 0.67 of the
population at ¢ =0 represents the rapid depletion of the popula-
tion which yields the fragments not contained in (a).

(40), and results in the very nonexponential time depen-
dence shown in Fig. 2(b). For instance, the dip in the de-
cay curve at t =550 a.u. can be associated with the ‘“de-
structive” interference of the adiabatic v =1 and 2 contri-
butions to Eq. (40) when (E, —E )t /#fi=. It is interest-
ing to note the different line shapes for branching into the
n =1 and 2 channels in Fig. 2(a), which implies different
histories of formation due to such interference effects.
Further details of the nonexponential decay are analyzed
in the following paper [20]. In particular we must note
that the total line shape in Fig. 2(a) only integrates to
about 0.82. This appears squared in Eq. (40) and thus the
initial-state population in Fig. 2(b) is already depleted by
67% at t~=0. Actually the remaining 0.18 contribution
to the line shape is distributed over a very broad distribu-
tion of “continuum” energies which would indicate an al-
most instantaneous 33% depletion of the initial popula-
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FIG. 3. Diabatic (solid) and adiabatic (dashed) field-dressed
potentials for H,™ with A=248.0 nm and 7 =2.0X 10'* W/cm?.
The attractive diabatic curve represents the 1so, state associat-
ed with the number state |N —n ) with n =0. This undergoes a
diabatic crossing at R =~3.3 a.u. with the repulsive 2po, diabat-
ic state and number state |N —n ) with n =1. The stable diabat-
ic vibrational bound states are located by solid lines in the dia-
batic 1so, potential. The approximate bound states in the adia-
batic potential which asymptotically correlate with n =1 are
shown by dashed lines. These appear as broadened peaks in the
kinetic-energy distribution in Fig. 2(a).

tion at the onset of the laser pulse. In the following paper
[20] we will tediously account for all the missing popula-
tion by performing the integration (40) over a broad
range of E. Doing this we will find quantitative agree-
ment with the results obtained from direct integration of
the time-dependent Schrodinger equation using the clas-
sic field in Eq. (3), and averaging over the initial phase ¢.
This is the classical equivalent to the requirement in the
present derivation of the Floquet-type theory of averag-
ing over an optical cycle to obtain Egs. (38) and (40). Al-
though we are able to show the equivalence of the two
approaches, realistically, such rapidly decaying com-
ponents are basically incompatible with our assumption
that we can average our “observations” over an optical
cycle. Such “transient” behavior is best left to the exact
integration of the time-dependent Schrodinger equation
[20] using realistic pulse shapes to describe particular ex-
periments of interest.

VI. MCQDT ANALYSIS OF MPI FOR HYDROGEN

Dimou and Faisal [13] first utilized the full-collision
ansatz (5) to analyze the laser-induced resonance struc-
ture for e +H™" scattering. A general MQDT analysis of
the closed-channel contributions to such a scattering
wave function was then introduced by Giusti-Suzor and
Zoller [2] to predict the above-threshold-ionization rates
for the associated half-collision process originating from
the high Rydberg levels of H. The initial Rydberg levels
can be viewed as undergoing a laser-induced autoioniza-
tion. Although not explicitly stated, the MQDT analysis
implies the construction of a decaying wave packet com-
parable to (37). Actually, a Lorentzian-like behavior of
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the initial nonstationary (autoionizing) bound state was
observed in the low-intensity calculations, and greatly fa-
cilitates extracting the photoionization rates and branch-
ing ratios. However, we wish to emphasize that the
MQDT analysis introduced in Ref. [2] is not committed
to the perturbative approximations inherent in the
complex-quasienergy approach that is often applied to
Eq. (4) [1,5,9,11], and it can reliably calculate the nonex-
ponential behavior associated with strongly broadened
overlapping resonances. For a thorough study of Ryd-
berg wave packets generated by laser pulses, the reader is
referred to the review by Alber and Zoller [40].

Starting from the Floquet ansatz for the full-collision
process of e +H™ in a strong laser field, the radiative
close-coupling equations have been solved [2] in the
‘“space-translation frame.” This amounts to choosing the
acceleration form for the dipolar interaction and ensures
rapid convergence of the radiative couplings with in-
creasing radial distance. The reaction matrix thus ob-
tained varies slowly with the asymptotic energy of the
electron, and can be extrapolated across the ionization
threshold. Thus a single close-coupling calculation per-
formed slightly above threshold was sufficient to allow a
MQDT analysis of the closed-channel resonances associ-
ated with highly excited Rydberg states of the atom.
These states are perfectly stationary in the absence of the
field, and are subject to laser-induced autoionization once
the field is present.

Using the notations of Sec. II, we can block the
N X N matrix of radial solution vectors in Eq. (15) (and
all other such matrices) as follows:

Foo(S) Foc(S)

F(S;N.E,R)= |g_(S) Fee(S)

(41)

F(S) designates the particular set of solution vectors
which satisfy the incoming scattering boundary condi-
tions associated with the unitary Ny X N, scattering ma-
trix S in Eq. (16). Only the first N solution vectors are
proper (normalizable) wave functions, while the asymp-
totically divergent terms have been segregated in the
remaining N vectors and are rejected as unphysical.

The beauty of MQDT is that we can solve the coupled
equations at some total energy E;=E + N#w just above
the ionization threshold when all channels are open, i.e.,
€,,>0 in Eq. (14), and extract a real symmetric Ny X N
matrix Y(N,E) which is an analytic and slowly varying
function of E and completely summarizes all the close-
coupled dynamics between the channel states.

F(Y;N,E,R) ~ s(g,l,R)+c(g,l,R)Y(N,E) . (42)

r—

The diagonal matrices of Coulomb reference wave func-
tions s and ¢ are constructed to be independent, i.e.,
cs’—c's=1/m, for all R and all channel kinetic energies €
[41]. The analytic properties of these functions has been
thoroughly studied by Seaton [42]. Both s and ¢ asymp-
totically approach well-behaved standing waves, and, if
all channels are open, the scattering matrix is simply
given by
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S=(1+iY)/(1—iY) . (43)

However, at energies below threshold (e=—1/2v?<0)
both functions diverge asymptotically, and we must
transform the solutions (42) as follows to obtain (41):

Foo(S) My,
Foys) |~ FYGNER) M, (44)
where
My=(1—iR)"!, (45)
M= —(tanve+ Yo ) 'Y oo(1—iR) L. (46)

R is the usual Ny X N, reactance matrix we would associ-
ate with the resonance enhanced scattering matrix
S=(14+iR)/(1—iR) which is obtained by eliminating
divergent closed-channel components [27] from Eq. (42)

R=Yy—Yyc(tanvc+Yce) 'Y - 47)

Asymptotically the solution vectors in Eq. (44) achieve
the following form:

FpoS) (so+coR) My
FCO(S) ( _Bcﬂc )MCO

where B is a diagonal matrix of coefficients
B(v)=N(W)K (v)/cos(mv), with N(v)=(—1)(»*/2)!/2
and K (v)=[vT(v+I+1)T(v—1)]""2 The function
B.(R) represents that linear combination of s, and c,
reference Coulomb functions which just cancels their
asymptotic diverging components for € <0 and thus en-
sures that B, decays exponentially as R — 0.

~

(48)

sin(7v)c(R)—cos(mv)s(R)=N(v)K (v)B(R)
~NK(2R /v)'exp(—R /v) .
(49)

We will now introduce (48) into Eq. (22b), and assume
that the hydrogen atom is initially prepared in one partic-
ular channel state 6, =6, within the set of closed chan-
nels {6.}, as in (19b). In this case y =Im simply desig-
nates the angular momentum quantum numbers of the
bound electron. Further we shall assume that ?‘c) i
represents a specific Rydberg level i =¢q of the unper-
turbed hydrogen atom, with the integer g determined by
the condition that sin(7v)=0, or v=g¢ in Eq. (49). (We
use g in place of the conventional notation n to avoid
confusion with the photon Floquet number n). The
larger g, the closer this Rydberg level lies near the ioniza-
tion limit (g, = — 1/¢%>—0) and the more reasonable it is
to assume that the matrix Y(E) is essentially constant.
The initial normalized radial function takes the following
form:

P, =(—1)7"N(q)"'s(e,,,R)=K(q)B(g,,R) .  (50)

Introducing (48) and (50) into (22b) we obtain
Cori =M, (v)O,(v) (51)

where
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0,(v)=[N(v)K(v)(—1)?/N(g)cos(mv)]{B(v)|s(q)) .
(52)

The integral between the well-behaved radial function
s(q) at energy €, and the function B(v) at energy € which
generally diverges as R —0 can be evaluated using in-
tegration by parts:

(e, —€)Bls) =(sB'—Bs 1§25 =—(sB'—Bs ) .o
yielding
(Bls)=(sB'—Bs")r_o/(e—€,) . (53)

Using the limiting form for B(v,R) as R —0 and restrict-
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FIG. 4. (a) Probability distribution per unit energy of photo-
electrons from H(5s) for A=364.5 nm, with circular polariza-
tion, and intensity 7 =1.7X 10" W/cm? The kinetic energy &,
of the electrons produced by the absorption of n photons is
€, =E +nfiw. The total probability distribution ¥, P,,. ;(E),
which is dominated by n =1 in this case, is almost perfectly
Lorentzian with a total width T';=1.53X 107 Ry, and predicts
a pure exponential decay of the initial state, with an ionization
rate of 3.15X 10" s™!. (b) The probability of the half-collision
wave packet remaining in the initial state exhibits a perfect ex-
ponential decay with a decay time of 1.31X 10° a.u. (or 3.17 ps).
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FIG. 5. Same conditions as Fig. 3, but with I =2.7X 10"
W/cm?. (a) The line shape is no longer Lorentzian, and the ini-
tial H(5s) Rydberg state produces a wave packet which overlaps
and “populates” adjacent Rydberg levels. (b) The resultant de-
cay of the initial-state population is nonexponential. See com-
ments in the caption of Fig. 2 regarding the initial depletion of
the population at ¢ =0.

ing ourselves to the special case we will be presenting
below, with an /=0 initial Rydberg level, Eq. (52)
simplifies.to the following expression:

_ tan(mv)

prp— (—14g*/2)"1%. (54)

q
q)

The energy distribution of the photoelectrons originat-
ing from the photoionization of H(g,s) into the outgoing
vn channel is given by Eq. (24) and simplifies to

P =|M.* 12 tanZ(ﬂ"V)

2/¢° 55
yn<«—cq yn,c [‘IT(E"‘Eq)]Z( /q ) ( )

with M/, a matrix element obtained from the MQDT
expression (46). These line shapes are shown in Figs. 4-6
for an initial Rydberg level with ¢ =5 in circularly polar-
ized light of wavelength 364.5 nm and different intensi-
ties. The numerical values of the Y matrix elements in
Egs. (42) are taken from the close-coupled calculations of
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FIG. 6. Same as Fig. 4, but with I =1.0X 10"* W/cm?.

Ref. [2]. More recent calculations [43] have demonstrat-
ed the possible significance of adding strongly closed
channels (corresponding to the ground and first excited
Rydberg states of H) to the previous calculations. Never-
theless, Figs. 5 and 6 demonstrate that the MQDT
analysis of a half-collision process described by decaying
wave packets applies to strongly broadened overlapping
resonances and results in a distinctly nonexponential de-
cay. For the lowest intensity, the line shape in Fig. 4(a) is
almost perfectly Lorentzian, as for H," in Fig. 1. The
resonance width and shift obtained in this case from Eq.
(26) are in excellent agreement with the MQDT expres-
sions derived within the isolated resonance approxima-
tion [2].

The expression (55) is a very specialized result, that is
only applicable to high-lying Rydberg levels, with [ =0,
and is well designed for the conditions in Ref. [2] which
use a MQDT extrapolation across the ionization thresh-
old. In calculation originating for the ground or first ex-
cited states, as in Ref. [43], an explicit MQDT analysis
can still be used in the perturbative limit, since the initial
bound state is still well defined, and approximated by the
unperturbed Rydberg states of hydrogen. As the intensi-
ty increases, and the overlapping effects that we have
demonstrated become significant, especially for lowest
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levels, it is probably preferable to forgo the MQDT
analysis and use the explicit numerical techniques em-
ployed in Sec. V for the photodissociation of H,*. One
must then evaluate the matrix element in Eq. (22b) at
each energy E using explicit numerical integration with
the close-coupled solution vectors. However, since in this
limit the decay rates may begin to approach the laser fre-
quency, one must be careful not to violate the assump-
tions involved in averaging over an optical cycle, which is
implied, both in our full quantal approach, and in the
usual derivation of the Floquet ansatz. If this regime is
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approached it would be advisable to use explicit solutions
to the time-dependent Schrédinger equation [3,8,20,44].
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